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Abstract 

Background  Perfluoroalkyl substances can disrupt hepatic metabolism and may be associated with liver function 
biomarkers. We examined individual and mixture associations of PFAS on liver function biomarkers in a representative 
sample of Canadian adults. We explored the potential for effect modification by sex and body mass index, as well as 
by physical activity level which may attenuate the deleterious effect of PFAS on metabolic disorders.

Methods  We analyzed data from participants aged 20–74 from the Canadian Health Measures Survey. We used 
linear regression to examine associations between plasma concentrations of PFOA, PFOS, PFHxS, PFNA, PFDA, and 
PFUDA on serum concentrations of aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), alkaline 
phosphatase (ALP), alanine aminotransferase (ALT) and total bilirubin. We used quantile g-computation to estimate 
associations with a PFAS mixture for each simultaneous, one-quartile change in PFAS concentrations.

Results  Each doubling of PFOA, PFOS, PFHxS, or PFNA concentrations was associated with higher AST, GGT, and 
ALP concentrations. Each doubling of PFOA concentrations was associated with 16.5% (95%CI: 10.4, 23.0) higher GGT 
concentrations among adults not meeting Canada’s physical activity guidelines vs. 6.6% (95%CI: -1.6, 15.5) among 
those meeting these guidelines. Sex and BMI also modified some associations, though to a lesser extent. We did not 
observe associations between ALT and PFOA (1.2% change; 95%CI: -2.5, 4.9), PFOS (2.2% change; 95%CI: -0.8, 5.3), 
or PFHxS (1.5% change; 95%CI: -0.4, 3.4). We also did not observe consistent associations for PFDA and PFUDA or 
with total bilirubin. In quantile g-computation models, each simultaneous one-quartile increase in the PFAS mixture 
was positively associated with AST (7.5% higher; 95%CI: 4.0, 10.4), GGT (9.7% higher; 95%CI: 1.7, 17.0), and ALP (2.8% 
higher; 95%CI: 0.5, 5.4).

Conclusion  Higher plasma concentrations of PFOA, PFOS, PFHxS, and PFNA – both individually and as a mixture – 
were associated with higher serum concentrations of liver function biomarkers. These results contribute to emerging 
evidence suggesting that higher levels of physical activity appear to be protective against the hepatotoxic effects of 
PFOA. This work contributes to a growing body of evidence supporting the hepatotoxic effects of PFAS.
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Introduction
Perfluoroalkyl substances (PFAS) are a class of highly 
fluorinated chemicals with lipophobic and hydrophobic 
properties that are useful for manufacturing a wide range 
of consumer products, including non-stick cookware, 
food packaging, personal care and beauty products, fire 
retardant foams, and carpet treatment applications [1, 2]. 
Ingestion of contaminated drinking water and food are 
the primary sources of exposure among the general pop-
ulation [3]. These substances persist in the environment 
and have been detected in human populations world-
wide [1, 4–8]. They bioaccumulate with half-lives ranging 
from days to years [9] and exposure is nearly ubiquitous 
among humans [10].

Experimental and mechanistic evidence indicate that 
PFAS can disrupt hepatic metabolism and promote 
lipid accumulation in the liver [11, 12]. These effects are 
at least partially mediated by activation of peroxisome 
proliferator-activated receptor alpha (PPARα) [13, 14], 
a regulator of hepatic lipid metabolism. Several other 
PPARα-independent mechanisms have also been pro-
posed [11, 13], which may be more relevant to PFAS-
induced hepatic toxicity in humans. Serum measures of 
liver function biomarkers are useful clinical indicators of 
overall liver injury and are commonly used to diagnose 
non-alcoholic fatty liver disease [15, 16]. These include 
aspartate aminotransferase (AST), gamma-glutamyl-
transferase (GGT), alkaline phosphatase (ALP), alanine 
aminotransferase (ALT) and total bilirubin. In addition, 
these liver function biomarkers are predictive of several 
long-term health outcomes, including incident vascular 
events [17] and diabetes [18], risk of developing hyper-
tension [19] and metabolic syndrome [20], as well as all-
cause mortality [21]. Higher circulating serum levels of 
these liver function biomarkers may represent markers of 
effect for PFAS hepatotoxicity.

