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Abstract 

Rationale:  Studies examining the association of short-term air pollution exposure and daily deaths have typically 
been limited to cities and used citywide average exposures, with few using causal models.

Objectives:  To estimate the associations between short-term exposures to fine particulate matter (PM2.5), ozone 
(O3), and nitrogen dioxide (NO2) and all-cause and cause-specific mortality in multiple US states using census tract or 
address exposure and including rural areas, using a double negative control analysis.

Methods:  We conducted a time-stratified case-crossover study examining the entire population of seven US states 
from 2000–2015, with over 3 million non-accidental deaths. Daily predictions of PM2.5, O3, and NO2 at 1x1 km grid cells 
were linked to mortality based on census track or residential address. For each pollutant, we used conditional logistic 
regression to quantify the association between exposure and the relative risk of mortality conditioning on meteoro-
logical variables, other pollutants, and using double negative controls.

Results:  A 10 μg/m3 increase in PM2.5 exposure at the moving average of lag 0–2 day was significantly associated 
with a 0.67% (95%CI: 0.34–1.01%) increase in all-cause mortality. 10 ppb increases in NO2 or O3 exposure at lag 
0–2 day were marginally associated with and 0.19% (95%CI: −0.01-0.38%) and 0.20 (95% CI-0.01, 0.40), respectively. 
The adverse effects of PM2.5 persisted when pollution levels were restricted to below the current global air pollution 
standards. Negative control models indicated little likelihood of omitted confounders for PM2.5, and mixed results for 
the gases. PM2.5 was also significantly associated with respiratory mortality and cardiovascular mortality.

Conclusions:  Short-term exposure to PM2.5 and possibly O3 and NO2 are associated with increased risks for all-cause 
mortality. Our findings delivered evidence that risks of death persisted at levels below currently permissible.
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Introduction
Globally, the burden of death attributable to fine particu-
late matter (PM2.5) is estimated to be more than 4 million 
annually, representing 7.6% of total global deaths [1, 2]. 
Short-term exposure to PM2.5 is associated with mortal-
ity from all-causes [3–5], stroke [6], asthma [7, 8], and 

chronic obstructive pulmonary disease [9–11]. Exposure 
to O3 and NO2 has also been linked to chronic respira-
tory diseases, impaired lung function, and all-cause mor-
tality [12–16].

However, previous studies of the acute effect of PM2.5 
have been restricted to well-monitored metropolitan 
areas where the population is large enough to power 
the studies [17, 18]. Many time-series which examined 
the acute effect of O3 and NO2 on daily deaths had the 
same limitations [14, 15, 19]. Hence the effects in rural 
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areas and unmonitored areas have been under-examined. 
In addition, these time-series studies assigned the same 
exposure to everyone in the same city, entailing lim-
ited spatial resolution and considerable exposure error. 
Fewer studies have examined all three of these pollut-
ants together, with only one using causal modeling meth-
ods [20], and studies below the previous World Health 
Organization Air Quality Guidelines (WHO AQG) [21] 
are less common.

In this study, we studied the entire population of all 
ages in seven US states, use census tract or finer exposure 
data, and examine the lag structure between short-term 
air pollution exposure and all-cause and cause-specific 
mortality using a time-stratified case-crossover design. 
The study population covered states in the Midwest and 
Eastern U.S. between 2000 and 2015, with over 3 million 
deaths. We have also implemented several causal meth-
ods, specifically negative exposure controls and negative 
outcome controls to provide more evidence for the cau-
sality of any associations.

Methods
Study population
This study used non-accidental mortality data across 
seven states of the US: Georgia, Indiana, Kansas, Mas-
sachusetts, Michigan, New Jersey, and Ohio. Death cer-
tificate data were obtained from each state’s department 
of health and included date of death, age, sex, race, edu-
cation, marital status, the cause of death, and either the 
census tract number or the latitude and longitude of the 
residential address at the time of death. The study out-
comes were all-cause and cause-specific mortality due to 
cardiovascular disease (ICD-10: I00 to I99) and respira-
tory disease (ICD-10: J00 to J99).

