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Abstract 

Background:  Lower respiratory tract viral infection (LRTI) is a significant cause of morbidity-mortality in older people 
worldwide. We analyzed the association between short-term exposure to environmental factors (climatic factors and 
outdoor air pollution) and hospital admissions with a viral LRTI diagnosis in older adults.

Methods:  We conducted a bidirectional case-crossover study in 6367 patients over 65 years of age with viral LRTI and 
residential zip code in the Spanish Minimum Basic Data Set. Spain’s State Meteorological Agency was the source of 
environmental data. Associations were assessed using conditional logistic regression. P-values were corrected for false 
discovery rate (q-values).

Results:  Almost all were hospital emergency admissions (98.13%), 18.64% were admitted to the intensive care unit 
(ICU), and 7.44% died. The most frequent clinical discharge diagnosis was influenza (90.25%). LRTI hospital admissions 
were more frequent when there were lower values of temperature and O3 and higher values of relative humidity and 
NO2. The regression analysis adjusted by temperatures and relative humidity showed higher concentrations at the 
hospital admission for NO2 [compared to the lag time of 1-week (q-value< 0.001) and 2-weeks (q-value< 0.001)] and 
O3 [compared to the lag time of 3-days (q-value< 0.001), 1-week (q-value< 0.001), and 2-weeks (q-value< 0.001)] were 
related to a higher odds of hospital admissions due to viral LRTI. Moreover, higher concentrations of PM10 at the lag 
time of 1-week (q-value = 0.023) and 2-weeks (q-value = 0.002), and CO at the lag time of 3-days (q-value = 0.023), 
1-week (q-value< 0.001) and 2-weeks (q-value< 0.001)], compared to the day of hospitalization, were related to a 
higher chances of hospital admissions with viral LRTI.

Conclusion:  Unfavorable environmental factors (low temperatures, high relative humidity, and high concentrations 
of NO2, O3, PM10, and CO) increased the odds of hospital admissions with viral LRTI among older people, indicating 
they are potentially vulnerable to these environmental factors.
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Introduction
Lower respiratory tract infections (LRTIs) are a signifi-
cant cause of hospitalizations, morbidity, and mortal-
ity worldwide, particularly in older adults over 65 years 
old [1]. Older people are at increased risk due to a less 
efficient immune system (immunosenescence), a pro-
gressive decrease in respiratory function, a greater pre-
disposition to respiratory infections, and being more 
prone to develop complications [2, 3]. LRTI includes 
acute bronchiolitis, bronchitis, and pneumonia, causing 
severe respiratory failure and leading to hospitalization 
and possible death [4].

The incidence of bacterial LRTIs in older people has 
substantially decreased in the last decades due to vac-
cination programs and antibiotic treatment. Thus, the 
most frequent etiological agents responsible for LRTIs 
are respiratory viruses, such as the respiratory syncyt-
ial virus (RSV) and influenza virus (Flu), among others 
[1, 4]. Viral LRTI leads to an uncontrolled host immune 
response, damaging the lung epithelium and decreasing 
respiratory gas exchange [5].

Knowing all the risk factors for viral LRTIs can help 
prevent and improve their management in the healthcare 
system. Environmental factors are crucial in developing 
lung diseases, including respiratory infections [2, 6, 7]. 
The air pollutants for public health concerns are carbon 
monoxide (CO), nitrogen dioxide (NO2), ozone (O3), par-
ticulate matter up to 10 μm in size (PM10), and sulfur diox-
ide (SO2), among others [2, 6]. Several studies have shown 
associations between short-term exposure to outdoor air 

pollutants and hospitalizations, emergency room visits, or 
home health visits for respiratory morbidity (pneumonia, 
chronic obstructive pulmonary disease, asthma) in people 
aged 65 years and older [8].

Climatic factors are other contributors to human 
morbidity and mortality from lung disease. Viral LRTIs 
have a seasonal pattern in older people [9, 10]. Seasonal 
environmental changes (temperature, wind speed, 
humidity, thunderstorms) are associated with a higher 
probability of infections [7]. Seasonal temperature fluc-
tuations and relative humidity, particularly in winter, 
affect the transmission of respiratory viruses and host 
susceptibility [11].

Several studies have shown that climatic changes can 
affect air quality and significantly impact the concen-
tration of air pollutants, their mixture, and how they 
are dispersed or deposited [12]. The interaction of air 
pollution and climate factors affects pathogens’ survival 
time, increasing the host’s susceptibility [13, 14]. This 
relationship between environmental factors (climatic 
factors and outdoor air pollution) and viral LRTIs in 
the older population may not be uniform, requiring 
multivariate analysis considering the maximum num-
ber of climatic and environmental factors.