Epidemiological studies have demonstrated deleterious 
associations between PFAS and liver function biomarkers 
in both highly exposed [22–24] and general populations 
[25–29]. These studies have mostly focused on perfluo-
rooctanoic acid (PFOA) and perfluorooctane sulfonate 
(PFOS). Only one study has considered the cumula-
tive effect of exposure to a mixture of PFAS [12], show-
ing that exposure to a mixture of PFAS was associated 
with increased risk of liver injury in childhood, includ-
ing higher concentrations of ALT, AST, and GGT [30]. 
Further studies on PFAS mixtures and liver enzymes 
are needed [12]. In addition, associations may be modi-
fied by obesity [22, 25, 27] and there is some evidence for 
sex-specific associations in adolescents [26], although 
evidence is limited in adults [23, 29]. Physical activ-
ity has been shown to attenuate the deleterious effect 
of PFAS on obesity [31], incident diabetes [32], as well 

as hypercholesterolemia and hypertriglyceridemia [33]. 
To our knowledge, the potential for effect modification 
by physical activity level has not been examined for the 
association between PFAS and several other liver func-
tion biomarkers, including transaminases. Further stud-
ies are needed to address these limitations.

Our objectives were to: 1) estimate associations 
between PFAS and liver function biomarkers in a repre-
sentative sample of Canadian adults, 2) investigate the 
potential for effect modification by sex, body mass index 
(BMI), and physical activity level, and 3) estimate the 
combined (mixture) association with exposure to PFAS 
to account for potential confounding by co-exposure to 
multiple PFAS.

Methods
Study design and population
We used data from cycles 1 (2007–2009), 2 (2009–2011), 
and 5 (2016–2017) of the Canadian Health Measures 
Survey (CHMS), a nationally representative cross-
sectional survey that collects information regarding 
Canadians’ health through household interviews, ques-
tionnaires, and direct measurements. Sampling method-
ology is described in detail elsewhere [34, 35]. Briefly, a 
stratified multistage sampling strategy was used to select 
participants aged 3 to 79 years (6 to 79 years in cycle 1) 
from 15, 18, and 16 sites for cycles 1, 2, and 5, respec-
tively. The CHMS is representative of 96% of the Cana-
dian population in the ten provinces and excludes those 
living on-reserves and other Indigenous settlements, 
institutionalized populations, and full-time members of 
the Canadian forces. We restricted our analysis to indi-
viduals 20–74 years of age who were not pregnant. Par-
ticipants completed a household interview and were 
subsequently invited to visit a mobile examination centre 
where physical health measurements and blood samples 
were collected. Six PFAS and five liver function biomark-
ers were analyzed across all three cycles included in this 
analysis, with some inconsistences – perfluorononanoic 
acid (PFNA), perfluorodecanoic acid (PFDA), and per-
fluoroundecanoic acid (PFUDA) were not measured 
in cycle 1, and ALT and total bilirubin were not meas-
ured in cycle 5. The different sample sizes in this paper 
reflect this inconsistency in data availability. The CHMS 
was approved by the Health Canada and Public Health 
Agency of Canada Research Ethics Board [36]. Writ-
ten informed consent was obtained from all participants 
included in this analysis [37].

