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Abstract 

Background:  We aimed to explore the association between long-term exposure to particulate matter ≤ 2.5 µm 
(PM2.5) and metabolic syndrome (MetS) and its components including fasting blood glucose (FBG), blood pressure, 
triglyceride (TG), high-density lipoprotein cholesterol (HDL-c) and waist circumference among adults and elderly in 
south China.

Methods:  We surveyed 6628 participants in the chronic disease and risk factors surveillance conducted in 14 districts 
of Guangdong province in 2015. MetS was defined based on the recommendation by the Joint Interim Societies’ 
criteria. We used the spatiotemporal land-use regression (LUR) model to estimate the two-year average exposure of 
ambient air pollutants (PM2.5, PM10, SO2, NO2, and O3) at individual levels. We recorded other covariates by using a 
structured questionnaire. Generalized linear mixed model was used for analysis.

Results:  A 10-μg/m3 increase in the two-year mean PM2.5 exposure was associated with a higher risk of developing 
MetS [odd ratio (OR): 1.17, 95% confidence interval (CI): 1.01, 1.35], increased risk of fasting blood glucose level.

(OR: 1.18, 95% CI: 1.02, 1.36), and hypertriglyceridemia (OR: 1.36, 95% CI: 1.18, 1.58) in the adjusted/unadjusted models 
(all P < 0.05). We found significant  interaction between PM2.5 and the region, exercise on the high TG levels, and an 
interaction with the region, age, exercise and grain consumption on FBG (P interaction < 0.05).

Conclusions:  Long-term exposure to PM2.5 was associated with MetS, dyslipidemia and FBG impairment. Efforts 
should be made for environment improvement to reduce the burden of MetS-associated non-communicable disease.

Keywords:  PM2.5, Metabolic syndrome, Blood pressure, Triglyceride, High-density lipoprotein cholesterol, Fasting 
blood glucose, Waist circumference
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Introduction
Metabolic syndrome (MetS) is a cluster of metabolic 
disorders including abdominal obesity, hypertension, 
hypertriglyceridemia, low high-density lipoprotein 

cholesterol (HDL-c) and hyperglycemia [1]. MetS has 
been recognized as an urgent public health concern 
because it affects 20–30% of the global population, of 
which the standardized prevalence of MetS is around 
24.2% in China [2, 3]. Previous studies showed that MetS 
was associated with an increased risk of cardiovascular 
diseases (CVDs), diabetes mellitus, cancers and other 
chronic non-communicable diseases [4, 5]. Evidence sug-
gests that MetS-related adverse health outcomes may be 
enhanced not only by genetic factors, physical inactivity 
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and unhealthy diet [6–9], but also by environmental pol-
lutant exposure [10, 11], including air pollution.

Accumulating studies have added to the evidence 
that the inhalation of particulate matte ≤ 2.5 µm (PM2.5) 
might lead to pulmonary oxidative stress, systemic 
inflammation, vascular dysfunction and atherosclerosis 
[12–16]. Previous studies suggested that PM2.5 was the 
major risk factor for adverse health outcomes including 
hypertension [12], obesity [13], elevated fasting blood 
glucose (FBG) [14, 15], waist circumference [16] and 
dyslipidemia [17], which were crucial components in the 
diagnosis of MetS. However, the effects of PM2.5 on blood 
pressure [18, 19], fasting blood glucose [20, 21] and obe-
sity [22–24] still remained inconsistent. Furthermore, the 
evidence concerning the associations of air pollution and 
MetS is still scarce. To our knowledge, only a few stud-
ies have reported the detrimental effects of long-term 
exposure to ambient air pollution on MetS [17, 25–28], 
which were mainly conducted in the developed coun-
tries such as Korea, North America or Saudi Arabia [17, 
25, 26]. Only two epidemiological studies evaluated the 
associations between PM2.5 and the prevalence of MetS 
in the developing countries such as China [27, 28] among 
adolescents and children [27], and adults and elderly [28]. 
In addition, the effects of PM2.5 on specific components 
on MetS in Chinese population was limited based on the 
prior evidence.

As one of the most developed provinces in southern 
China, there has been considerable lifestyle and dietary 
changes during these decades in Guangdong, result-
ing in the increase of MetS and stroke, coronary heart 
disease, and cancers [29]. Meanwhile, air pollution has 
become one of the most severe environmental prob-
lem in Guangdong [30]. In the CAPES study, despite a 
relatively low concentrations of PM, there was a higher 
risk of the total, cardiovascular and respiratory mortal-
ity attributed to PM in Guangzhou (the capital city of 
Guangdong province), compared with the heavy indus-
try cities in northeastern China, where PM pollution was 
more severe [31]. The relatively higher concentration of 
the toxic component including polybrominated diphenyl 
ethers (PBDEs) found in PM2.5 in southern China [32, 33] 
might help provide the evidence for the stronger associa-
tion between PM and mortality.