Air pollution exposures and meteorological covariates
Daily concentrations of PM2.5, O3, and NO2 at 1 km x 
1 km grid cells in the contiguous US were predicted using 
a well-validated hybrid prediction model that incorpo-
rates satellite remote sensing, chemical transport models, 
meteorological variables, and land-use terms, with out-
of-sample predicted R2 of 0.86, 0.90, and 0.79 respectively 
[22, 23]. With this model, predictions were generated 
across the entire contiguous US. Temperature and abso-
lute humidity were retrieved from Phase 2 of the North 
American Land Data Assimilation System, and daily 
mean values were determined for each 12 kmx12 km 
grid across the continental United States [24]. For each 
individual decedent, the daily mean PM2.5, daily 8-hour 
maximum ozone (O3), daily 1-hour maximum nitrogen 
dioxide (NO2), daily mean temperature, and daily mean 
absolute humidity were assigned.

Study design
We utilized a case-crossover design with “case day” 
defined as the date of death, and “control day” defined 
as the same day of the week within the same month and 
year where death did not occur. “Control day” was cho-
sen bidirectional time stratified (i.e. both before and 
after the case day, but in the same month) to control for 
confounding by time trend. For each individual, we com-
pared daily air pollution exposure on the case day to con-
trol days. By virtue of the study design, individuals serve 
as their own controls and any subject-level covariates 
that remain constant on case and control days (i.e., age, 
gender, race, socioeconomic status, comorbidities, smok-
ing history, cholesterol levels, diet, obesity, etc.), as well 
as any seasonal and sub-seasonal patterns, are controlled 
for by design. We further used both a negative exposure 
control and a negative outcome control to deal with the 
potential for unmeasured confounders [25].

Statistical analysis
We used conditional logistic regression models to assess 
the associations between acute air pollutant exposures 
and mortality. Based on prior studies, for each exposure, 
we assigned a moving average of the same data and two 
previous days to each decedent on the case and control 
days. Temperature was included as same day tempera-
ture, a moving average of lag1–3, and an additional quad-
ratic term. Humidity was included as same day humidity 
and a moving average of lag1–3. Exposures after the 
death (lead) were included as negative exposure controls. 
They clearly cannot have caused the death, but if there is 
an omitted time-varying confounder that is correlated 
with the air pollution on the day of death, it is likely also 
correlated with the pollutant on the following day. Hence 
control for lead 1-day can at least partially control for 
that omitted confounder and identify the likely direction 
of bias. If the coefficient relating the omitted confounder 
to pollution is the same on the day of death and the sub-
sequent day, then the unconfounded estimate of the true 
effect would be the difference between the coefficient of 
exposure on death and the coefficient of lead 1 exposure 
on death. Given the two exposures differ by a single day, 
this is a reasonable, but not certain assumption. Further, 
since that estimate controls for unmeasured confound-
ing, it would be a causal estimate.

The lag periods selected for inclusion are based on epi-
demiologic literature reporting evidence of immediate 
effects of air pollution on mortality (i.e., within a few days 
after pollution exposure) [26, 27]. We evaluated the effect 
of each pollutant in single-pollutant models, double-pol-
lutant models, and three-pollutant models. We estimated 
the percent increase in mortality and its 95% confidence 
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intervals (CIs) associated with each 10 μg/m3 increase in 
the exposure of PM2.5 or 10 ppb increase in exposures to 
O3 and NO2.

In addition to the negative exposure control, we sepa-
rately analyzed deaths due to non-alcoholic fatty liver 
disease (NAFLD), which served as a negative outcome 
control to examine potential omitted confounding [28]. 
Again, if we unexpectedly find an association of expo-
sure with the negative outcome control, that would 
indicate the presence of an omitted confounder that 
was associated with both. Finally, using a two-stage 
approach similar to two-stage least squares, one can 
relax the assumption of equal association between the 
omitted confounder(s) and both exposure and nega-
tive control exposure and obtain a bias corrected causal 
estimate, under the usual assumptions for causal models 
(SUVTA). Essentially, the expected value of the negative 
control outcome can be used as a surrogate for the omit-
ted confounder(s) and by controlling for it in the model 
with the negative exposure control we can obtain bias 
corrected estimates using this double negative control. 
The details are shown in Additional file 6. A DAG for this 
scenario is included in Fig. 1. As seen in this figure, there 
is a backdoor path between the negative control exposure 
and both outcome and exposure through unmeasured 
confounder U, and similarly for the negative control out-
come. It is by making use of these two associations that, 
under appropriate assumptions, one can indirectly con-
trol for U.

