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Abstract 

Background:  Both environmental and social factors have been linked to birth weight and adiposity at birth, but few 
studies consider the effects of exposure mixtures. Our objective was to identify which components of a mixture of 
neighborhood-level environmental and social exposures were driving associations with birth weight and adiposity at 
birth in the Healthy Start cohort.

Methods:  Exposures were assessed at the census tract level and included air pollution, built environment character-
istics, and socioeconomic status. Prenatal exposures were assigned based on address at enrollment. Birth weight was 
measured at delivery and adiposity was measured using air displacement plethysmography within three days. We 
used non-parametric Bayes shrinkage (NPB) to identify exposures that were associated with our outcomes of inter-
est. NPB models were compared to single-predictor linear regression. We also included generalized additive models 
(GAM) to assess nonlinear relationships. All regression models were adjusted for individual-level covariates, including 
maternal age, pre-pregnancy BMI, and smoking.

Results:  Results from NPB models showed most exposures were negatively associated with birth weight, though 
credible intervals were wide and generally contained zero. However, the NPB model identified an interaction between 
ozone and temperature on birth weight, and the GAM suggested potential non-linear relationships. For associations 
between ozone or temperature with birth weight, we observed effect modification by maternal race/ethnicity, where 
effects were stronger for mothers who identified as a race or ethnicity other than non-Hispanic White. No associations 
with adiposity at birth were observed.

Conclusions:  NPB identified prenatal exposures to ozone and temperature as predictors of birth weight, and moth-
ers who identify as a race or ethnicity other than non-Hispanic White might be disproportionately impacted. How-
ever, NPB models may have limited applicability when non-linear effects are present. Future work should consider 
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Background
Birth weight and adiposity at birth are important neona-
tal indicators of infant, childhood, and long-term health. 
At the population level, seemingly small shifts in mean 
birth weight over the past few decades have been associ-
ated with population-level increases in the proportion of 
neonates born low birth weight (LBW; < 2500 g) or small 
for gestational age (SGA; below the 10th percentile for 
each completed week of gestation) [1–3]. SGA and LBW 
babies are at higher risk of childhood obesity, asthma, 
delayed neurodevelopment, and metabolic disorders later 
in adulthood [4–10]. Similarly, adiposity at birth, which 
is a measure of the proportion of body mass that is fat 
mass, is a potentially important predictor of obesity and 
metabolic disease risk later in life [11, 12].

The existing literature demonstrates the ability of 
both individual-level and neighborhood-level exposures 
to influence birth weight and adiposity in the neonatal 
period. Individual-level factors include maternal charac-
teristics such as age and race/ethnicity, maternal behav-
iors such as active smoking and physical activity, and 
metabolic factors such as obesity or gestational diabetes 
[13–15]. At the neighborhood level, both environmental 
and social factors have been linked to these neonatal out-
comes. These factors include higher neighborhood dep-
rivation index scores [16], low neighborhood affluence 
[17], poor quality built environments (e.g., higher rates 
of vacant buildings or proximity to major roadways) [18, 
19], and higher ambient air pollutant exposures [20–24].

Although there is evidence to suggest that both social 
and environmental factors are associated with birth 
weight and adiposity, few studies have examined the 
combined effects of exposures to hazards in multiple 
domains (i.e., physical, social, and chemical exposures). 
There is growing interest in understanding the joint 
effects of both environmental hazards and social stress-
ors to understanding how total neighborhood contexts 
can impact early life outcomes [25, 26]. Although the 
underlying mechanisms have not been fully elucidated, 
there are several hypothesized pathways by which prena-
tal exposure to environmental hazards and social stress-
ors might impact neonatal growth and development. For 
example, oxidative stress and inflammation are path-
ways common to both environmental hazards and social 
stressors [27, 28]. Alternatively, social stressors experi-
enced during the prenatal period may modify the effects 

of environmental hazards [29–31]. Evidence from previ-
ous studies suggests there may be important interactions 
between neighborhood factors environmental and social 
hazards, and that the effect of these combined stressors 
on birth outcomes may be synergistic [32–35]. Addition-
ally, neighborhood environmental and social conditions 
reflect the legacy of structural racism in the United States 
perpetuated by redlining and racial segregation [36–39]. 
Thus, investigating the combined effects of neighbor-
hood level factors that influence health represents an 
important opportunity to address longstanding health 
disparities.

We previously tested associations between neonatal 
outcomes combined prenatal factors at the neighbor-
hood level in the Healthy Start cohort using an index-
based exposure assessment method [40]. We reported 
lower birth weights and lower adiposity for infants born 
to mothers with higher combined exposure index scores 
after controlling for key individual-level risk factors. Our 
index-based approach provided information on where 
public health interventions might be most effective for 
improving neonatal outcomes. However, the use of an 
index did not allow us to identify which exposures or 
combination of exposures were driving these associa-
tions and thus identify the underlying etiologic agent. 
Alternative approaches that accommodate large numbers 
of exposure variables and potential interactions between 
these exposures are needed to better characterize these 
associations and identify targets for future public health 
interventions [41].