Scientific publications on environmental pollution 
and respiratory diseases are abundant. Air pollut-
ant exposure may alter respiratory system responses 
against viral infection by modulating appropriate host 
defense responses and increasing viral LRTI and asso-
ciated morbidity [15]. However, information about 
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the older population with viral LRTI is scarce [1]. This 
study aimed to analyze the association between short-
term exposure to environmental factors and hospital 
admissions with viral LRTI diagnosis in older people 
aged 65 years or older before the Coronavirus Disease 
2019 (COVID-19) era.

Material and methods
Study design
We conducted a bidirectional case-crossover study (all 
patients serve as their controls) in individuals aged 
65 years or older who had a hospital admission due to 
viral LRTI in Spain during 2013–2015. This study was 
approved by the Research Ethics Committee (Comité 
de Ética de la Investigación; CEI PI 81_2021) of the 
Instituto de Salud Carlos III (Madrid, Spain). All the 
extracted information was completely anonymous and 
did not require the patients’ consent.

Epidemiological and clinical data
Clinical information was obtained from the Span-
ish Minimum Basic Data Set (MBDS) facilitated by 
the Health Information Institute of the Spanish Min-
istry of Health, Consumer Affairs and Social Welfare 
(MHCSW), previously described [16]. This anonymized 
database provides discharge diagnoses, procedures, and 
epidemiological information. Diagnoses are made fol-
lowing the standardized methods of each hospital. Data 
were recorded using the International Classification of 
Diseases, 9th ed, Clinical Modification (ICD-9-CM). 
One of the fields that the MBDS provides is the residen-
tial zip code. However, in some registries, this field was 
incorrectly collected or absent in 30% of the patients, 
so it was impossible to geolocate them.

ICD‑9‑CM codes of the outcome variable
We selected older patients who had a primary diagnosis 
of viral LRTI [Flu (487.0, 487.1, 488.01, 488.02, 488.11, 
488.12, 488.81, and 488.82), RSV (079.6, 466.11, and 480.1), 
viral pneumonia (480.0, 480.1, 480.2, 480.8, and 480.9), and 
acute bronchiolitis (466.11 and 466.19)] or a primary diag-
nosis of acute respiratory failure (518.81) with a secondary 
diagnosis of viral LRTI (Supplementary Table 1).

The outcome variable was hospital admission with viral 
LRTI. Patients were never hospitalized in the three con-
trol times before hospital admission (3 days, 1-week, and 
2-weeks).

Environmental data
Environmental information was collected from the Span-
ish State Meteorological Agency (AEMET; http://​www.​
aemet.​es/​en/), which provides data from 880 meteorological 

stations throughout the Spanish territory [17] as geoloca-
tion, climatic data, and outdoor air pollutants. The qual-
ity of the AEMET data meets the criteria of the European 
Environment Agency [18]. The environmental data for each 
patient were obtained from the weather station closest to the 
patient’s residential zip code.

The link in space-time between environmental factors 
and MBDS data was established as follows: i) The envi-
ronmental data [temperature (°C) and relative humidity 
(%)] and ambient air pollutants [SO2 (μg/m3), CO (μg/
m3), NO2 (μg/m3), O3 (μg/m3), PM10 (μg/m3)] from the 
meteorological stations distributed throughout the terri-
tory were geolocated in space as a reference point (lati-
tude-longitude). ii) Each patient in the study had their 
spatial location through the residential zip code (geo-
graphical area), from which the centroid was extracted, 
and geolocation in space as a reference point (latitude-
longitude) was obtained. iii) Once both data sources were 
geolocated in space, each patient was linked to the mete-
orological station closest to their home. iv) The MBDS 
had the date of hospital admission and each meteorologi-
cal station of the measurement date, so the link of dates 
was simple. The mean distance from each residential zip 
code to its nearest meteorological station was 8.99 km 
95% CI (8.69, 9.28).”