We repeated the analyses restricting to deaths with 
exposure levels below the 2020 World Health Organiza-
tion Air Quality Guidelines (WHO AQG) for each pol-
lutant to examine whether the associations persisted at 

levels currently permissible (25 μg/m3 for PM2.5, 100 μg/
m3 for O3, 200 μg/m3 for NO2).

Effect modification analysis
To identify potentially susceptible populations, we exam-
ined modifications among subgroups of sex (male and 
female), race (White, Black, and Other), age (≤45, 45–65, 
65–75, and ≥ 75 years), education (less than, equal to, or 
greater than high school) and urbanicity (urban, rural). 
Population density for each census tract was calculated 
using the total population and land area, and urbanicity 
was defined based on whether census tract population 
density exceeds the 25th percentile of the overall density 
of the entire study population.

Sensitivity analysis
Sensitivity analyses were conducted to examine the 
robustness of our results. First, we evaluated different lag 
periods for temperature and humidity and chose the esti-
mate of moving average in the final model based on the 
most robust estimates of individual lag patterns. We also 
included an interaction term between temperature and 
state.

All analyses were done in the statistical environment 
R4.0.3 [29], with the “survival” package (version 3.2–7) to 
fit the conditional logistic regression [30]. This study was 
approved by the institutional review board at Harvard 
T.H. Chan School of Public Health.

Results
Variable distribution and descriptive statistics
A total of 3,063,192 deaths were identified between 2000 
and 2015 with a complete record of the date of death as 

Fig. 1  DAG for the double negative control Scenario
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well as corresponding geographical coordinates. Table 1 
presents the summary statistics for the total popula-
tion examined and for each state. Among all subjects 
who died during the study period, 46.9% were male and 
12.8% were of the non-white race. The mean age at death 
was 75.6 years, ranging from 1.9 to 117.0 years, with 77% 
of the cases occurring in people 65 years or older. Of all 
deaths, 1,053,304 (34.4%) deaths were from cardiovascu-
lar diseases, and 323,309 (10.6%) deaths were from res-
piratory diseases.

Table 1 also presents the distribution of air pollutants 
and meteorological covariates on case days. The mean 
daily ambient air pollutant concentrations over the study 
period were 10.3 μg/m3 for PM2.5, 37.7 ppb for O3, and 
21.2 ppb for NO2. Concentrations varied year-to-year and 
between states, likely due to meteorology and wind pat-
terns, and spatial variability in local sources of pollution.

Results for single, double and multi‑pollutant air pollutant 
models
Figure  2 presents the result for percent increase in all-
cause mortality in single-, double-, and three-pollut-
ant models. Supplementary Table  4 shows the detailed 
results. Individually, all three pollutants were significantly 
associated with an increase in all-cause mortality. Upon 

controlling for either O3 or NO2 in double pollutant 
models, and for both in the three-pollutant model, the 
effect of PM2.5 attenuated slightly, but remained signifi-
cant. The effect of O3 and NO2 attenuated to marginally 
significant after adjusting for PM2.5 in the two pollutant 
models, and both became only marginally significant in 
the three-pollutant model.

Tables  2 and 3 presents the results of the analyses for 
all-cause mortality using the moving average of air pollut-
ants and adjusting for all other pollutants, temperature, 
absolute humidity, and the leads of each pollutant. In the 
three-pollutant model, the percent increases for all-cause 
mortality associated with each 10 μg/m3 increase of PM2.5 
exposure at lag 0–2 day, and 10 ppb increase in NO2 expo-
sure at lag 0–2 day were 0.73% (95%CI: 0.38–1.08%), and 
0.19% (95%CI: −0.01-0.38%), respectively. Each 10 ppb 
increase in O3 exposure at lag 0–2 day was associated with 
a 0.20% (95%CI: −0.01-0.41%) increase in all-cause mor-
tality, although the association was only marginally sig-
nificant (p < 0.06) for the gaseous pollutants. For PM2.5, we 
found larger effect sizes for respiratory deaths, at 1.16% 
(95%CI: 0.00–2.35%) per 10 μg/m3 increase. PM2.5 was also 
significantly associated with deaths from cardiovascular 
causes (Tables 2 and 3, Fig. 2). No significant associations 
were seen for NO2 or O3 with the specific causes of death, 