Considering the current MetS epidemic, the more toxic 
effect of PM2.5 in south China, the inconsistent effects 
of PM2.5 on specific components of MetS, and the lim-
ited information of the association between PM2.5 and 
MetS, we explored the effects of ambient PM2.5 pollution 
on MetS and its components [blood pressure, triglycer-
ide (TG), high-density lipoprotein-cholecsterol (HDL-c), 
fasting blood glucose (FBG) and waist circumference] in 
Guangdong, China. To address the knowledge gap, our 

findings would provide important public health impli-
cations which aimed to reduce the detrimental impact 
of ambient air pollution of PM2.5 on CVDs and MetS in 
China.

Materials and methods
Study design and participants
This study was conducted using a multistage, probabil-
ity-based sampling strategy, based on the Chronic Dis-
ease and Risk Factors Surveillance in 2015 in Guangdong 
province, China. 14 surveillance points were randomly 
selected. Between October 2015 and February 2016, 
adults aged 18 years who were living in the current res-
idence for at least 6  months were recruited. All partici-
pants were interviewed face-to-face by using a structured 
questionnaire, which has been described previously [34, 
35]. In addition, participants underwent anthropometric 
measurements (blood pressure, fasting glucose, blood 
pressure, waist circumstance, height and weight) and 
blood sample collection by the well-trained public health 
practitioners from the local health stations or community 
health service centers. The study protocol was approved 
by the ethics review committee of the National Center for 
Chronic and Non-Communicable Disease Control and 
Prevention, China Center for Disease Control and Pre-
vention. All participants were provided written informed 
consent. Inclusion and exclusion criteria of participants 
have been reported previously [36].

MetS definition
The diagnosis of MetS [1] was based on the Joint Interim 
Societies’ definition. Participants were considered to have 
MetS if they met any three of the five following condi-
tions (1): Elevated TG levels: ≥ 1.7  mmol/l (150  mg/dl) 
[1]; (2) Decreased HDL-c levels: < 1.0 mmol/l (40 mg/dl) 
for men; < 1.3 mmol/l (50 mg/dl) for women [1]; (3) Ele-
vated blood pressure [systolic blood pressure (SBP) ≥ 130 
or diastolic blood pressure (DBP) ≥ 85  mmHg] [1]; (4) 
Elevated FBG levels [FBG ≥ 5.6  mmol/L (100  mg/dl)] 
[1]; (5) Central obesity, defined as an elevated waist cir-
cumference according to the WHO criteria: ≥ 90 cm for 
men; ≥ 80  cm for women [37]. See Table  1 for further 
details.

Assessment of long‑term exposure to air pollution
We used the spatiotemporal land-use regression (LUR) 
model to estimate the two-year average exposure of 
ambient air pollutants including PM2.5, particulate mat-
ter < 10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxide 
(NO2) and ozone (O3) at individual levels. The details of 
the data and prediction process has been published pre-
viously [38], which were as follows:
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1)	 The spatiotemporal LUR model was built with the 
following predictors: population density, road length, 
land-use data (farmland, blue space, living land, and 
green space), and ambient visibility. Two smooth 
temporal basis functions were analyzed to estimate 
the secular trend of air pollution. The R2 was 88.86% 
with the root mean square error (RMSE) of 5.65%, 
based on the findings of the tenfold cross-validation.

2)	 Residence address was extracted from the question-
naire and included into the model to forecast the 
weekly average air pollution between April 2013 and 
December 2016.

3)	 The two-year averaged air pollutant concentrations 
before the investigation date were estimated for each 
individual.

Covariates
The following covariates were incorporated to examine 
the potential confounding and mediating effects: age, 
sex (man and woman), race (Han and minority), region 
(urban and rural), occupation (physical work and non-
physical work), education level (none, primary school 
education, middle school education, university education 
or higher), marital status (none, primary school educa-
tion, middle school education and university education 
or higher), household income (< 30, 30–50, 50–100, 
100–200 and ≥ 200 × 1000 RMB), weight change in the 
past year (an increase of > 2.5  kg, unchanged < 2.5  kg, a 
decease of > 2.5  kg and unclear), alcohol consumption, 
exercise, family history of diabetes (no and yes), exercise 
(no and yes), alcohol consumption (no and yes), passive 
smoking (no and yes), cigarette smoking (non-smoker 
and smoker), biomass fuel use (no and yes), body-mass 
index (BMI) (under weight, normal and overweight/
obese), grain consumption, vegetable and fruit consump-
tion and red meat consumption. The definition of the 
covariates is summerized in E-Table 1 [34, 35, 39, 40].