Statistical analysis
In this bidirectional case-crossover analysis, three short 
control times (3 days, 1-week, and 2-weeks before hos-
pital admission), compared to the day of hospital admis-
sion, were used to estimate the risk of hospital admission 
with viral LRTI related to acute exposure to environmen-
tal factors [19]. A symmetric bidirectional sampling with 
control periods before and after hospital admission was 
used to adjust the long-term trend and seasonality impact 
on variable exposures [20, 21]. Since the time between 
infection, symptoms, and hospital admission is unknown 
in our study and may vary over a wide range, these three 
control times were analyzed separately to cover the wide 
range of days at risk. In each of these three control times, 
we calculated the mean value of each environmental fac-
tor in a bidirectional way taking into account three days 
(one day before, the day of the study, and one day after) to 
mitigate extreme levels. With this design, it was unnec-
essary to include invariant confounding factors because 
each individual is their control [20, 21].

The conditional logistic regression (CLR) was used to 
evaluate the association between environmental factors 
(climatic factors and ambient air pollutants) and hos-
pital admissions with viral LRTI by univariate analysis 
(each environmental factor separately) and multivariate 
analysis (adjusted by temperature and relative humid-
ity). This test provides the measure of effect, called 

http://www.aemet.es/en/
http://www.aemet.es/en/
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the odds ratio (OR), and its 95% confidence interval 
(95%CI), calculated using the exact method by divid-
ing the exposure level at the hospital admission by the 
exposure level at the control time, implying only indi-
viduals with variations in variable exposures provide 
information. Thus, an OR > 1 indicated higher odds 
when the environmental variable was augmented at the 
hospital admission or reduced at the control lag time, 
and an OR < 1 showed higher odds when the environ-
mental feature was increased at the control lag time 
or decreased at the hospital admission. Many OR val-
ues tended to 1, making interpretation difficult, which 
is why relative humidity (%)], SO2 (μg/m3), CO (μg/
m3), NO2 (μg/m3), O3 (μg/m3), and PM10 (μg/m3) were 
log2-transformed. The assumption of linearity was con-
firmed by plotting the Martingale residuals on the Y 
axis against continuous covariates on the X axis.

Statistical analysis was performed using the R statistical 
software v3.5.2 [22], with the clogit function from a package 
for survival analysis (version 3.4–0, https://​CRAN.R-​proje​
ct.​org/​packa​ge=​survi​val) [23]. All tests were two-tailed, 
and p-values were corrected by the Benjamini and Hoch-
berg procedure’s false discovery rate (q-values).

Results
Population characteristics
We found 6367 hospital admissions of patients over 65 
with viral LRTI and residential zip code. The patients’ 
median was 78 years old, and half were men (50.51%). 
The Charlson comorbidity index was 2.14. The two most 
frequent comorbidities were congestive heart failure 
(19.63%) and diabetes (32.73%). Almost all were emer-
gency hospital admissions (98.13%), 18.64% were admit-
ted to the intensive care unit (ICU), and 7.44% died. 
The most frequent clinical discharge diagnosis was Flu 
(90.25%) (Table 1).

Environmental features and viral LRTI hospital admissions
LRTI hospital admissions were more frequent with low 
temperatures and high relative humidity (Fig.  1). In 
the univariate regression analysis (Table  2), the tem-
perature showed significant values of OR > 1, indicating 
lower values at the lag time of 3-days (q-value = 0.014), 
1-week (q-value< 0.001), and 2-weeks (q-value< 0.001) 
than at the day of hospitalization were related to a 
higher odds of hospital admissions due to viral LRTI. 
Moreover, the relative humidity showed a significant 
value of OR < 1, indicating higher values of relative 
humidity at the lag time of 2-weeks (q-value< 0.001) 
before the day of the hospitalization increased the odds 
of LRTI hospital admission.

We also clearly observed that more LRTI hospital 
admissions were found when there were higher levels 

of NO2 and lower levels of O3. At the same time, SO2, 
PM10, and CO did not show a clear relationship between 
pollutants and LRTI hospital admissions (Fig.  2). The 
univariate and adjusted regression analysis between 
ambient air pollutants and LRTI hospital admissions 
showed similar OR values (Supplementary Table 2). The 

Table 1  Summary of the epidemiological and clinical characteristics 
of patients with hospital admission due to lower respiratory tract 
viral infections in Spain (2013–2015)

Values are expressed as absolute number (percentage) and median (P25th; 
P75th)

Description Data

No. 6367

Gender (male) 3216 (50.51)

Age (years) 78.37 (78.18; 78.56)

Alcohol intake 1372 (21.55)

Smoker 495 (7.77)

Comorbidities

  Charlson index 2.14 (2.09; 2.18)

  Myocardial infarction 234 (3.68)