Using data from the Healthy Start cohort, we 
expanded upon our previous study by employing a non-
parametric Bayes shrinkage (NPB) approach to exam-
ine linear associations between our neighborhood-level 
determinants and neonatal outcomes. For this data set, 
we needed to identify a statistical method that would 
be capable of handling variable selection among poten-
tially highly correlated exposures within the context of 
interactions between exposures and between exposures 
and covariates. NPB is designed to facilitate selec-
tion among a large number of correlated predictors 
in a single model, thus having an advantage over tra-
ditional multipollutant models [42, 43]. We compared 
the results of our NPB model to single-exposure mod-
els (linear regression models). Because NPB is a lin-
ear modeling framework, we also utilized generalized 

a two-stage approach where NPB is used to reduce dimensionality and alternative approaches examine non-linear 
effects.
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additive models to explore potential non-linear expo-
sure–response relationships. Based on the results of 
our previous study [40], we hypothesized that specific 
social exposures (e.g., neighborhood level socioeco-
nomic status) within the prenatal exposure mixture 
measured were driving associations with lower birth 
weight and adiposity.

Methods
Study population and study area
We used data from the ongoing Healthy Start pre-birth 
cohort study for this analysis. Details on the Healthy 
Start cohort are available elsewhere [44]. Briefly, preg-
nant women aged 16 or older expecting singleton births 
were recruited from the University of Colorado Hospi-
tal outpatient obstetrics clinics between 2009 and 2014. 
Two prenatal study visits that included a physical exam 
and questionnaires were conducted at median 17- and 
27-weeks of gestation; additional data were abstracted 
from medical records. Our analysis did not exclude 
infants based on their term birth status (i.e., we included 
pre-, full- and post-term births). All mother–child dyads 
who had an address at enrollment within the study area 
were eligible for this analysis. The Healthy Start study 
protocol was approved by the Colorado Multiple Institu-
tional Review Board.

Although the Healthy Start study originally recruited 
participants from the nine county Denver metropoli-
tan area, the study area for this analysis consisted of 
most census tracts within a smaller three county area 
(Adams, Arapahoe, and Denver counties). These coun-
ties were included due to the availability of exposure data 
(described next). We excluded the two eastern most cen-
sus tracts within these counties because they were rural 
and not considered part of the metropolitan area. Census 
tracts were chosen to represent neighborhoods as they 
were the smallest spatial unit for which reliable exposure 
data were available.

Exposure assessment
We selected our environmental and social exposures 
based on the indicators used by the CalEnviroScreen 
tool [45, 46] with some additional area-specific variables 
to reflect sources relevant to Denver, CO. Because our 
research question focused on the neighborhood context, 
all exposure variables were assessed at the census tract 
level and assigned to participants based on their address 
at the time of enrollment into the Healthy Start study. 
We briefly describe our exposure variables below. Addi-
tional details on our exposure variables are available 
elsewhere [40].

Ambient air pollution and temperature
We included two measures of ambient air pollution, fine 
particulate matter (PM2.5) and ozone (O3) and a variable 
for temperature. Monitoring data collected between 2009 
and 2014 were obtained from the US Environmental Pro-
tection Agency [47]. Daily measurements at each moni-
tor were averaged to biweekly concentrations. For PM2.5 
and temperature we used the mean of all 24-h meas-
urements and for O3 we used the mean of all daily 8-h 
maximum concentrations recorded during the two-week 
period. We used ordinary kriging to estimate biweekly 
measurements at each census tract centroid. Biweekly air 
pollutant and temperature exposures were then assigned 
to each participant based on the address at enrollment 
and the timing of conception and delivery and averaged 
over the duration of the pregnancy.

Built environment characteristics
We included nine exposure variables related to the built 
environment. The temporal resolution for these data was 
usually one year; we assumed minimal change in these 
variables between the start and end of our study period 
(2009–2014) These included: the mean percent tree cover 
and mean percent impervious surface within the census 
tract from the 2011 National Land Cover Database [48]; 
the mean annual average daily traffic (AADT) of road 
segments within the census tract from the Highway Per-
formance Monitoring System [49]; and the minimum dis-
tance (in km) from the census tract centroid to hazardous 
land use sites, including Toxic Release Inventory sites, 
National Priority List sites, waste management sites, 
major emitters of criteria pollutants, confined animal 
feeding operations, and oil and gas wells [50–52].