Statistical analysis
We analyzed the characteristics between the groups with 
MetS and without MetS, by demonstrating the mean and 
standard deviation for continuous variables and frequen-
cies for categorical variables. The t-test was performed 
to analyze the distribution of continuous variables, and 
when indicated, appropriate transformation was applied. 
A contingency table and Chi-squared test was performed 
for analyzing the frequencies of categorical variables. The 
normality and equality of variance was assessed by using 
the Shapiro–Wilk’s test and Bartlett’s test, respectively. 
The odds ratios (ORs) and 95% confidence intervals 
(95%CIs) were calculated for determining the association 
between ambient air pollutant exposure to PM2.5 and the 
presence of MetS and its components by using the gen-
eralized linear mixed model, based on the three stepwise 
models to confirm the validity of findings. Family was 
treated as random effect by calculating the intraclass 
correlation coefficient (ICC). We compared the Akai-
ke’s information criterion value of these three models 
to avoid over-fitting. The magnitude of collinearity was 
assessed based on the variance inflation factor (VIF). The 
VIF of 5 or greater indicated collinearity among the vari-
ables. Variables with the evidence of a significant colline-
arity were excluded from the model. The Spearman’s rank 
correlation test was used to determine the relationship 
between pollutants. Strong, moderate, and weak corre-
lations were defined as the coefficients (rs) greater than 
0.60, 0.30 to 0.60, and less than 0.30, respectively. Since 
strong and moderate correlation was identified between 
PM2.5 and other pollutant models, we only applied the 
single pollutant model (PM2.5) to avoid covariance. We 
further stratified the study participants by the region, sex, 
age, cigarette smoking, alcohol consumption, exercise, 
BMI, grain consumption, vegetable and fruit consump-
tion and red meat consumption, to study the significant 
associations between PM2.5 and MetS, high TG and FBG 
in each stratum. We also included the interaction terms 
in the generalized linear mixed effect models to test the 

Table 1  Criteria for clinical diagnosis of the metabolic syndrome

Participants were considered to have MetS if they meet any three of the five following conditions (1): Elevated TG levels: ≥ 1.7 mmol/l (150 mg/dl); (2) Decreased 
HDL-c levels: < 1.0 mmol/l (40 mg/dl) for men; < 1.3 mmol/l (50 mg/dl) for women; (3) Elevated blood pressure (SBP ≥ 130 or DBP ≥ 85 mmHg); (4) Elevated FBG levels 
[FBG ≥ 5.6 mmol/l (100 mg/dl)]; (5) Central obesity was defined as elevated waist circumference: ≥ 90 cm for men; ≥ 80 cm for women

Conditions Recommended threshold

For Men For women

Elevated TG levels  ≥ 1.7 mmol/l (150 mg/dl)  ≥ 1.7 mmol/l (150 mg/dl)

Decreased HDL-c levels  < 1.0 mmol/l (40 mg/dl) for males  < 1.3 mmol/l (50 mg/dl)

Elevated blood pressure Elevated blood pressure Elevated blood pressure

Elevated FBG levels FBG ≥ 5.6 mmol/l (100 mg/dl) FBG ≥ 5.6 mmol/l (100 mg/dl)

Central obesity waist circumference ≥ 90 cm waist circumference ≥ 80 cm
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interactions between PM2.5 and MetS, high TG and FBG 
in each subgroup. All statistical analyses were performed 
with R software (version 4.0.2). The threshold of statisti-
cal significance for P value was set to be 0.05.

Results
A total of 8991 participants were included in this study, 
among whom 1157 had missing key variables, 252 had 
previously been diagnosed as having CVDs, 954 had 
taken measures to control blood pressure, blood glucose, 
and lipids. Therefore, 6628 participants were included in 
the final analysis, with a mean age of 50.1 years. Table 2 
shows the demographic characteristics of the partici-
pants. 1691 of the participants were diagnosed as having 
MetS, and 4937 without. Participants with MetS were 
more likely to have poorer education, lower household 
income, less exercise and higher BMI as compared with 
participants without MetS (Table 2).

Table  3 demonstrates the descriptive statistics of air 
pollution concentrations in 14 district surveillance 
points, as well as their pairwise correlations. The range 
concentration of PM2.5, PM10, SO2, NO2, and O3 were 
27.99 to 46.96  µg/m3, 42.17 to 67.33  µg/m3, 9.31 to 
22.28 µg/m3, 7.94 to 62.68 µg/m3, 40.54 to 68.83 µg/m3, 
respectively. The mean concentration of PM2.5 and PM10 
exceeded the World Health Organization (WHO) air 
quality guidelines,, which respective recommended val-
ues was 5 µg/m3, 15 µg/m3 and 10 µg/m3 [41] in the sur-
veillance points in this study. In general, the air pollutants 
were highly or moderately correlated with each other (rs 
ranged from -0.35 to 0.75).