  Congestive heart failure 1250 (19.63)

  Peripheral vascular disease 347 (5.45)

  Cerebrovascular disease 393 (6.17)

  Dementia 287 (4.51)

  Chronic pulmonary disease 2184 (34.3)

  Rheumatic disease 207 (3.25)

  Peptic ulcer disease 33 (0.52)

  Mild liver disease 242 (3.8)

  Moderate or severe liver disease 34 (0.53)

  Diabetes without chronic complication 1856 (29.15)

  Diabetes with chronic complication 228 (3.58)

  Hemiplegia or paraplegia 19 (0.3)

  Renal disease 1121 (17.61)

  Any malignancy, including lymphoma and leuke‑
mia, except malignant neoplasm of skin

597 (9.38)

  Metastatic solid tumor 104 (1.63)

  AIDS/HIV 10 (0.16)

Clinical events during admission

  Emergency admission 6248 (98.13)

  Surgical condition 75 (1.18)

  ICU admission 1187 (18.64)

  Length of stay (days) 9.16 (8.94; 9.39)

  In-hospital death 474 (7.44)

Clinical discharge diagnosis

  Acute lower respiratory infection 6313 (99.15)

    Respiratory syncytial virus 134 (2.1)

    Influenza 5746 (90.25)

    Viral pneumonia 380 (5.97)

    Acute bronchiolitis 287 (4.51)

  Acute respiratory failure 2411 (37.87)

https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survival
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regression analysis adjusted by temperatures and relative 
humidity showed higher concentrations at the hospital 
admission for NO2 [compared to the lag time of 1-week 
(q-value< 0.001) and 2-weeks (q-value< 0.001)] and O3 
[compared to the lag time of 3-days (q-value< 0.001), 
1-week (q-value< 0.001), and 2-weeks (q-value< 0.001)] 
were related to a higher odds of hospital admissions 
due to viral LRTI (Fig.  3). Moreover, higher concentra-
tions of PM10 at the lag time of 1-week (q-value = 0.023) 
and 2-weeks (q-value = 0.002), and CO at the lag time 
of 3-days (q-value = 0.023), 1-week (q-value< 0.001) and 
2-weeks (q-value< 0.001)], compared to the day of hos-
pitalization, were related to a higher chances of hospital 
admissions with viral LRTI (Fig. 3).

Discussion
This study indicates that low temperatures, high relative 
humidity, and high concentrations of NO2, O3, PM10, and 
CO are associated with increased hospital admissions 
due to viral LRTI in patients 65 or older. Our data sup-
port the monitoring of environmental factors to assess 
the risk of hospital admissions and advise minimizing 
exposure to air pollutants in older people.

This study was performed for all 12 months, instead 
of only the colder months (December–March), when 
there were more hospitalized patients than during the 
warmer months (April–November). It is so because we 
wanted to analyze if there were associations between 
outdoor environmental pollution and LRTI hospitaliza-
tions at any time of the year (cold and warm seasons). 
As we showed, the epidemiological wave of viral LRTI 
occurs during the cold months (December–March), 
but there were also LRTI viral infections in the other 
months of the year, including summer.

Changes in weather conditions affect the respiratory 
system enabling the spread of infection-causing patho-
gens [7, 11]. These changes can increase the risk of 
viral LRTI and cause pneumonia, bronchitis, and other 
respiratory tract pathologies in older adults [9, 10]. 
An increase in the number of inflammatory cells and 
fibrinogen concentration has been observed during cold 
exposure, damaging the respiratory system, and lead-
ing to urgent hospitalizations and possible death [7, 11]. 
Besides, lower temperatures increase pathogens’ stabil-
ity, abundance, survival, and infectivity [7]. High humid-
ity increases the infectivity of viruses because humidity 
stabilizes the droplets that carry the pathogen from 
person to person through the air [7]. Our study found a 

Fig. 1  Summary of LRTI hospital admissions by months (green bars) and levels of climatic factors (temperature and relative humidity) by day (gray 
dots) in older people > 65 years from 2013 to 2015

Table 2  Summary of univariate associations between climatic 
factors and hospital admissions for lower respiratory tract viral 
infections in Spain (2013–2015)

Statistics: Association analyses were performed by conditional logistic 
regression analysis. P-values were corrected for multiple testing (q-values) using 
the false discovery rate (FDR) with Benjamini and Hochberg procedure