Social stressors
Social stressor variables were intended to capture socio-
economic status (SES), demographic trends, and sus-
ceptibility at the neighborhood level. We included five 
variables from the 2010–2014 American Community 
Survey: the percentage of the population with less than 
a high school diploma, that was unemployed, and that 
identified as a race/ethnicity other than non-Hispanic 
white and the percentage of household speaking lim-
ited English or in poverty [53]. Crime incidence data 
were available from the Inter-university Consortium for 
Political and Social Research and the Denver Open Data 
Catalog [54, 55]. We used these incidence data to calcu-
late 5-year rates of violent crimes and property crimes 
for each census tract. Data to calculate census-tract level 
hospitalization rates for respiratory and cardiovascular 
diseases came from the Colorado Hospital Association.
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Outcomes
Our two outcomes of interest were birth weight and 
adiposity at birth. Birth weight was measured at 
the time of delivery or was abstracted from medical 
records. Fat mass and fat-free (lean) body mass were 
measured within three days of birth using air displace-
ment plethysmography (PEA POD, COSMED, Rome, 
Italy). Additional details on the PEA POD measure-
ments for the Healthy Start cohort are available else-
where [44]. We calculated adiposity (% fat mass) as fat 
mass divided by total body mass [56].

Covariates
We selected our model covariates a priori by consider-
ing those included in our previous study [40] and other 
studies investigating the effect of neighborhood-level 
exposures on neonatal outcomes [16–18, 57–59]. Final 
covariate selection was informed by a directed acy-
clic graph. We included: maternal race/ethnicity, pre-
pregnancy body mass index (BMI), and active smoking 
and secondhand smoke exposure. We excluded alco-
hol consumption because previous work in this cohort 
found levels were generally low among cohort partici-
pants and not associated with infant body composition 
measures [60, 61]. Consistent with our prior work and 
that of others [40, 62], maternal educational attain-
ment was included as a proxy for family-level socio-
economic status (SES) because it is a consistent and 
reliable predictor of health outcomes for women and 
children [63, 64] and tends to be a more stable proxy 
for SES over time compared to income [65, 66]. We also 
included two measures of stress and depressive symp-
toms, Cohen’s Perceived Stress Scale (CPSS) and the 
Edinburgh Postnatal Depression Scale (EPDS), which 
were administered to mothers during their prenatal vis-
its. Infant covariates included year of conception and 
sex. To address the potential for residual spatial auto-
correlation, we included the longitude, latitude, and 
an interaction term (longitude × latitude) for the par-
ticipant residential location. To account for temporal 
trends, we included the season of conception. For the 
adiposity models, we also included the number of days 
between delivery and PEA POD measurements. We did 
not adjust for gestational age in our models because our 
directed acyclic graph indicated gestational age was on 
the causal pathway.

Because individual-level race or ethnicity may modify 
the relationships between exposures and neonatal out-
comes [67], we conducted sensitivity analyses where we 
stratified our results by maternal race/ethnicity (non-
Hispanic White (NHW) vs. all other race and ethnic 
categories).

Statistical analysis
All analyses were performed in R version 4.0.3 [68]. Prior 
to model fitting, exposures, outcomes, and covariates 
were summarized as means and standard deviations (SD) 
or frequencies as appropriate. To examine the poten-
tial for selection bias we assessed differences between 
included and excluded participants using chi square tests 
for categorical variables and t-tests for continuous vari-
ables. Categorical covariates were converted to indicator 
variables. To account for differences in units across the 
exposure variables and covariates, continuous variables 
were scaled prior to fitting the regression models.

Non‑parametric Bayes shrinkage model
Our goal for this paper was to select from a complex mix-
ture of neighborhood-level factors exposures that were 
associated with birth weight and adiposity. Therefore, our 
primary analysis used NPB, which is a Bayesian statisti-
cal method that fits a linear model with main effects of 
all exposures and all pairwise interactions while imple-
menting both variable selection and regularization [42]. 
Specifically, NPB applies a Dirichlet zero-spiked process 
prior to the regression coefficients for each exposure. 
The Dirichlet process prior has a point mass at 0, which 
allows the model to select out exposures that have little 
influence on the outcome. Exposures with similar effects 
on the outcome can be clustered and assigned the same 
regression coefficient in the model. This reduces the 
variance in the presence of high correlation between the 
exposures. A similar approach is applied to the interac-
tion effects. Here we included two-way interaction terms 
between each of the exposure variables and between 
each exposure and covariate. All interaction terms were 
selected with an additional zero-spiked Dirichlet process.

Our NPB model has the following form:

where xi is a vector of exposures, zi is a vector of pair-
wise multiplicative interactions between the exposures or 
the exposures and the covariates, wi is a vector of covari-
ates, and σ 2 is the error variance. We implemented our 
NPB model using the “mmpack” package in R [69]. Pos-
terior means and 95% credible intervals for the regression 
coefficients are reported for a standard deviation increase 
in each exposure metric. Consistent with other studies, 
we used 0.5 as the threshold for which posterior inclu-
sion probabilities (PIPs) were considered to be indica-
tive of an important effect of the exposure on the health 
outcome [70, 71]. Additional details on fitting the NPB 
model, including a description of the priors, is included 
in the Supplemental Materials.