Table 1  Descriptive characteristics and event day exposures from 2000 to 2015 in the US and in each state included in the study

a Definition of abbreviations: HS=High school

For sex, race, and education, data were presented as a percentage to the total. For age and case-day exposure, data were presented as mean (standard deviation)

Total OH MA NJ GA KS IN MI

N = 3,063,192 N = 691,180 N = 986,257 N = 355,231 N = 311,146 N = 63,462 N = 99,035 N = 556,881

Sex

  Male 46.9% 47.3% 45.9% 46.2% 48.0% 46.9% 47.3% 48.0%

  Female 53.1% 52.7% 54.1% 53.8% 52.0% 53.1% 52.7% 52.0%

  Age (years) 75.6 (18.1) 75.1 (16.5) 77.4 (20.4) 75.9 (16.2) 72.1 (18.1) 76.4 (17.2) 74.5 (16.8) 74.9 (16.6)

Race

  White 87.2% 88.4% 92.8% 84.3% 71.7% 92.0% 91.8% 84.7%

  Black 10.8% 10.9% 4.0% 12.6% 27.3% 4.8% 7.6% 13.6%

  Other 2.0% 0.7% 3.1% 3.2% 1.0% 3.2% 0.6% 1.6%

Education

  < HSa 21.2% 24.4% 17.8% 24.5% 11.7% 24.4% 15.8% 26.9%

  HS 44.6% 49.0% 51.2% 49.9% 14.3% 42.1% 23.9% 45.0%

  > HS 25.0% 23.9% 29.9% 24.9% 11.5% 32.3% 11.0% 26.6%

Urbanicity

  Urban 75.1% 70.6% 83.5% 91.6% 67.2% 32.8% 41.3% 68.8%

  Rural 24.9% 29.4% 16.5% 8.4% 32.8% 67.2% 58.7% 31.2%

Case Day Exposure

  PM2.5 (μg/m3) 10.4 (6.15) 11.8 (5.90) 8.66 (5.67) 11.7 (7.36) 11.8 (5.45) 9.71 (4.74) 13.0 (6.60) 9.63 (5.90)

  O3 (ppb) 37.7 (11.0) 38.0 (10.5) 37.0 (11.0) 37.2 (12.0) 41.3 (12.6) 38.0 (10.6) 38.2 (13.2) 36.6 (8.52)

  NO2 (ppb) 21.2 (12.1) 18.4 (10.1) 22.4 (11.8) 31.9 (13.4) 15.3 (10.7) 16.3 (10.0) 17.5 (9.95) 20.3 (10.8)

  Temperature (Kelvin) 284 (10.3) 284 (10.4) 283 (9.61) 284 (9.63) 290 (9.21) 285 (11.2) 284 (11.2) 282 (10.7)

  Humidity (g/cm3) 0.0073 (0.0045) 0.0076 (0.0045) 0.0068 (0.0042) 0.0076 (0.0046) 0.0095 (0.0047) 0.0077 (0.0048) 0.0075 (0.0046) 0.00667 (0.0042)
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Fig. 2  Effect of air pollution on all-cause mortality in single, double and three pollutant models

Table 2  Estimated percent increase in all-cause and cause-specific mortality with increases in PM2.5, O3, and NO2 in baseline model, 
two stage causal model, and low exposure model

Values are percent increase (95% CI) for 10 μg/m3increase in PM2.5, 10 ppb in O3, and 10 ppb in NO2. All models were adjusted for temperature and absolute humidity. Lag 
periods for all models were lag0–1 for PM2.5, lag0–2 for O3, and lag0–2 for NO2
a The low exposure model analysis had the same model specifications as the baseline model analysis and was restricted to days with PM2.5below 25 μg/m3, O3below 50 ppb, 
and NO2below 106.4 ppb
b Mortality due to cardiovascular disease (International Classification of Disease, 10th edition [ICD-10] codes I00 to I99) and respiratory disease (ICD-10 codes J00 to J99)

PM2.5 (μg /m3) O3 (ppb) NO2 (ppb)

Model Cases (n) % 95% CI p % 95% CI p % 95% CI p

Three pollutant Model 13,474,216 0.73 (0.38, 1.08) <0.01 0.20 (−0.01, 0.41) 0.06 0.19 (−0.01, 0.38) 0.06