Measurement of plasma PFAS
A detailed description of plasma PFAS measurement is 
available for each cycle of the CHMS [1, 38, 39]. Plasma 
samples were collected using sterile EDTA vacutainer 



Page 3 of 11Borghese et al. Environmental Health           (2022) 21:85 	

tubes, and were processed, aliquoted, and frozen at the 
mobile examination clinic. Analysis of PFAS was per-
formed by the Laboratoire de Toxicologie, Institut 
National de Santé Publique du Québec (Quebec City, 
Quebec, Canada), which is accredited by the Standards 
Council of Canada. Analysis was done using ultra perfor-
mance liquid chromatography coupled to a Waters Xevo 
TQ-S tandem mass spectrometer (ACQUITY UPLC Sys-
tem; Waters Corporation, Milford, Massachusetts). In 
the current paper, we included PFAS with > 40% detec-
tion, including PFOA, PFOS, perfluorohexane sulfonate 
(PFHxS), PFNA, PFDA, and PFUDA. Limits of detection 
(LOD) across the three cycles are provided in Additional 
File 1 (see Supplemental Table 1).

Measurement of liver function biomarkers
Blood samples were centrifuged in the mobile examina-
tion clinic laboratory and either refrigerated or kept on 
dry ice within two hours of collection. Analyses were 
performed using a Vitros 5600 FS analyzer (Ortho Clini-
cal Diagnostics) [40]. AST, ALT, GGT, and ALP were 
analyzed using enzymatic multiple point rate/reflec-
tance spectrophotometry and total bilirubin was ana-
lyzed using colorimetry/reflectance spectrophotometry. 
Method coefficients of variation were < 5%.

Covariates
We identified covariates a priori based on previous 
assessments of risk factors for elevated liver function 
biomarkers [15], previously identified predictors or cor-
relates of PFAS concentrations [11], as well as previ-
ous reports of associations between select PFAS and 
liver function biomarkers [22–27]. Covariates included: 
age (grouped by ages 20–29, 30–39, 40–49, 50–59, 
60–74 years), race (white and other), biological sex (male 
and female), BMI (under/normal weight, overweight, and 
obese with cut-offs at 25 and 30 kg/m2, respectively [41]), 
reported alcohol consumption (regular, occasional, for-
mer, and never), smoking (current, former, and never), 
education (less than secondary, secondary, and at least 
some post-secondary), accelerometer-measured average 
moderate-to-vigorous physical activity (i.e., movement 
intensity at or greater than three metabolic equivalents 
of task) in minutes/day [42, 43], and household income 
(low, lower middle, upper middle, and high). The ques-
tionnaire item for household income was changed in 
cycle 5 and replaced by an ordinal unit-less scale that 
classifies respondents into 10 categories, from 1 (low-
est income) to 10 (highest income) [37]. For cycles 1 and 
2, we categorized less than C$40,000 as low, C$40,000 
to C$59,999 as lower middle, C$60,000 to C$99,999 as 
upper middle, and C$100,000 or more as high. In cycle 
5, we categorized groups 1 to 3 as low, groups 4 and 5 

as lower middle, groups 6 and 7 as upper middle, and 
groups 8–10 as high. We used BMI as a measure of adi-
posity to allow for direct comparison with previous stud-
ies [25, 27, 29], but recognize that BMI may not be the 
best measure of adiposity and that other measures, such 
as waist circumference, are more strongly associated with 
cardiometabolic disease [44].

Statistical analysis
All analyses were conducted using SAS EG 7.1 (SAS Insti-
tute), Standalone SUDAAN 11 (Research Triangle Insti-
tute), and R version 4.0.3 (R Core Development Team). 
The combined cycle 1 and 2 weights file was used for 
cycles 1 and 2 [45]. Since there is no combined weights 
file for cycles 1, 2 and 5 and cycles 2 and 5, the individual 
cycle weight files were used and weights and bootstrap 
weights were divided by number of cycles combined as 
recommended by Statistics Canada [45]. A 5% signifi-
cance level (α = 0.05) was used in all analyses. Participant 
characteristics, plasma PFAS concentrations, and serum 
concentrations of liver function biomarkers are presented 
for men and women, separately, using frequencies or geo-
metric means (SE), as appropriate. PFOA, PFOS, PFHxS, 
and PFNA were detected in > 98% of samples  across 
cycles, while PFDA was detected in 86% of samples. Val-
ues below the limit of detection were assigned a value of 
one-half of the cycle-specific LOD. The detection fre-
quency for PFUDA was 45%. PFUDA was therefore cat-
egorized into three groups: ≤ LOD, LOD–75th percentile, 
and ≥ 75th percentile and treated as a categorical variable.