Table  4 shows the adjusted odds ratios of metabolic 
syndrome and its components with 10-μg/m3 increase 
in PM2.5. For all participants, PM2.5 was positively asso-
ciated with MetS. Results of the single pollutant model 
showed that each 10  μg/m3 increase in two years of 
exposure to PM2.5 was associated with a 1.17-fold (95% 
CI: 1.01–1.35) higher risk of MetS (P < 0.05, model 3). In 
the analysis of other components of MetS, each 10  μg/
m3 increase in the two-year mean exposure of PM2.5 was 
associated with high TG and high FBG, with a respective 
odd ratio (OR) of 1.36 (95% CI: 1.18–1.58) and 1.18 (95% 
CI: 1.02–1.36) in the single-pollutant model (P < 0.05, 
model 3). No association was observed between ambi-
ent PM2.5 exposure and central obesity, low HDL-c, 
and hypertension. Results in model 1 to model 3 were 
not changed materially, suggesting that the results were 
robust (Table 4).

Table 5 shows the subgroup analysis by the region, sex, 
age, cigarette smoking, alcohol consumption, exercise, 
BMI, grain consumption, vegetable and fruit consump-
tion and red meat consumption (Table  5, Fig.  1). We 
did not find statistically significant interactions between 

PM2.5 and the aforementioned variables for MetS. We 
observed stronger associations between PM2.5 and high 
TG levels in subgroups who took less exercise, living in 
rural area, with statistically significant interactions (Pin-

teraction < 0.05). In addition, each 10  μg/m3 increase in 
two-year mean exposure to PM2.5 was associated with 
87%, 26%, 59% and 28% and higher risk of high FBG 
among subgroups living in rural area, ≥ 45  years old, 
having < 400  g/daily grain intake and less exercise, with 
statistically significant interactions among these groups 
(Pinteraction < 0.05).

Discussion
Understanding the impacts of long-term exposure to 
ambient PM2.5 on MetS is crucial, because 25.5% of the 
population had MetS in the studied regions of southern 
China. This study was conducted to elucidate the key 
research question regarding whether exposure to ambi-
ent PM2.5 would increase the risk of having MetS and 
confer a detrimental impact on its specific components 
in Guangdong province. Information regarding the asso-
ciations between PM2.5 and the prevalence of MetS with 
its specific components in China remains scarce. Reas-
suringly, we found that long-term exposure to ambi-
ent PM2.5 pollution was significantly associated with an 
increased risk of MetS. In addition, long-term exposure 
to PM2.5 increased the risk of high TG and high FBG. 
Furthermore, the participants living in rural area, aged 
greater than 45  years, having less exercises and < 400  g/
daily grain intake were more susceptible to the adverse 
effects of ambient PM2.5 exposure.

Although previous studies and the current study were 
conducted in different geographical areas, with differ-
ences in the population characteristics, pollutant con-
centrations or sources, exposure duration and exposure 
measurement, it is worth mentioning that positive asso-
ciations of long-term ambient PM2.5 pollution exposure 
with MetS remained consistent and that the magnitudes 
of the effect estimates observed in these studies were 
comparable. The normative aging study in New York 
[17] and a cross-sectional study in China [27] found that 
10 μg/m3 increase in ambient PM2.5 was associated with a 
10% to 31% higher risk of MetS among children, adoles-
cents and elderly population. A nationwide population-
based cohort study in Korea showed that each 10  µg/
m3 increase in one-year averaged concentration of PM2.5 
was associated with a 7% higher risk of MetS in adults 
[25]. Likewise, the Chinese health study found that each 
10  μg/m3 increase in the long-term exposure to PM2.5 
was associated with 5% higher risk of MetS in 15,477 
adults from 33 communities in northeast China [28]. We 
have detected the largest magnitude of effect estimates 
of the association between PM2.5 and MetS in adults. 
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Table 2  Basic characteristics of participants by metabolic syndrome

Characteristics Total (n = 6628) Metabolic Syndrome p
Event (n = 1691) Non-Event (n = 4937)

Age (year), mean (SD) 50.12 (14.73) 54.09 (12.83) 48.76 (15.09)  < 0.001*

Sex, n (%)  < 0.001*

  Man 2955 (44.6) 677 (40.0) 2278 (44.6)

  Women 3673 (55.4) 1014 (60.0) 2659 (55.4)

Race, n (%) 0.570

  Han 6562 (99.0) 1672 (98.9) 4890 (99.0)

  Minority 66 (1.0) 19 (1.1) 47 (1.0)

Region, n (%) 0.092

  Urban 3613 (54.5) 892 (52.7) 2721 (55.1)