With two Stage Causal Model 13,474,216 0.68 (0.33, 1.03) <0.01 0.30 (0.12, 0.48) <0.01 0.12 (−0.02, 0.26 0.09

Low Exposurea 11,919,986 0.73 (0.38, 1.08) <0.01 0.23 (−0.02, 0.48) 0.08 0.19 (−0.01, 0.39) 0.07

Cardiovascularb 1,053,304 0.79 (0.18, 1.40) 0.01 0.22 (−0.15, 0.59) 0.26 −0.13 (−0.48, 0.22) 0.47

Respiratoryb 323,309 1.16 (0.00, 2.35) 0.04 0.41 (−0.33, 1.15) 0.28 0.73 0.00, 1.46) 0.05

Table 3  Association of negative control exposure with outcome

Values are percent increase (95% CI) for 10 μg/m3increase in PM2.5, 10 ppb in O3, and 10 ppb in NO2. All models were adjusted for temperature and absolute humidity. Lag 
periods for all models were lag0–1 for PM2.5, lag0–2 for O3, and lag0–2 for NO2

*The threshold model analysis had the same model specifications as the baseline model analysis and was restricted to days with PM2.5below 35 μg/m3, O3below 70 ppb, and 
NO2below 100 ppb

†Mortality due to cardiovascular disease (International Classification of Disease, 10th edition [ICD-10] codes I00 to I99) and respiratory disease (ICD-10 codes J00 to J99)

PM2.5 lead 
(μg /m3)

O3 lead (ppb) NO2 lead (ppb)

Model % 95% CI p % 95% CI p % 95% CI p

Three pollutant Model −0.36 (−0.67, −0.11) <0.01 0.19 (0.01, 0.37) <0.05 −0.047 (−0.23,0.12) 0.55

Low Exposure* −0.32 (−0.63, 0.003) 0.05 0.27 (0.07, 0.47) <0.01 −0.05 (−0.23, 0.14) 0.64

Cardiovascular† −0.49 (−0.97, −0.01) <0.05 0.26 (−0.05, 0.56) 0.10 0.14 (−0.16, 0.44) 0.37

Respiratory† −0.38 (−1.28, 0.52) 0.41 −0.57 (−0.13, −0.003) <0.05 −0.42 (−0.99, 0.16) 0.16



Page 6 of 12Liu et al. Environmental Health           (2022) 21:81 

although there was a marginal association of NO2 with 
respiratory deaths. We saw no significant association of 
any exposure with the negative outcome control.

Restriction to effects below standard
Of all case and control days, 98.0% days had PM2.5 lev-
els below the WHO AQG standard of 25 μg/m3, 89.5% 
days had ozone levels below the standard of 50 ppb 
(100 μg/m3), and 100% days had NO2 levels below the 
standard of 106.4 ppb (200 μg/m3). When restricted to 
days with PM2.5 exposure below standards, the results 
remained unchanged and significant for PM2.5 (Table  2 
and 3, Fig. 3). The results for O3 and NO2 also were little 
changed and remained marginally significant.

Effect modification
Figure  4 and presents the effect of each air pollutant 
among subgroups of education, sex, age group, race, 
and urbanicity. Although we did not observe significant 
effect modification (Supplementary Table  1), there was 
a trend of decreasing effect size for increasing education 
for PM2.5 and O3, of larger effects of PM2.5 in less densely 
populated locations, and of lower effects of O3 but larger 
effects of NO2 in Blacks.

Sensitivity analysis
Temperature and absolute humidity on lag days 1 to 3 
had robust associations with all-cause mortality (Sup-
plementary Table  2) and the moving averages of these 
days were selected for the final model, along with terms 

for same-day temperature and humidity. We also added 
a non-linear quadratic term for same-day temperature in 
the final model. In addition, we performed a sensitivity 
analysis with a separate temperature effect for each state 
(Supplementary Table  3). The PM2.5 effect estimate was 
little changed in this sensitivity analysis, but both the O3 
and NO2 associations because statistically significant.