In linear regression models, liver function biomarkers 
were natural log-transformed and PFAS were log2 trans-
formed (with the exception of PFUDA) to normalize the 
distributions and simplify the interpretation of results. 
Parameter estimates were back-transformed and can 
be interpreted as the percent change in the outcome for 
each two-fold increase in the exposure. Residual analy-
sis was implemented to verify statistical assumptions. 
We explored the potential for non-linearity using 3-knot 
restricted cubic splines [46]; non-linear associations were 
not identified and results from the more parsimonious 
linear models are presented. We tested for effect modifi-
cation by sex, BMI, and physical activity level by includ-
ing multiplicative (product) terms in separate models; 
if interaction terms were not statistically significant 
(i.e., if effect modification was not observed) the prod-
uct term was removed from the model. Physical activity 
level was dichotomized as meeting vs. not meeting the 
Canadian physical activity guidelines, which recommend 
that adults obtain ≥ 150  min of moderate-to-vigorous 
physical activity per week [47]. In addition to the main 
analysis, we conducted a sensitivity analysis where we 
excluded individuals who reported being diagnosed with 
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liver disease (n = 150). We did not consider this variable 
as a confounder (either through adjustment or restric-
tion) in the main analysis, since it may be along the causal 
pathway.

Associations between PFOA, PFOS, and PFHxS and 
AST, ALP, and GGT were examined using combined 
data from CHMS cycles 1, 2 and 5, resulting in a sample 
of size n = 4657. The associations between PFOA, PFOS, 
and PFHxS and ALT and total bilirubin were examined 
using combined data from CHMS cycles 1 and 2, result-
ing in a sample of size n = 3659. Finally, the associations 
between PFNA, PFDA, and PFUDA and AST, GGT, and 
ALP were examined using combined data from CHMS 
cycles 2 and 5, resulting in a sample of size n = 1957. 
Sample sizes for specific PFAS-liver function biomarker 
analyses are provided in Additional File 1 (see Supple-
mental Table 2). Satterthwaite adjusted F test was used in 
the linear regression models.

We used quantile g-computation, a generalized lin-
ear model based implementation of g-computation [48], 
to estimate the combined (joint) association with expo-
sure to a mixture of PFOA, PFOS, PFHxS, PFNA, and 
PFDA. This method estimates the parameters of a mar-
ginal structural model that characterizes the change in 
the expected potential outcome for a simultaneous, one 
quartile increase in all of the exposures in the speci-
fied mixture. We did not include PFUDA in the mixture 
because of the low detection level.

Results
Sociodemographic characteristics of participants in 
cycles 1, 2, and 5 of the CHMS included in this analy-
sis are provided in Additional File 1 (see Supplemen-
tal Table  3). Plasma concentrations of PFAS, stratified 
by sex, are presented in Table 1. Concentrations of liver 
function biomarkers, stratified by sex, are provided in 
Table  2 along with sex-specific laboratory/statistical 
reference ranges [40] which reflect the expected range 
of values from 95% of the broader population [49]. It is 
important to note that these are not health based refer-
ence ranges. For instance, a healthy ALT concentration 
from individuals without clinical risk factors for liver dis-
ease ranges from 29 to 33 U/L for males and 19 to 25 U/L 
for females [49]. Correlations between PFAS ranged from 
0.20 to 0.71 (Additional File 1, see Supplemental Table 4).