(1)
yI |β , γ , ζ , δ, σ

2 ∼ N (yo + xTi β + zTi ζ + wT
i γ , σ

2)
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Because variable selection by the NPB model may 
depend on the specification of hyperparameters, we con-
ducted a sensitivity analysis in which the α and β values 
of the Gamma distributions for hyperparameters α1 and 
α2(see Text S1 in the Supplemental Materials) were set to 
0.5, 1, 2, and 4.

Single exposure linear regression models
To serve as a comparison to the NPB method, we fit sepa-
rate linear regression models for each exposure-outcome 
pair. These linear models were adjusted for all relevant 
covariates listed in Covariates. Results from these linear 
regression models were reported for a standard deviation 
increase in each exposure.

Generalized additive model
In a supplemental analysis meant to assess potential non-
linear effects of our NPB-selected exposures of interest 
on birth weight or adiposity, we fit separate generalized 
additive models (GAMs) for any variables selected with 
NPB based on a PIP > 0.5. We used a smoothed term with 
penalized splines for the continuous exposures identified 
in the NPB model. Models were adjusted for all covari-
ates listed in Covariates. We also repeated our sensitiv-
ity analysis and stratified GAMs by maternal race and 
ethnicity as described in Covariates. GAMs were fit in R 
using the “mgcv” package [72] and visualized using the 
“mgcViz” package [73].

Results
Study population
Our analytic cohort consisted of 897 mother–child dyads 
enrolled in the Healthy Start study, representing 64% of 
the original study population (Table 1). Of the excluded 
participants, n = 51 were excluded because they were 
missing data on birth weight, n = 259 were excluded 
because they lived outside the three-county study area, 
n = 172 were excluded because they were missing data 
on smoking exposures, and n = 37 were excluded because 
they were missing data on infant sex. There were few 
differences between included and excluded study par-
ticipants (Table  1). Although birth weights were simi-
lar on average, we observed slightly higher adiposity 
for excluded participants. Included participants were 
also less likely to be non-Hispanic white and had higher 
mean CPSS compared to excluded participants. We did 
not observe any other differences between included and 
excluded participants for any of the other covariates of 
interest in this study.

Exposure assessment
Exposures to environmental and social factors varied 
across participants (Table  2). Coefficients of variation 

were generally high (> 25%) for most (74%) of the 
exposures. Variability was lowest for the air pollut-
ant exposures (mean PM2.5 and mean O3) and mean 
temperature across pregnancy. Correlations between 
environmental exposures and between environmental 
and social exposures were generally moderate (Pear-
son’s coefficients ranged from -0.5 to 0.7). Correlations 
tended to be stronger between the social determinants 
of health (Pearson’s coefficients ranged from -0.1 to 0.9; 
Figure S1).

Regression results
Nonparametric Bayes shrinkage
The NPB model, which included all exposures of 
interest in the same model, suggested that few of our 
exposures were strongly associated with birth weight 
(Table  3) based on our criterion of PIP = 0.5. Credible 
intervals for the posterior means were generally wide 
and contained zero. Only one variable had a PIP above 
0.5 and a credible interval that did not contain zero: the 
interaction between mean ambient ozone concentration 
and temperature across pregnancy. A 3.1  ppb increase 
in mean O3 assessed across the pregnancy was associ-
ated with a 6.4  g decrease in birth weight (95% cred-
ible interval: -65.1  g to 6.9  g) and a 4.8 °F increase in 
mean temperature across pregnancy was associated 
with a 13.1 g increase (95% credible interval: -18.6 g to 
189.3  g). For every 1 SD increase in temperature, the 
decrease in birth weight for a 1 SD increase in ozone 
was 162.0 g (95% CI: -242.3 g to -117.8 g) greater than 
expected if effects of the two exposures were additive. 
A plot showing the relationship between predicted and 
observed birth weight is included in the Supplemental 
Materials (Figure S2).

None of the exposures considered in the NPB model 
for adiposity had credible interval that did not contain 
zero nor a PIP greater than the 0.5 threshold (Table 3). 
In general, we did not observe relationships between 
our exposures of interest and adiposity at birth. A 
plot showing the relationship between predicted and 
observed adiposity is included in the Supplemental 
Materials (Figure S3).

Neither the birth weight nor the adiposity model was 
sensitive to changes in the gamma distribution param-
eters for the mass concentration hyperparameter (Tables 
S2 and S3). For the four sensitivity analyses conducted, 
no differences in variables selected by the NPB model 
were observed.