Causal modeling
The greatest threat to the validity of environmental epi-
demiology studies is omitted confounding. Negative 
outcome controls are a form of causal modeling that 
captures confounding by unmeasured covariates that 
are expected to be predictors of the both the outcome 
and the negative control outcome, and no association 
was found between any of the pollutants and the nega-
tive control outcome. Similarly, the negative exposure 
control captures confounding by time varying confound-
ers that were not measured, and this was incorporated 
in the main analysis. The negative control exposure was 
negatively and significantly associated with mortality for 
PM2.5, negative but insignificant for NO2, and positive 
and significant for O3 (Supplementary Table 2). When we 
used these estimates to correct for omitted confounders 
assuming they have the same correlation with exposure 
and exposure in the subsequent day (Tables 2 and 3), the 
effect sizes increased for PM2.5 and NO2 to 1.09% (95% 
CI 0.74, 1.45) and 0.23% (95% CI 0.03, 0.44) respectively, 
while the effect size for ozone was diminished at 0.00% 
(95% CI (−0.26, 0.27). The two-stage model controlling 

Fig. 3  Estimated percent increase in all-cause and cause-specific mortality with increases in PM2.5, O3, and NO2 in baseline model and low exposure 
model
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for the expected value of the negative outcome produced 
similar results to the original model for PM2.5, larger 
results for ozone, and smaller effect estimates for NO2.

Discussion
In this study, we conducted a time-stratified case-cross-
over analysis for major air pollutants using spatially 
resolved exposure data, estimating the associations of 
short-term PM2.5, O3, and NO2 exposures with mortality 
for the entire population of seven US states at the indi-
vidual level, which covered over 3 million deaths that 
occurred between 2000 to 2015. These estimates were 
not restricted to major cities but include smaller cities 
and rural areas. Exposure was assigned either as the con-
centration in the 1 km grid cell that contained the home 
address of the decedent, or the census tract of the dece-
dent, which is a much finer spatial resolution that most 

preceding studies. Moreover, because we used spatio-
temporal exposure models differences in the temporal 
pattern of exposure by geography were incorporated, 
which has not been the case for city-wide time series 
studies.

We found an independent and significant effect for 
PM2.5 and a marginal one for NO2, where a 10 μg/m3 
and 10 ppb increase was significantly associated with a 
0.73 and 0.19% increase in the risk of all-cause mortal-
ity, respectively. The association with O3 (0.20) was also 
marginally significant in the three-pollutant model. The 
association for PM2.5 remained significant when restrict-
ing the analysis to days with pollutant levels lower than 
the WHO AQG [31] (25 μg/m3), indicating that current 
standards are not sufficient to protect the general popu-
lation. Importantly, we incorporated a double nega-
tive control strategy to protect against confounding by 

Fig. 4  Percent increase in all-cause mortality associated with each air pollutants in subgroups of effect modifiers



Page 8 of 12Liu et al. Environmental Health           (2022) 21:81 

omitted variables. We controlled for negative exposure 
control (exposure after death) in the main analysis, which 
would capture any omitted covariate that was correlated 
with both air pollution before and after the death and 
mortality. In addition, we saw no association of any pol-
lutant with the negative outcome control (mortality due 
to NAFLD), which would capture any time varying covar-
iate that is associated with deaths from any cause (includ-
ing NAFLD). Finally, we used a two-stage approach that 
treats the expected NAFLD cases as a surrogate for the 
omitted confounders, in our model for all-cause mortal-
ity. The effect size for PM2.5 was little changed, increased 
and became significant for O3, and decreased for NO2. 
The case-crossover design itself controls by matching 
for slowly varying individual and neighborhood covari-
ates. Together, these suggest that the PM2.5 association 
is robust to control for other pollutants and omitted con-
founders, and the two-stage and negative control analy-
ses strongly suggest a causal association. The NO2 and O3 
results are more mixed with mostly marginal associations 
in multipollutant models and more indication of omitted 
confounding, albeit of unsure direction of bias. However, 
in the models with state specific temperature effects, 
both gaseous pollutants were significant.