In linear regression models, PFOA, PFOS, PFHxS, and 
PFNA were consistently positively associated with AST, 
GGT, and ALP (Fig.  1 and Additional File 1, see Sup-
plemental Table  5)). Each two-fold increase in plasma 
PFOA concentrations was associated with 7.9% (95%CI: 
5.4, 10.4) higher AST and 3.9% (95%CI: 1.7, 6.1) higher 
ALP.  Some associations with each of PFOA, PFOS, and 

PFHxS were modified by sex, BMI, or physical activity 
levels for different outcomes.

The association between PFOA and GGT was consid-
erably stronger, and statistically significant, among indi-
viduals obtaining less than 150 vs. 150  min or more of 
moderate-to-vigorous physical activity per week (16.5% 
vs. 6.6%). Each two-fold increase in plasma PFOS con-
centrations was associated with 7.6% (95%CI: 3.0, 12.4) 
higher GGT and 4.1% (95%CI: 2.4, 5.9) higher ALP. The 
association between PFOS and AST was stronger among 
males vs. females (7.6% vs. 3.3%). Each two-fold increase 
in plasma PFHxS concentrations was associated with 
3.1% (95%CI: 1.9, 4.4) higher AST and 3.9% (95%CI: 1.2, 
6.6) higher GGT. The association between PFHxS and 
ALP was only apparent among normal/under weight 
individuals, which was significantly different from those 
with obesity (5.9% vs. 0.2%), but not significantly differ-
ent from overweight individuals. Each two-fold increase 
in plasma PFNA concentrations was associated with 
6.4% (95%CI: 3.8, 9.0) higher AST, 13.8% (95%CI: 4.2, 
24.3) higher GGT, and 3.2% (95%CI: 0.3, 6.3) higher 
ALP. Associations for PFNA did not differ by sex, BMI, 
or physical activity levels. No associations were observed 
for PFDA. Participants with categorized PFUDA concen-
trations between the LOD and 75th percentile had sig-
nificantly higher level of AST concentrations compared 
to those participants with concentrations less than the 
LOD (Fig. 2). No difference was observed for participants 
with PFUDA concentrations > 75th percentile. No associ-
ations were observed with ALT or total bilirubin (Fig. 3).

In quantile g-computation models, each simultaneous 
one-quartile increase in the mixture of PFOA, PFOS, 
PFHxS, PFNA, and PFDA was associated with 7.5% 

Table 1  Description of plasma concentrations of perfluoroalkyl 
substances stratified by sex

GM Geometric mean, SE Standard error, LOD Limit of detection
a Sample sizes differ as a result of combining different cycles of the Canadian 
Health Measure Survey based on data availability
b percent within column, calculated using sample weights

Males Females

na GM (SE) na GM (SE)

PFOA (µg/L) 2288 2.2 (0.06) 2365 1.7 (0.05)

PFOS (µg/L) 2288 7.2 (0.26) 2366 4.6 (0.16)

PFHxS (µg/L) 2287 2.2 (0.09) 2365 1.1 (0.05)

PFNA (µg/L) 973 0.67 (0.03) 929 0.64 (0.03)

PFDA (µg/L) 948 0.20 (0.01) 928 0.19 (0.01)

PFUDA na %b na %b

  < LOD 454 53 414 45

  LOD – 75th percentile 306 24 319 32

  > 75th percentile 230 23 225 23
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(95%CI: 4.0, 10.4) higher AST, 9.7% (95%CI: 1.7, 17.0) 
higher GGT, and 2.8% (95%CI: 0.5, 5.4) higher ALP 
(Fig. 1 and Additional File 1, see Supplemental Table 6)). 