We observed evidence of effect modification by mater-
nal race/ethnicity in our NPB models for birth weight 
(Table  4). When stratifying by maternal race/ethnicity, 
we only observed an effect of temperature and ozone for 
participants who identified as a race or ethnicity other 
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than NHW. For mothers who did not identify as NHW, 
for every 1 SD increase in temperature, the decrease in 
birth weight for a 1 SD increase in ozone was 206.2  g 
(95% CI: -258.3  g to -156.1  g) greater than expected if 
effects of the two exposures were additive.

Linear models
Following traditional epidemiological approaches, we 
also examined linear relationships between each indi-
vidual exposure variable and our outcomes of interest. 
Of the 21 exposure variables included in our study, most 

Table 1  Summary of outcomes and covariates for the study population

Abbreviations: CPSS Cohen Perceived Stress Scale, EPSD Edinburgh Postnatal Depression Scale, SHS Secondhand smoke
a  Chi square test for categorical variables; Student’s t test for continuous variables
b  Defined as (fat mass/total body mass) × 100%. Sample sizes for the adiposity variable are n = 1141 for the full cohort, n = 786 for the included cohort and n = 357 for 
the excluded cohort

Variable Full Cohort
(n = 1410)

Included
(n = 897)

Excluded
(n = 513)

P-valuea

Birth weight (g) mean ± SD 3205 ± 538 3208 ± 527 3199 ± 559 0.776

Adiposity (% fat mass)b mean ± SD 9.2 ± 4.0 9.0 ± 4.0 9.5 ± 3.9 0.028

Maternal Race/Ethnicity 0.003

  Hispanic/Latina n (%) 351 (25) 238 (27) 113 (22)

  White non-Hispanic n (%) 751 (52) 445 (50) 306 (60)

  African American n (%) 219 (16) 154 (17) 65 (13)

  Other n (%) 89 (6) 60 (7) 29 (6)

Maternal age (years) mean ± SD 27.8 ± 6.2 27.6 ± 6.2 28 ± 6.2 0.254

Mean CPSS Score mean ± SD 18.8 ± 3.1 18.6 ± 3.1 19.2 ± 3.1 0.002

Mean EPDS Score mean ± SD 4.4 ± 3.4 4.3 ± 3.3 4.6 ± 3.7 0.125

Pre-pregnancy body mass index (kg/m2) 0.583

  Underweight (< 18.5) n (%) 44 (3) 30 (3) 14 (3)

  Normal (18.5—25) n (%) 727 (52) 453 (51) 274 (54)

  Overweight (25—30) n (%) 355 (25) 235 (26) 120 (24)

  Obese (> 30) n (%) 280 (20) 179 (20) 101 (20)

Maternal education level 0.816

  Less than high school n (%) 204 (14) 137 (15) 67 (13)

  High school or GED n (%) 259 (18) 166 (19) 93 (18)

  Some college/Associate’s n (%) 334 (24) 208 (23) 126 (25)

  Bachelor’s Degree n (%) 309 (22) 196 (22) 113 (22)

  Graduate Degree n (%) 304 (22) 190 (21) 114 (22)

Any smoking during pregnancy? 0.940

  No n (%) 1286 (91) 819 (91) 467 (91)

  Yes n (%) 124 (9) 78 (9) 46 (9)

Any SHS exposure during pregnancy? 0.662

  No n (%) 924 (75) 666 (74) 258 (76)

  Yes n (%) 314 (25) 231 (26) 83 (24)

Infant sex 0.508

  Female n (%) 646 (48) 438 (49) 208 (47)

  Male n (%) 696 (52) 459 (51) 237 (53)

Gestational age (weeks) mean ± SD 39.2 ± 1.9 39.3 ± 1.8 39.1 ± 2.2 0.052

Term status 0.147

  Pre-term (< 37 weeks) n (%) 90 (7) 60 (7) 30 (6)

  Early Term (37 to < 39 weeks) n (%) 331 (24) 200 (22) 131 (28)

  Full Term (39 to < 41 weeks) n (%) 802 (59) 538 (60) 264 (57)

  Late Term (41 to < 42 weeks) n (%) 126 (9) 87 (10) 39 (8)

  Post-term (> = 42 weeks) n (%) 15 (1) 12 (1) 3 (1)

Low birth weight (< 2500 g) n (%) 104 (8) 67 (7) 37 (8) 0.805

Days from delivery to PEA POD (days) mean ± SD 1.6 ± 2.4 1.6 ± 2.5 1.8 ± 2.3 0.235
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(n = 14; 67%) were associated with lower birth weight, 
though most confidence intervals for the coefficients 
were wide and contained zero (Table S1). The strongest 
associations were seen for the percentage of adults in 
the census tract who were unemployed (β = -40.9 g, 95% 
CI: -76.8 g to -4.9 g) and the distance (km) to the nearest 
waste site (β = 39.7 g, 95% CI: 4.1 g to 75.4 g).