  Rural 3015 (45.5) 799 (47.3) 2216 (44.9)

Occupation, n (%) 0.273

  Physical work 5070 (76.5) 1310 (77.5) 3760 (76.2)

  Non-physical work 1558 (23.5) 381 (22.5) 1177 (23.8)

Educational level, n (%)  < 0.001*

  None 836 (12.6) 303 (17.9) 533 (10.8)

  Primary school education 2246 (33.9) 625 (37.0) 1621 (32.8)

  Middle school education 2905 (43.8) 656 (38.8) 2249 (45.6)

  University education or higher 641 (9.7) 107 (6.3) 534 (10.8)

Marriage status, n (%)  < 0.001*

  Unmarried 357 (5.4) 46 (2.7) 311 (6.3)

  Married 5968 (90.0) 1544 (91.3) 4424 (89.6)

  Widowed or divorced 303 (4.6) 101 (6.0) 202 (4.1)

Household income (× 1000 RMB) 0.038*

   < 30 1029 (15.5) 261 (15.4) 768 (15.6)

  30 ≤ Household income < 50 1171 (17.7) 321 (19.0) 850 (17.2)

  50 ≤ Household income < 100 1218 (18.4) 280 (16.6) 938 (19.0)

  100 ≤ Household income < 200 514 (7.8) 122 (7.2) 392 (7.9)

   ≥ 200 171 (2.6) 34 (2.0) 137 (2.8)

  Refuse to answer or don’t know 2525 (38.1) 673 (39.8) 1852 (37.5)

Behaviors factors
Cigarette smoking 0.003*

  Nonsmoker 4428 (66.8) 1180 (69.8) 3248 (65.8)

  Smoker 2200 (33.2) 511 (30.2) 1689 (34.2)

Alcohol consumption, n (%) 0.027*

  No 3929 (59.3) 1041 (61.6) 2888 (58.5)

  Yes 2699 (40.7) 650 (38.4) 2049 (41.5)

Exercise, n (%) 0.019*

  No 5479 (82.7) 1430 (86.6) 4049 (82.0)

  Yes 1149 (17.3) 261 (15.4) 888 (18.0)

Family history of diabetes mellitus, n (%) 0.524

  No 6222 (93.9) 1582 (93.6) 4640 (94.0)

  Yes 406 (6.1) 109 (6.4) 297 (6.0)

Weight change in the past 12 months, n (%) 0.221

  Increase in > 2.5 kg 609 (9.2) 164 (9.7) 445 (9.0)

  Unchanged (< 2.5 kg) 4743 (71.6) 1217 (72.0) 3526 (71.4)

  Decease in > 2.5 kg 596 (9.0) 132 (7.8) 464 (9.4)

  Unclear 680 (10.3) 178 (10.5) 502 (10.2)
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Table 2  (continued)

Characteristics Total (n = 6628) Metabolic Syndrome p
Event (n = 1691) Non-Event (n = 4937)

Household air pollution exposure
Passive smoking, n (%) 0.598

  No 1531 (32.0) 393 (31.2) 1138 (32.3)

  Yes 3250 (68.0) 868 (68.8) 2382 (67.7)

Biomass fuel 0.323

  No 5136 (77.5) 1325 (78.4) 3811 (77.2)

  Yes 1492 (22.5) 366 (21.6) 1126 (22.8)

  Grain consumption(g/daily), medium (IQR) 400.00 (376.90) 394.39 (371.73) 400.00 (380.00) 0.212

  Vegetable and Fruit consumption (g/daily), medium (IQR) 308.00 (298.35) 308.00 (293.33) 308.33 (299.00) 0.891

  Red Meat consumption (g/daily), medium (IQR) 71.43 (95.96) 53.57 (96.29) 80.00 (115.86) 0.019*

Ambient air pollution exposure (μg/m3), mean (SD)
  PM2.5 37.2 (4.8) 37.4 (4.5) 37.1 (4.8) 0.040*

  PM10 55.4 (5.0) 55.2 (4.8) 55.5 (5.1) 0.041*

  SO2 16.1 (3.8) 16.2 (3.9) 16.1 (3.8) 0.227

  NO2 26.0 (12.6) 25.3 (11.4) 26.2 (12.9) 0.007*

  O3 56.2 (6.4) 56.7 (5.9) 56.1 (6.5) 0.005*

Anthropometry
  BMI (kg/m2), mean (SD) 23.04 (3.36) 25.65 (3.21) 22.15 (2.92)  < 0.001*

BMI category, n (%)  < 0.001*

  Under weight 504 (56.4) 15 (0.9) 489 (9.9)

  Normal 3741 (7.6) 504 (29.8) 3237 (65.6)