Generally, PFOA and PFNA provided the strong-
est positive weights (up to 0.53 for PFOA and 0.50 for 
PFNA) while PFDA consistently provided the strongest 

Table 2  Geometric mean (SE) concentrations of liver function biomarkers and reference ranges by sex

GM Geometric mean, SE Standard error
a Sample sizes differ as a result of combining different cycles of the Canadian Health Measure Survey based on data availability

Males Females

na GM (SE) Laboratory Reference 
range

na GM (SE) Laboratory Reference 
range

AST (U/L) 2281 27 (0.32) 18 – 54 2354 23 (0.21) 18 – 39

ALT (U/L) 1661 35 (0.76) 18 – 78 1721 28 (0.58) 16 – 44

GGT (U/L) 2281 27 (0.57) 12 – 109 2356 20 (0.57) 10 – 54

ALP (U/L) 2270 73 (0.86) 50 – 167 2346 71 (0.81) 44 – 122

Total bilirubin (µmol/L) 1757 7.1 (0.39) 2 – 21 1844 4.3 (0.22) 2 – 17

Fig. 1  Percent change (95%CI) in AST, GGT, and ALP for PFAS individually and as a mixture. Coefficients for individual PFAS represent the percent 
change for each two-fold increase in PFAS concentrations. Coefficients for qgComp mixture represents a simultaneous one-quartile increase in PFAS 
concentrations derived using quantile g-computation. Active and inactive refers to effects among individuals who either meet, or do not meet, 
Canada’s physical activity guidelines, respectively
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Fig. 2  Percent change (95%CI) in AST, GGT, and ALP between categorized levels of PFUDA. The reference group consists of those participants with 
concentrations below the limit of detection (LOD)

Fig. 3  Percent change (95%CI) in ALT and total bilirubin for PFOA, PFOS, and PFHxS. Coefficients for individual PFAS represent the percent change 
for each two-fold increase in PFAS concentrations



Page 7 of 11Borghese et al. Environmental Health           (2022) 21:85 	

negative weight (Additional File 1, see Supplemental 
Table 6).

Results were similar after excluding 150 individuals 
with reported liver disease in a sensitivity analysis (Addi-
tional File 1, see Supplemental Table  7), except for the 
association between PFOS and total bilirubin which was 
statistically significant, although with a similar effect size 
compared to the main analysis (7.3% change; 95%CI: 0.4, 
14.7).

Discussion
In this paper, we examined associations between six 
PFAS and five liver function biomarkers in a representa-
tive sample of Canadian adults from three cycles of the 
CHMS. We showed that plasma concentrations of PFOA, 
PFOS, PFHxS, and PFNA were consistently positively 
associated with serum concentrations of AST, GGT, and 
ALP. These results are generally consistent with previ-
ous epidemiological studies demonstrating deleterious 
associations between PFAS and liver function biomark-
ers in both highly exposed [22–24] and general popula-
tions [25–29]. However, this literature has focused on 
individual effects whereas people are routinely exposed 
to a mixture of PFAS [12]. We extend this literature by 
demonstrating that the combination, or mixture, of these 
PFAS is also associated with liver function biomarkers. In 
quantile g-computation, the weights represent the inde-
pendent, adjusted beta coefficients (scaled to between 
-1 and + 1) for the individual quantized exposures. The 
weights will suffer from the same variance inflation issues 
as other methods which estimate independent effects 
(e.g., multiple regression). Weights can be thoughts of as 
representing the proportion of the negative or positive 
partial effect due to a specific exposure. Generally, PFOA 
and PFNA contributed the strongest positive weights in 
the quantile g-computation models while PFDA consist-
ently contributed the strongest negative weight. This is 
in line with associations observed in the individual PFAS 
models where associations for PFOA and PFNA were 
generally the strongest among the six PFAS, and associa-
tions for PFDA were generally the weakest.