For adiposity (% fat mass), the linear regression mod-
els showed similar lack of association with most of the 
exposures of interest (Table S1). The strongest effect on 
% fat mass was observed for the rate of property crimes 
at the census tract level (β = -0.31 percentage points, 95% 
CI: -0.59  g to -0.04 percentage points) and the distance 
to waste sites (β = 0.36 percentage points, 95% CI: 0.07 to 
0.66 percentage points). For most exposures, the confi-
dence intervals were wide and contained 0.

Generalized additive models
We examined potential non-linear effects for ozone and 
temperature using a GAM, adjusting for the same covari-
ates included in the main NPB model (Fig.  1). To avoid 
overinterpreting effects at the margins, we restricted 
the axes to show the middle 95% of O3 and temperature 

observations. Plots showing the full range of data are 
available in the SDC (Figure S4). The exposure–response 
curve for the smoothed O3 and temperature term sug-
gested a non-linear association between these expo-
sures and birth weight (Fig.  1A). The accumulated local 
effect (ALE) plot for temperature showed an inverted-U 
shaped exposure–response relationship (Fig.  1B); the 
non-linear effect for ozone was less evident, with the ALE 
plot suggesting a more linear effect (Fig.  1C). The plots 
shown in Fig.  1 also suggest that the effect of tempera-
ture on birth weight is stronger than the effect of O3. We 
conducted a sensitivity analysis fitting the GAM with a 
dataset restricted to the middle 95% of O3 and tempera-
ture observations (Figure S5). These plots showed similar 
trends as those in Fig. 1.

Results from GAMs stratified by maternal race/ethnic-
ity showed similar effect modification as observed for 
the NPB models (Fig. 2, Figure S6). For stratified models 
where extreme values were excluded (Fig. 2), we observed 
non-linear associations between temperature and ozone 
for mothers who identified as a race/ethnicity other than 
non-Hispanic White (Fig.  2D-F) but not for non-White 
mothers (Fig. 2A-C).

Table 2  Summary statistics for all environmental and social exposures considered in the nonparametric Bayesian shrinkage model 
(n = 897)

Abbreviations: AADT Annual average daily traffic, CAFO Confined animal feeding operation, CV Coefficient of variation, CVD Cardiovascular disease, HS High school, NPL 
National priorities list (Superfund sites), O3 Ozone, PM2.5 fine particulate matter, TRI Toxic release inventory

Variable Units Mean ± SD Min Median Max CV

Environmental exposures

  Mean PM2.5 µg/m3 7.5 ± 0.6 5.8 7.5 9.1 8%

  Mean O3 ppb 48.0 ± 3.1 40.8 47.8 58.3 8%

  Mean temperature °F 52.2 ± 4.8 37.3 52.4 66.4 9%

  Tree cover % 6.3 ± 3.1 0.2 6.1 18.7 50%

  Impervious surfaces % 40.5 ± 13.3 0.3 42.5 82.4 33%

  AADT Vehicles/d-km2 10,344 ± 8203 21 9074 54,618 79%

  Distance to TRI sites km 3.9 ± 2.6 0.1 3.3 21.9 66%

  Distance to NPL sites km 5.5 ± 3.3 0.0 5.5 23.6 60%

  Distance to waste management sites km 5.2 ± 2.3 0.5 5.0 11.7 44%

  Distance to major emitters km 8.3 ± 3.2 0.3 8.7 21.0 38%

  Distance to CAFOs km 36.8 ± 6.8 7.1 37.4 55.1 18%

  Distance to mines or wells km 3.4 ± 2.1 0.1 3.1 10.5 62%

Social exposures

  CVD hospitalizations n/10,000 244.0 ± 45.2 127.9 243.8 471.8 19%

  Respiratory hospitalizations n/10,000 165.2 ± 33.0 95.2 164.1 319.8 20%

  Violent crimes n/1,000 12.8 ± 6.3 0.6 15.3 81.8 49%

  Property crimes n/1,000 55.4 ± 36.0 10.6 55.9 472.7 65%

  Less than HS diploma % 16.5 ± 12.7 0.0 12.8 56.9 77%

  Unemployment % 9.7 ± 5 1.8 8.7 27.5 51%

  Households in poverty % 15.3 ± 10.9 0.0 13.9 79.0 71%

  Households speaking limited English % 8.3 ± 8.3 0.0 5.8 39.1 100%

  Percent persons of color % 54.3 ± 22.9 2.7 54.6 93.7 42%
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Discussion
Here we leveraged a non-parametric Bayesian shrink-
age approach to identify which components of a mixture 
of exposures were driving previously reported associa-
tions between an exposure index and lower birth weight 
among infants born in the Denver metropolitan area. 
Using our mixtures approach (NPB), we identified the 
interaction between mean O3 concentrations and mean 
temperatures across the entire pregnancy as an impor-
tant predictor of birth weight. Additional analyses using 
a GAM indicated that the relationship between O3, tem-
perature, and birth weight may be non-linear. Our NPB 
results differed from those of the linear regression mod-
els, which identified only distance to waste sites, property 
crime rates, and unemployment as associated with our 

outcomes of interest and were likely biased by confound-
ing from other correlated exposures.