Although other publications have investigated the effect 
of air pollutants utilizing a case-crossover design [32–
34], none was on the scale in terms of area and age cov-
erage comparable to the present study. In addition, our 
high exposure resolution has not yet been provided by 
existing literature. Case-crossover analyses have mostly 
assigned the same exposure to all inhabitants in a city or 
metropolitan area. In contrast our exposure was assigned 
at the individual address or census tract. Hence, our 
models greatly reduce exposure error. Of course, while 
the exposure models were very good, exposure error still 
remains, and can still induce bias in effect sizes. A recent 
simulation study of multipollutant measurement error 
reported that the bias was almost always toward the null 
[35]. A case-crossover study of Medicare participants by 
Di et  al. used spatially resolved air pollution at the ZIP 
code level [22] which had a coarser resolution as com-
pared to our census tract level exposure (about one-third 
of the population of a ZIP code) or 1 km exposure. Our 
effect estimates for PM2.5 and O3 were lower than that of 
Di’s (0.73 and 0.20% respectively), but we also adjusted 
an additional air pollutant NO2 as well as incorporated 
negative exposure controls, and negative outcome con-
trols, and two-stage methods. The observed associations 
between PM2.5 and mortality were robust to adjustment 
by co-pollutants and weather variables. In addition, while 
Di restricted the study to the US Medicare population of 

people 65 years and older, our study included people of 
all ages, providing increased generalizability.

The effect of PM2.5 was in agreement with those 
obtained by a study across 112 US cities from 1999–
2005, which reported a 0.98% (95% CI: 0.75–1.22%) 
increase in mortality with each 10 μg/m3 increase in 
PM2.5 [36]. Although our estimation for O3 was only 
marginally significant, the estimate was on par with 
that observed in a study of 48 US cities, which found 
a 0.3% (95% CI: 0.2–0.4%) increase in total mortality 
with each 10-ppb increase in O3 [15]. However, simi-
lar to other previous US studies [18, 37–41], those daily 
air pollutant exposure data were obtained from local 
ambient monitoring stations. As a result, all individu-
als residing in the metropolitan area were assigned 
the same exposure, leading to substantial measure-
ment error. In comparison, the present study did not 
use central monitors, thereby providing a finer resolu-
tion and more accurate exposure data for all individu-
als, including individuals living in smaller cities, rural 
communities or unmonitored areas that would be mis-
classified or not included in earlier time-series studies. 
We observed a larger, although insignificantly different, 
effect for PM2.5 and NO2 in rural areas as compared to 
urban areas, suggesting the need for improved rural 
monitoring to contrast the adverse effect in urban ver-
sus rural regions, and the need to examine sources of 
rural vulnerability.

Findings from this study were also consistent with the 
effect sizes of PM2.5 observed in other countries [42–44]. 
However, our estimates for PM2.5 were higher than the 
0.22% increase in 272 Chinese cities [45] and the 0.55% 
increase in 10 Mediterranean metropolitan areas [46]. 
Those regions have higher PM2.5 concentrations, and 
the lower effect sizes may be due to a nonlinear dose-
response, with lower slopes at high concentrations, 
which has been reported previously [47]. On the other 
hand, our estimates for NO2 were lower than the 0.9% 
increase in previously reported studies [19], although 
that study did not control for O3 and PM2.5. These dis-
crepancies may also be partly explained by differences in 
population structure, the number of cities, age category, 
and air pollutant measurement method involved. The 
marginal insignificance of the O3 association when con-
trolling for NO2 should be treated cautiously, since NO2 
has a complex association with O3, serving as a driver 
of photochemistry but also a marker for NO quenching 
in more heavily trafficked areas. This can create a com-
plex confounding pattern that can lead to effect transfer 
across the two pollutants.

The WHO AQG daily standards were until recently 
25 μg/m3 for PM2.5, 50 ppb for O3, and 106.4 ppb for NO2. 
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In comparison, the United States has a less restrictive 
standard for PM2.5 and NO2 (35 μg/m3 for PM2.5, 70 ppb 
for O3, and 100 ppb for NO2). When restricting the analy-
sis to a PM2.5 concentration below the WHO standards, 
its effect size remained the same. The EPA recently pro-
posed to maintain the current national particulate mat-
ter standards due to insufficient evidence for effect at 
lower concentrations [48]. Our findings showed that even 
at levels below the standards, PM2.5 pollution is signifi-
cantly associated with an increase in daily mortality rates, 
including after incorporation of multiple causal modeling 
methods.