  Overweight/ Obese 2383 (36.0) 1172 (69.3) 1211 (24.5)

MetS, n (%) 1691 (25.5) 1691 (100.0) -

Central obesity, n (%) 2038 (30.7) 1236 (73.1) 802 (16.2)  < 0.001*

High TG, n (%) 1379 (20.8) 998 (59.0) 381 (7.7)  < 0.001*

Low HDL-c, n (%) 2759 (41.6) 1325 (78.4) 1434 (29.0)  < 0.001*

Hypertension, n (%) 3339 (50.4) 1430 (84.6) 1909 (38.7)  < 0.001*

High FBG, n (%) 1606 (24.2) 920 (54.4) 686 (13.9)  < 0.001*

BMI Body-mass index, FBG Fasting blood glucose, HDL-c High-density lipoprotein cholesterol, IQR Inter Quartile Range, n Number, MetS Metabolic syndrome, NO2 
Nitrogen dioxide, O3 Ozone, PM2.5 Particulate matter ≤ 2.5 µm, PM10 Particulate matter < 10 µm, Red meat beef, pork, lamb, SD Standard deviation, SO2 Sulfur dioxide, 
TG Triglyceride
∗ :P < 0.05

Table 3  Summary statistics and Spearman correlations of 2-year mean air pollutants

PM2.5 Particulate matter ≤ 2.5 µm, PM10 Particulate matter < 10 µm, SO2 Sulfur dioxide, NO2 Nitrogen dioxide, O3 Ozone

Note: Spearman correlation coefficients, *:P < 0.05

Summary statistics Spearman correlation coefficients

Mean Median Minimum Maximum IQR PM2.5 PM10 SO2 NO2 O3

PM2.5 (μg/m3) 37.17 38.30 27.99 46.96 8.84 1.00 0.71* 0.52* 0.60* -0.49*

PM10 (μg/m3) 55.43 55.09 42.17 67.33 7.58 1.00 0.63* 0.75* -0.51*

SO2 (μg/m3) 16.12 15.92 9.31 22.28 5.44 1.00 0.37* -0.35*

NO2 (μg/m3) 25.98 23.07 7.94 62.68 18.07 1.00 -0.68*

O3 (μg/m3) 56.23 56.96 40.54 68.83 7.38 1.00
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Compared with other heavy industry cities in northeast 
China, higher risk of total, cardiovascular and respira-
tory mortality was found in Guangzhou, where the con-
centration of PM was relatively low [31]. The relatively 
high concentration of the toxic components (e.g. PBDEs) 
in PM2.5 detected in southern China [32, 33] might help 
explain the paradoxically larger effect estimates of the 
association between PM and total/cardiovascular/respir-
atory disease mortality and MetS, in the scenario of the 
lower concentration of PM in Guangdong.

Regarding the complexity of metabolic alterations 
that constitute MetS, many studies have investigated the 
association between long- and short-term exposure of 
PM2.5 and its specific components [15, 17, 21, 42–45]. 
Several population-based studies have reported harm-
ful effects of ambient PM2.5 on FBG, yet the results were 
inconsistent. Though Alderete et  al. did not identify a 
statistically significant association between long-term 
exposure to PM2.5 and FBG in Los Angeles Latino chil-
dren [21], several other studies investigating the harm-
ful effects of PM2.5 on FBG has supported our findings 
in different population [15, 42, 43]. The Normative Aging 
Study found that exposure to high levels of PM2.5 within 
28  days was associated with an increased level of FBG 
[43]. A cross-sectional study revealed a positive asso-
ciation between exposure to PM2.5 and increased FBG 
among primary school children in China [15]. Few stud-
ies have investigated the relationship between PM2.5 and 
high TG. We are awared of only three studies which were 
conducted in specific populations or yielded different 
results from this study. Similar to the results from 587 
elderly individuals in the US [17] and 73,117 subjects 
with known CVDs and risk factors in southern Israel 
[44], we have identified the adverse impact of PM2.5 on 

TG. However, none of the significant association was 
found in the population-based cross-sectional study con-
ducted in northeast China [45]. Similar to the results of 
Wallwork RS et  al. [17], we did not reveal a significant 
association between PM2.5 and abdominal obesity, low 
HDL-c and hypertension, which are the essential compo-
nents of MetS that are often presented as the underlying 
and/or preceding other components [46] and cardiovas-
cular events [47, 48]. PM2.5 might activate the metabolic 
mechanisms such as inflammation, which might increase 
the risk of developing elevated FBG and hypertriglyceri-
demia without substantially increasing the risk of abdom-
inal obesity, low HDL-c or hypertension.