Our results differ in some ways from other studies 
reported in the literature. For example, we did not iden-
tify an association between PM2.5 and birth weight in 
our cohort, which contradicts several other studies (as 
reviewed by Sun et al.) [74]. Our inability to detect this 
association may be in part due to the exposure metric 
used or due to low PM2.5 exposures in the study area. 
Average and maximum PM2.5 exposures across preg-
nancy in our cohort (7.5 and 9.1  µg/m3, respectively) 
were below the National Ambient Air Quality Standard 
for PM2.5 (annual average of 12 µg/m3). A similar Healthy 
Start study relying on trimester-specific averages derived 
from monitoring data also reported no association 

Table 3  Posterior means, 95% credible intervals, and posterior inclusion probabilities (PIPs) for each census tract level exposure 
regression coefficient in the NPB model, adjusted for all individual-level covariates. Results are presented for a 1 SD increase in each 
exposure

a  Models are adjusted for: maternal race/ethnicity, maternal educational attainment, maternal pre-pregnancy BMI, maternal age at delivery, maternal smoking during 
pregnancy, second-hand smoke exposure during pregnancy, mean perceived stress scale score across pregnancy, mean postnatal depression score across pregnancy, 
season of conception, year of conception, longitude, latitude, and the interaction between longitude and latitude
b  Models of adiposity are also adjusted for the number of days between delivery and PEA POD measurements
c  Effect estimates are reported for a 1 standard deviation increase in each exposure variable

Variable SDc Birth Weight (g) Adiposity (% Fat Mass)

Posterior Meana

(95% CI)
PIP Posterior Meana,b

(95% CI)
PIP

Environmental Exposures

  Mean PM2.5 (μg/m3) 0.6 -2.4 (-29.3, 8.5) 0.31 -0.01 (-0.16, 0.11) 0.32

  Mean O3 (ppb) 3.1 -6.4 (-65.1, 6.9) 0.37 -0.02 (-0.24, 0.09) 0.36

  Mean temperature (°F) 4.8 13.1 (-18.6, 189.3) 0.38 -0.01 (-0.20, 0.12) 0.32

  Mean O3 × Mean temperature -162.0 (-242.3, -117.8) 1.00 -0.01 (-0.09, 0.00) 0.04

  Tree cover (%) 3.1 -0.4 (-12.1, 11.6) 0.25 0.00 (-0.15, 0.11) 0.28

  Impervious surfaces (%) 13.3 -0.7 (-14.4, 7.4) 0.25 -0.01 (-0.15, 0.09) 0.29

  AADT (vehicles per day-km2) 8203 0.7 (-9, 18.2) 0.24 0.01 (-0.08, 0.21) 0.28

  Distance to TRI sites (km) 2.6 -1.1 (-18.9, 8.9) 0.27 -0.01 (-0.17, 0.11) 0.32

  Distance to NPL sites (km) 3.3 0.0 (-11.7, 14.6) 0.26 0.00 (-0.13, 0.14) 0.30

  Distance to waste sites (km) 2.3 3.0 (-7.4, 39.2) 0.31 0.03 (-0.07, 0.34) 0.33

  Distance to major emitters (km) 3.2 0.0 (-10.7, 13.1) 0.24 0.01 (-0.09, 0.19) 0.29

  Distance to CAFOs (km) 6.8 -2.1 (-31, 14.2) 0.34 -0.02 (-0.24, 0.14) 0.35

  Distance to mines or wells (km) 2.1 -1.7 (-22.6, 8.9) 0.31 -0.03 (-0.27, 0.07) 0.38

Social Exposures

  CVD hospitalizations (n per 10,000) 45.2 -1.4 (-18.4, 5.9) 0.28 -0.02 (-0.22, 0.08) 0.35

  Resp. hospitalizations (n per 10,000) 33.0 -2.5 (-26.8, 5.0) 0.30 -0.02 (-0.21, 0.05) 0.35

  Violent crimes (n per 1,000) 6.3 -0.3 (-12.2, 9.2) 0.25 -0.01 (-0.16, 0.09) 0.32

  Property crimes (n per 1,000) 36.0 -1.5 (-18.3, 5.2) 0.28 -0.06 (-0.35, 0.03) 0.49