The liver function biomarkers examined in this paper 
are useful clinical indicators of overall liver injury and are 
commonly used to diagnose liver diseases, including non-
alcoholic fatty liver disease [15, 16]. We observed con-
sistent associations with GGT and ALP, which are both 
early markers of cholestatic liver disorders including bil-
iary obstruction and cholestasis [50]. For total bilirubin, 
another indicator of such conditions, we observed simi-
lar effect sizes but only the association with PFOS was 
statistically significant after excluding participants with 
existing reported liver disease. This is consistent with evi-
dence from a cohort study examining liver biopsies which 

demonstrated that PFAS can impact metabolic pathways 
involved in bile acid metabolism [51]. We also observed 
consistent positive associations with AST, a non-specific 
marker of hepatocyte damage that is released into the 
circulation following hepatocyte death [52]. PFAS are 
associated with biomarkers of hepatocyte apoptosis [53], 
which supports this finding. However, we did not observe 
associations for ALT, a specific marker of hepatocyte 
damage, which is not consistent with previous analyses 
in the US or China [22–25, 27, 28]. In these studies, the 
concentrations of PFOA and PFOS were higher than in 
the CHMS, which may explain this discrepancy.

A previous analysis of CHMS data by Cakmak et  al. 
(2022) similarly demonstrated associations between 
several PFAS and GGT, but only PFOA was associated 
with AST. Contrary to our results, they identified some 
positive associations with ALT and total bilirubin and 
also identified negative associations between PFOS and 
ALP as well as between PFHxS and GGT (among those 
aged > 33  years old in an age-stratified analysis). They 
did not identify interactions with sex or BMI. These dis-
crepancies could be because we restricted the analytical 
sample to adult participants (vs. participants aged 3–79 
as in Cakmak et al. (2022)), we additionally adjusted for 
accelerometer-measured physical activity levels, we had 
a lower sample size in our paper as a result of restrict-
ing our analysis for the subset of individuals who partici-
pated in the accelerometer portion of the CHMS, and we 
did not include recruitment site as a random effect in our 
models. Despite these differences, both of these analyses 
provide much needed Canadian evidence and our results 
are generally consistent with the broader literature sup-
porting the role of PFAS as a hepatotoxin [11, 12].

The strongest association that we observed was among 
physically inactive adults – each two-fold increase in 
PFOA concentrations was associated with 16.5% higher 
GGT concentrations. This association was twice as strong 
– or 9.9% higher, in absolute terms – compared to those 
adults meeting Canada’s physical activity guidelines. This 
suggests that higher levels of physical activity may be pro-
tective against the hepatotoxic effects of PFOA. This is 
consistent with results from a randomized clinical trial of 
a two-year lifestyle intervention on weight change, which 
included maintaining > 150 min of moderate-to-vigorous 
physical activity. These authors showed that the deleteri-
ous effects of PFAS, and PFOA in particular, on choles-
terol and triglycerides was apparent only in the physically 
inactive control group, and not in the physically active 
intervention group [33]. Similar findings have been 
observed from this intervention study for obesity [31], 
and incident diabetes [32]. One explanation for our find-
ing is that higher levels of exposure to PFOA may mod-
ify individuals’ sensitivity to other risk factors for liver 
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diseases. This is consistent with the “two-hit” hypoth-
esis, whereby exposure to an environmental chemical 
may compromise the liver’s protective responses against 
other lifestyle risk factors [13]. This has primarily been 
studied in the context of chemical-nutrition interaction 
effects (e.g., hypercaloric or high-fats diets) [12], but 
physical inactivity could play a similar role. Ultimately, 
further research is needed to corroborate this finding 
and to investigate the role of physical activity as a poten-
tial modifier of other associations between PFAS and 
health. Accelerometers are considered the gold-standard 
field-based measure of physical activity [54]. The use of 
objectively measured physical activity data from acceler-
ometers is a strength of the current study, and should be 
considered for use in future analyses.