Abbreviations: 95% CI, 95% confidence interval; OR, odds ratio

OR (95% CI) p-value q-value

3 days

  Log2 temperature (°C) 1.02 (1.01; 1.04) 0.008 0.014
  Log2 humidity (%) 1.00 (0.99; 1.01) 0.670 0.704

1 week

  Log2 temperature (°C) 1.04 (1.03; 1.06) < 0.001 < 0.001
  Log2 humidity (%) 1.00 (0.99; 1.01) 0.241 0.281

2 weeks

  Log2 temperature (°C) 1.04 (1.03; 1.06) < 0.001 < 0.001
  Log2 humidity (%) 0.99 (0.98; 0.99) < 0.001 < 0.001
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higher risk of hospitalization for viral LRTI among older 
adults ≥65 years exposed to low temperatures and high 
relative humidity before hospital admission. Low tem-
peratures and high humidity are associated with a higher 
risk of viral LRTI [24–26]. Our data agree with previous 
data showing that ambient temperatures below the ref-
erence levels potentiate respiratory tract infections and 
increase hospital admissions in older adults [7, 9, 10]. 

However, some studies show discordant data on tem-
perature concerning our research [27, 28], partially justi-
fied because not all regions of the world have the same 
seasonal pattern of LRTI, finding differences in the cir-
culation of respiratory viruses according to geographic 
characteristics [29–31].

NO2 is an irritating pollutant related to the high traf-
fic that penetrates deep into the lung, causing respiratory 

Fig. 2  Summary of LRTI hospital admissions by months (green bars) and levels of ambient air pollutants (NO2, SO2, O3, PM10, and CO) by day (gray 
dots) in older people > 65 years from 2013 to 2015
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diseases, including viral LRTI [2, 6]. NO2 causes an 
imbalance in the Th1/Th2 differentiation (increased IL-4/
IFN-γ ratio) and the activation of the JAK-STAT path-
way, damaging the lung cell membrane and increasing 
airway inflammation [32]. Our study found an elevated 
risk of hospital admissions due to viral LRTI associ-
ated with short-term exposure to NO2 in older people. 
Our findings are consistent with other reports on short-
term [33] and long-term [34] exposure to outdoor NO2 
and COVID-19 in older people with respiratory failure. 
It may be due to NO2 inhalation oxidizing proteins and 
lipids and altering the immune system [35]. However, 
discordant studies did not show any association between 
outdoor NO2 and LRTI in older people [36], suggesting 
that outdoor NO2 may impact viral LRTI in combination 
with other environmental pollutants rather than NO2 
itself [37, 38].

O3 is a potent and toxic oxidizing gas that arises in the 
stratosphere or the troposphere after various reactions 
from photochemical smog [2, 6]. Its absorption usually 
occurs by inhalation, which can penetrate deeply into the 
lungs due to its low solubility in water. O3 reacts with cells 
lining the airways, stimulating their receptors and nerve 
endings and leading to oxidative stress, inflammation, 
and decreased total lung capacity [39]. Our findings are 
consistent with previous reports that found significant 
associations between short-term exposure to ambient 
O3 and increased risk of pneumonia hospital admissions 
among older adults [40, 41]. However, discordant studies 

did not find a relationship between outdoor O3 and LRTI 
hospital admissions [42, 43].

In our study, O3 was the most critical environmental 
factor because it was strongly associated with viral LRTI 
hospital admissions, increasing with longer delay times. 
Interestingly, the epidemiological wave of viral LRTI 
occurred during the cold months (December–March), 
when O3 levels were lower compared to the warmer 
and hotter months (May–September) when older peo-
ple spend much more time outdoors. The impact of O3 
on the LRTI severity depends on several factors, such 
as viral epidemiological characteristics and O3 exposure 
(outdoor activities, O3 concentrations, exposure time, 
and susceptibility to air pollutants). The O3 sources in 
winter are practically the same as in summer, mainly for 
chemical reactions between O3 precursors in the atmos-
phere, such as NOX and volatile organic compounds 
from combustion associated with cars, planes, trains, 
power plants, oil refineries, factories, or evaporation of 
organic compounds from standard consumer products 
(paints, cleaning products, and solvents) [44]. O3 lev-
els increase when their precursor emissions react in the 
presence of sunlight, warm temperatures, and light winds 
(warm seasons). When winter arrives, the temperature 
and solar radiation decrease, and most of the warm air 
rise, displacing O3 to the upper layers of the atmosphere 
[44]. However, it should also be noted that Spain has a 
Mediterranean climate characterized by hot summers, 
low winds, and intense solar radiation; and cool winters 