As seen in other air pollutant studies, the health effects 
shown in our study were relatively small. However, 
regarding the broad extent of the exposed population 
and the continuous nature of exposure, health implica-
tions of ambient PM2.5 exposures should be considered 
at the population level rather than at the individual level 
[49, 50]. Metabolic risk factors have long been hypoth-
esized as the mediators between air pollutants and CVDs 
[45, 51, 52]. A previous study showed that participants 
with an existing metabolic risk factor had a higher risk 
of CVDs than those without [45]. The results of high 
TG and high FBG attributed to PM2.5 based on our 
analyses may help provide the evidence to support these 
hypotheses. In addition, MetS, high FBG and TG can be 
translated into adverse health outcomes of CVDs and 
diabetes mellitus [4, 5]. Participants with type 2 diabetes 
and hypertriglyceridemia may be more susceptible to the 
cardiovascular effects of PM2.5 than those without cardi-
ometabolic risk factors. Small differences in the glucose/
TG control within the normal range could be translated 
into the clinically meaningful variation in CVDs and 

Table 4  Adjusted odd ratios of metabolic syndrome and its components in overall population with 10-μg/m3 increase in PM2.5

Model 1: Exposure to PM2.5;

Model 2: Model 1 adjusted with age, sex, education, marital status, body mass index, household income;

Model 3: Model 2 adjusted with exercise, cigarette smoking status, biomass fuel, alcohol consumption, red meat consumption

AIC Akaike information criterion, CI Confidence interval, FBG Fasting blood glucose, HDL-c High-density lipoprotein cholesterol, MetS Metabolic syndrome, OR Odd 
ratio, TG Triglyceride

Variables MetS Central obesity High TG

AIC OR (95%CI) P AIC OR (95%CI) P AIC OR (95%CI) P
Model 1 7522.5 1.14(1.01, 1.29) 0.039* 8181.9 1.04 (0.93, 1.16) 0.516 6757.9 1.36 (1.34, 1.38)  < 0.001*

Model 2 5807.8 1.17(1.15, 1.19)  < 0.001* 4075.2 1.02 (0.85, 1.23) 0.806 6190.5 1.40 (1.21, 1.62)  < 0.001*

Model 3 5807.8 1.17(1.01, 1.35) 0.042* 4060.1 0.98 (0.82, 1.18) 0.813 6183.0 1.36 (1.18, 1.58)  < 0.001*

Variables Low HDL-c Hypertension High FBG
AIC OR (95%CI) P AIC OR (95%CI) P AIC OR (95%CI) P

Model 1 8989.0 1.00 (0.90, 1.12) 0.944 9171.0 1.04 (0.93, 1.16) 0.506 7302.1 1.17 (1.02, 1.35) 0.023*

Model 2 8358.3 0.98 (0.87, 1.11) 0.784 7680.7 1.02 (0.90, 1.16) 0.721 6871.9 1.15 (1.01, 1.33) 0.047*

Model 3 8318.3 0.99 (0.88, 1.12) 0.867 7658.5 1.03 (0.91,1.16) 0.682 6823.2 1.18 (1.02, 1.36) 0.026*
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diabetes mellitus risk [53]. These metabolic associations 
may represent the intermediate factors that help explain 
the detrimental effect of increased exposure to PM2.5 on 
CVDs and diabetes mellitus morbidity and mortality. 
Nevertheless, our findings were not unexpected because 
air pollution exposure and metabolic risk factors have 
been closely associated with the heightened inflam-
matory responses, which is implicated in the develop-
ment of CVD [52]. Thus, participants with high TG and 
high FBG might be more susceptible to the detrimental 

effects of PM2.5, which could help interpret a higher CVD 
prevalence.

There were limitations regarding the study design and 
data interpretation. The causality between ambient PM2.5 
exposure and MetS and its components cannot be con-
firmed owning to the cross-sectional study design. Sec-
ond, data on the secondary MetS diseases were also not 
fully collected. Although we have excluded participants 
with CVDs, other diseases including hyperlipidemia and 
renal hypertension were not available, which might have 

Table 5  Subgroup analysis of the association between per two-year mean 10-μg/m3 increase in PM2.5 and metabolic syndrome, high 
triglyceride and high fasting blood among adults and elderly

AIC Akaike information criterion, BMI Body-mass index, CI Confidence interval, FBG Fasting blood glucose, HDL-C High-density lipoprotein cholesterol, MetS Metabolic 
syndrome, OR Odd ratio, TG Triglyceride

Adjusted with age, sex, education, marital status, body mass index, household income, exercise, cigarette smoking status, biomass fuel, alcohol consumption, red 
meat consumption
∗ : P < 0.05

Variable MetS Pinter High TG Pinter High FBG Pinter
OR (95%CI) OR (95%CI) OR (95%CI)