We found that the association between PFOA and AST 
was twice as strong among men vs. women. The hepato-
toxic effects of PFAS may be sex-specific because of sexu-
ally dimorphic responses to PFAS exposure [11], lipid 
metabolism, and expression of several nuclear receptors 
involved in energy homeostasis [55]. In addition,  this 
could be because menstruation [55, 56], pregnancy (via 
transplacental transfer [56]), and breastfeeding [57] are 
all prominent excretion pathways for PFAS for women 
which would reduce their overall PFAS body burden [58, 
59]. However, previous epidemiological evidence for sex-
specific associations between PFAS and liver function 
biomarkers is equivocal [12]. Using data from adolescents 
in the US National Health and Nutrition Examination 
Survey (NHANES), Attanasio (2019) reported deleteri-
ous, though inconsistent, associations between PFAS 
and liver function biomarkers among female adolescents, 
and largely mixed associations among male adolescents. 
However, sex-specific associations were not observed in a 
previous analysis of participants aged 3–79 in the CHMS 
[29], as well as an analysis of adult participants exposed 
to high levels of PFOA in the C8 Health Study [23].

We found that the association between PFHxS and 
ALP was stronger among individuals with normal/under-
weight vs. those with obesity. Obesity can induce lipid 
accumulation in the liver and is a risk factor for non-
alcoholic fatty liver disease [60]. Therefore, we would 
have expected to see stronger associations among indi-
viduals with obesity. However, obesity has been be asso-
ciated with higher ALP concentrations [61, 62], so it is 
also possible that obesity could obscure the relation-
ship with PFHxS. Two previous analyses of NHANES 
data identified associations between PFOA [25] as well 
as PFHxS and PFNA [27] and liver function biomark-
ers among individuals with obesity. However, Lin et  al. 
(2010) did not examine ALP, Jain and Ducatman (2019) 
did not observe associations with ALP, and neither study 
formally tested for interaction across BMI categories. A 

previous analysis of CHMS data did not identify effect 
modification by BMI for these liver function biomarkers 
[29]. None of these studies adjusted for objectively meas-
ured physical activity levels, which could explain the dis-
crepancy with our findings.

This study has several limitations. The cross-sectional 
design of the CHMS precludes us from establishing 
temporality, a critical component of causality. However, 
given the long half-lives of these PFAS [63], plasma con-
centrations may reflect long term exposure. In addition, 
we cannot rule out the possibility of reverse causal-
ity if PFAS tend to bioaccumulate more (either through 
altered distribution or elimination) in individuals with 
existing markers of liver damage. We attempted to min-
imize this concern in a sensitivity analysis by excluding 
individuals with reported liver disease, but this does not 
eliminate the possibility that higher PFAS concentra-
tions could be the result of more advanced, yet still sub-
clinical, liver disease. However, when interpreting our 
findings within the context of longitudinal and experi-
mental evidence demonstrating the hepatotoxic effects of 
PFAS, as summarized in a recent systematic review and 
meta-analysis [12], it is unlikely that our findings are the 
result of reverse causality. Not all of the PFAS and liver 
function biomarkers were measured across all cycles of 
the CHMS. As a result, in the mixture model we opted 
to include PFNA and PFDA and to examine associations 
with a smaller number of outcomes. This meant we did 
not examine associations with a smaller mixture on ALT 
and total bilirubin, for which the individual results were 
null in the main analysis. Finally, total bilirubin repre-
sents the sum of both direct (conjugated) and indirect 
(unconjugated) bilirubin, which were not measured indi-
vidually in the CHMS. This is a limitation, since direct 
bilirubin is likely a more relevant marker of effect for 
PFAS-related hepatotoxicity. This may help to explain the 
relatively wide confidence intervals that we observed for 
the null associations with total bilirubin in this analysis. 
Future studies should consider using direct, rather than 
total, bilirubin.

Conclusion
In this nationally representative sample of Canadian 
adults, we showed that higher plasma concentrations of 
PFOA, PFOS, PFHxS, and PFNA – both individually and 
as a mixture – were associated with higher serum con-
centrations of the liver function biomarkers AST, GGT, 
and ALP. We show, for the first time, that higher levels 
of physical activity appear to be protective against the 
hepatotoxic effects of PFOA. Future research is war-
ranted to investigate the stability of this finding in other 
populations. This work contributes to a growing body of 
evidence supporting the hepatotoxic effects of PFAS.
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