In addition to all-cause mortality, we also found a sig-
nificant association with cardiovascular and respira-
tory mortality for PM2.5. Exposure to air pollution has 
been consistently associated with death due to chronic 
obstructive pulmonary disease (COPD), death due to 
pneumonia, as well as emergency room visits for asthma 
[14, 15, 19, 49], and our estimates for respiratory mortal-
ity are in line with previously reported estimates. Many 
studies have reported associations between exposure to 
PM2.5 and cardiovascular deaths [19, 50] and provided 
evidence that these disease processes can be mediated 
through a combination of inflammatory, autonomic, and 
vascular changes [51, 52].

Profound racial and socioeconomic disparities in PM2.5 
exposure have been well documented in prior studies, 
where the burden of death associated with PM2.5 expo-
sure was disproportionately borne by the elderly [38, 
53] and people of races other than white [54, 55]. Our 
effect modification analysis suggested a slightly elevated, 
although insignificantly different, association between 
PM2.5 and all-cause mortality among females, people 
of lower educational attainment, those residing in rural 
areas, and people of Black race. This is in addition to the 
effects of higher exposure in minorities. Greater atten-
tion is needed to address the issue faced by minorities 
who might also be least equipped to deal with the adverse 
health consequences of air pollution.

Attention has recently focused on causal methods of 
analysis for observational data. Causal modeling seeks 
to mimic a randomized controlled trial by making expo-
sure independent of all confounders but can fail if there 
are omitted confounders. Case-crossover analyses, by 
matching each person to themselves, on a nearby day 
without the event make exposure independent of all 
fixed or slowly changing individual covariates by design, 
and hence render exposure independent of many 
unmeasured confounders. In addition, we used nega-
tive exposure and outcome controls to capture omitted 
time-varying confounders, and a two-stage regression 

model to control for unmeasured, time-varying con-
founders. These methods strengthened the evidence 
for a causal association between air pollution and daily 
mortality.

This study has several limitations. First, there is a 
lack of data differentiating exposure at residence and 
exposure elsewhere. However, in this study, 77% of 
the deaths occurred in people over the age of 65 and 
we, therefore, expected little workplace or commuting 
exposure, and a higher relevance for residential expo-
sure [56]. As a result, the extent of misclassification 
was reduced. Moreover, the National Human Activ-
ity Pattern Survey in the U.S. reported that U.S. adults 
spent 69% of their time at home and 8% of the time 
immediately outside their home [57]. Second, we did 
not have individual data on behavioral factors, medi-
cation, and specific health histories or treatments. By 
design, these cannot be confounders, but this limited 
our ability to investigate potential modifications by 
these characteristics. Third, we did not investigate 
potential confounding by other co-pollutants such as 
sulfur dioxide (SO2) and carbon monoxide (CO). How-
ever, the levels of SO2 and CO are low in the US [58, 
59]. In addition, Dominici et al. [60] adjusted for all O3, 
NO2, SO2, and CO but found no change in the magni-
tude of the effect between particular matter and mor-
tality, suggesting there is little evidence that the effect 
of particulate matter is confounded by the additional 
pollutants. Finally, while our exposure models were 
good, they were not perfect in estimating exposure 
at 1 km resolution. Further, the exposure error in the 
models varied spatially, which may account for the lack 
of finding of interactions with spatially varying effect 
modifiers.

Despite its limitations, the study adds to our under-
standing of the effect of short-term air pollution 
exposure. The most important strength of this study 
is the high resolution of exposure data covering the 
multiple states, even in areas without air monitoring 
stations. This provided accurate estimates of daily 
levels of air pollution and meteorological conditions, 
allowing us to examine the entire population of these 
states instead of only larger cities, and reduced expo-
sure misclassification compared to prior studies with 
a central-monitor approach. Second, our analysis on 
the whole population of seven US states avoids poten-
tial selection bias and ensures the generalizability of 
the results. Finally, we used several causal modeling 
techniques, including negative exposure and negative 
outcome controls to increase the likelihood of a causal 
association.
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Conclusions
In this analysis of the entire population in seven US 
states with over three million deaths, we found that 
short-term exposures to PM2.5, O3, and NO2 were indi-
vidually associated with an increased risk of all-cause 
mortality. The effect of air pollution persisted even at 
low ambient concentrations, suggesting that the cur-
rent daily standards may need to be revised to reduce 
the global burden of mortality due to air pollution. The 
use of multiple causal techniques increases the likeli-
hood of causal relationships between the short-term air 
pollution exposures and mortality.
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