Region 0.054 0.004*  < 0.001*

  Urban (n = 3613) 1.03 (0.85, 1.24) 1.15 (0.96, 1.36) 0.79 (0.66, 0.95) *

  Rural (n = 3015) 1.38 (1.11, 1.70) * 1.71 (1.37, 2.13) * 1.87 (1.55, 2.25) *

Sex 0.275 0.848 0.517

  Men (n = 2955) 1.24 (1.01, 1.53) * 1.34 (1.11, 1.62) * 1.23 (1.02, 1.47) *

  Women (n = 3673) 1.09 (0.90, 1.31) 1.36 (1.12, 1.66) * 1.13 (0.95, 1.35)

Age 0.412 0.083 0.049*

   < 45 years(n = 2316) 1.07 (0.81, 1.39) 1.21 (0.96, 1.54) 0.89 (0.68, 1.16)

   ≥ 45 years(n = 4312) 1.19 (1.01, 1.39) * 1.43 (1.22, 1.69) * 1.26 (1.09, 1.45) *

Cigarette smoking 0.793 0.637 0.081

  Nonsmoker(n = 4428) 1.16 (0.98, 1.38) 1.35 (1.15, 1.59) * 1.14 (0.98, 1.34)

  Smoker(n = 2200) 1.17 (0.91, 1.50) 1.42 (1.20, 1.68) * 1.33 (1.07, 1.65) *

Alcohol consumption 0.156 0.195 0.261

  Non-drinker (n = 3929) 1.20 (0.96, 1.50) 1.32 (1.06, 1.64) * 1.35 (1.10, 1.66) *

  Drinker (n = 2699) 1.14 (0.95, 1.36) 1.37 (1.16, 1.61) * 1.10 (0.93, 1.29)

Exercise 0.269 0.015* 0.040*

  No (n = 5479) 1.17 (1.01, 1.35) * 1.37 (1.18, 1.58) * 1.28 (1.11, 1.46) *

  Yes (n = 1149) 1.14 (0.82, 1.60) * 0.97 (0.72, 1.31) * 0.95 (0.68, 1.33)

BMI 0.795 0.681 0.349

  Underweight(n = 504) 1.02 (0.65, 1.58) 1.25 (0.48, 3.27) 1.72 (0.98, 3.02)

  Normal (n = 3741) 1.16 (0.93, 1.43) 1.47 (1.20, 1.79) * 1.21 (1.02, 1.44) *

  Over weight/Obese (n = 2383) 1.14 (0.96, 1.36) 1.28 (1.06, 1.53) * 1.12 (0.93, 1.36)

Grain consumption 0.713 0.897  < 0.001*

   < 400 g/daily(n = 3232) 1.32 (1.08, 1.62) * 1.38 (1.14, 1.68) * 1.59 (1.32, 1.91) *

   ≥ 400 g/daily (n = 3396) 1.09 (0.90, 1.34) 1.33 (1.11, 1.61) * 0.96 (0.80, 1.15)

Vegetable and Fruit consumption 0.979 0.869 0.419

   < 400 g/daily(n = 3858) 1.25 (1.03, 1.51) * 1.41 (1.18, 1.69) * 1.43 (1.20, 1.70) *

   ≥ 400 g/daily (n = 2770) 1.14 (0.92, 1.41) 1.36 (1.10, 1.66) * 0.91 (0.75, 1.11)

Red Meat consumption 0.312 0.332 0.860

   < 100 g/daily (n = 3970) 1.16 (0.97, 1.39) 1.29 (1.09, 1.53) * 1.33 (1.13, 1.57) *

   ≥ 100 g/daily (n = 2658) 1.19 (0.96, 1.49) 1.38 (1.13, 1.70) * 1.02 (0.83, 1.24)
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influenced on the results. Third, the information on mul-
tiple food intake was limited regarding the importance 
of such variable on the etiology of MetS. Furthermore, 
there could be interactions between PM2.5 and multiple 
indoor air pollutants (e.g., mold, household fuels, aller-
gens, tobacco smoke, cooking, furniture, paints, cleaning 
agents) [54], which cannot be readily disentangled.

However, our findings remain robust. We conducted 
the LUR model to determine PM2.5 exposure at a specific 
address to safeguard the accuracy of the exposure assess-
ment. Additionally, our association analyses were based 
on multiple models, with the results not being materially 
altered. Because the long-term health risk of TG and FBG 
may be important predictors for future risks of CVDs and 
diabetes mellitus, efforts should be endeavored to mini-
mize the concentration and exposure to PM2.5 pollution.

Conclusion
In conclusion, this study adds to the comprehensive evi-
dence of the association between long-term exposure to 
PM2.5 and MetS. Dyslipidemia especially high triglyceride 
and FBG impairment is strongly associated with PM2.5 
levels. However, further prospective studies are needed 
to confirm our findings.
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