Fig. 3  Relationship between environmental features and hospital admissions due to lower respiratory tract viral infections. Statistic: Multivariable 
conditional logistic regression was performed in three control lag times (3-days, 1-week, and 2-weeks before hospital admission). Relative humidity 
(%)], SO2 (μg/m3), CO (μg/m3), NO2 (μg/m3), O3 (μg/m3), and PM10 (μg/m3) were log2-transformed. P-values were corrected for false discovery rate 
(q-values). Abbreviations: 95% CI, 95% of the confidence interval; aOR, adjusted odds ratio
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that are slightly cloudy and rainy. It affects the physical-
chemical processes of O3 formation, which is why O3 
continues to be generated in the cold months, with pro-
duction peaks on specific days when the temperature and 
solar radiation are higher [45].

PM10 can be inhaled through small liquid or solid drop-
lets that invade the lungs and cause long-term severe 
respiratory problems. PM10 has a long half-life, allow-
ing it to spread to distant destinations, where people 
become exposed [2, 6]. PM10 causes lung damage by 
increasing inflammation and airspace epithelial perme-
ability [46]. Several studies have demonstrated an asso-
ciation between particulate matter up to 2.5 μm in size 
(PM2.5) and emergency visits for severe viral respiratory 
diseases in older patients [34, 47, 48]. Unlike our study, 
other studies reported no increase in LRTI hospitaliza-
tions related to PM10 [8], likely due to varying ambient 
PM10, weather conditions, and co-pollutants in different 
geographic areas.

CO is generated mainly during incomplete hydrocar-
bon combustion from internal combustion engines, waste 
incinerators, coal power plants, and the oil industry. CO 
diffuses quickly across the pulmonary membrane trigger-
ing proinflammatory responses in the airways [49]. CO is a 
“silent killer” that binds to hemoglobin in the blood, form-
ing carboxyhemoglobin that displaces oxygen, reduces 
oxygen-carrying capacity, and decreases the release of 
oxygen to tissues, increasing the risk of asphyxia-related 
deaths [50]. Inhalation of CO can be toxic to the res-
piratory system, causing asthma exacerbation [51] and 
increased hospital admission for chronic obstructive pul-
monary disease [52]. Our data concord with other stud-
ies that found an association between outdoor CO levels 
and hospital admissions for viral LRTI [53–55] and pneu-
monia [56]. Nevertheless, another report has not shown 
significant associations between CO and respiratory and 
LRTI hospital admissions [57–59]. These controversial 
results can be due to densely populated areas, urban con-
gestion, and heavy traffic load, where the predominant air 
pollutants are NO2 and particulate matter. Therefore, the 
effects of the CO’s co-emission with these airborne pol-
lutants may confound the contribution of CO in air pollu-
tion on health [60].

Strengths and limitations of the study
Our study also has several strengths that must be consid-
ered: (i) this is a nationwide study with a very high num-
ber of older adults over 65 years of age with a viral LRTI 
hospital admission, something challenging to reach with 
any other database; (ii) we use a bidirectional case-cross-
over design that minimizes the impact of the absence of 
fundamental variables in the regression analysis [21].

The most important limitations are the following: (i) 
The retrospective design may introduce biases; (ii) the 
lack of relevant clinical information for the correct inter-
pretation of the data since medical history data (comor-
bidities and treatments) may affect hospital admission 
and a stratified analysis would have provided excit-
ing information in this regard; (iii) the diagnostic bias 
because in the MBDS there was no specific code for the 
diagnosis of LRTI, and we used ICD-9-CM codes previ-
ously used in high impact factor publications [47, 61], 
but we do not really know the accuracy of the MBDS for 
LRTI diagnoses; (iv) the MBDS is anonymous and makes 
it difficult to control whether some older people over 65 
have been hospitalized several times; (v) we did not ana-
lyze other emerging outdoor air pollutants, such as vola-
tile organic compounds, including benzene; and (vi) lack 
of indoor air pollution data may have a significant impact 
on viral LRTIs because most people, especially the older 
population, spent more time indoors [62], facilitating the 
transmission of viral LRTIs among everyone.

Conclusions
Unfavorable environmental factors (low temperatures, 
high relative humidity, and high concentrations of 
NO2, O3, PM10, and CO) increased the odds of hospital 
admissions with viral LRTI among older people, indi-
cating they are potentially vulnerable to these environ-
mental factors.
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