  Less than HS diploma (%) 12.7 -1.1 (-17.9, 10.6) 0.29 -0.01 (-0.20, 0.09) 0.32

  Unemployment (%) 5.0 -6.6 (-51.3, 2.5) 0.40 -0.03 (-0.30, 0.05) 0.37

  Households speaking limited English (%) 10.9 -1 (-16.2, 6.9) 0.25 0.00 (-0.12, 0.19) 0.31

  Households in poverty (%) 8.3 -1.1 (-15, 6.6) 0.26 -0.02 (-0.22, 0.06) 0.33

  Persons of color (%) 22.9 -0.5 (-13.1, 12.6) 0.26 0.00 (-0.13, 0.15) 0.29
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between PM2.5 and birth weight or adiposity [75]. In gen-
eral, intraurban gradients of PM2.5 tend to be relatively 
flat and regulatory monitors poorly reflect variability 
from local sources [76]. Other pollutants such as black 
carbon that better reflect local sources in the region and 
characterize intraurban gradients in concentration may 
be more useful in future studies [77].

Our results indicating an interaction between tem-
perature and O3 on birth weight are more consistent 
with previous studies [78]. Although this association 
has been reported less frequently in the literature, O3 
exposures have been associated with lower birth weight 
(measured continuously) or increased odds of low birth 
weight (< 2,500  g) [78, 79]. Associations between both 
higher and lower temperatures and lower birth weight 

have also been reported [80–83]. Both ozone and ambi-
ent temperature exposures have been linked to systemic 
inflammation in adults [84–88]. Thus, we hypothesize 
that our results showing a relationship between tem-
perature and O3 on birth weight may be due to mater-
nal systemic inflammation, which is known to influence 
fetal growth [89].

Importantly, our study provides additional evidence 
of effect modification by maternal race and ethnicity on 
associations between environmental hazards and child 
health outcomes. Associations between our exposures of 
interest and birth weight were stronger for mothers from 
historically minoritized race or ethnicity groups com-
pared to non-Hispanic White mothers. Several studies 
in the past two decades have reported racial disparities 

Table 4  NPB models for birth weight stratified by maternal race/ethnicity (non-Hispanic White vs. all other race/ethnicity groups). 
Posterior means, 95% credible intervals, and posterior inclusion probabilities (PIPs) for each census tract level exposure regression 
coefficient in the NPB model. The model is adjusted for all individual-level covariates except race/ethnicity.a Results are presented for a 
1 SD increase in each exposure

a  Models are adjusted for: maternal educational attainment, maternal pre-pregnancy BMI, maternal age at delivery, maternal smoking during pregnancy, second-
hand smoke exposure during pregnancy, mean perceived stress scale score across pregnancy, mean postnatal depression score across pregnancy, season of 
conception, and year of conception
b  Effect estimates are reported for a 1 standard deviation increase in each exposure variable

Variable Non-Hispanic White
(n = 445)

All other Race/Ethnicity
(n = 452)

Posterior Meanb

(95% CI)
PIP Posterior Meanb

(95% CI)
PIP

Environmental Exposures

  Mean PM2.5 (μg/m3) 1.3 (-14.1, 27.8) 0.32 -15 (-94.3, 13.1) 0.45

  Mean O3 (ppb) -1.3 (-23.4, 17.6) 0.35 -15.5 (-103.5, 11.8) 0.43

  Mean temperature (°F) -1.1 (-22, 14.5) 0.33 0.9 (-36.2, 43.8) 0.32

  Mean O3 × Mean temperature -3.6 (-71.4, 0.0) 0.06 -206.2 (-258.3, -156.1) 1.00

  Tree cover (%) -0.1 (-15.3, 17.5) 0.31 1.2 (-19.9, 31.3) 0.27

  Impervious surfaces (%) -1.3 (-20.4, 10.9) 0.31 -1 (-29.4, 19.6) 0.25

  AADT (vehicles per day-km2) -0.9 (-18.7, 11.9) 0.30 3.3 (-10.5, 38.2) 0.28

  Distance to TRI sites (km) -2.3 (-26, 9.7) 0.35 3.5 (-15.3, 43.9) 0.30

  Distance to NPL sites (km) 0.0 (-14.8, 20.7) 0.29 0.9 (-28.8, 32) 0.29

  Distance to waste sites (km) 1.6 (-12.1, 31.9) 0.33 8.4 (-9.9, 65.4) 0.38

  Distance to major emitters (km) -1.0 (-17.8, 10.2) 0.31 7.8 (-8.7, 63.2) 0.35

  Distance to CAFOs (km) -0.3 (-22, 24.8) 0.35 -5.4 (-83.8, 36) 0.36

  Distance to mines or wells (km) -1.8 (-24.1, 12.2) 0.35 -0.4 (-33.9, 28.7) 0.29

Social Exposures

  CVD hospitalizations (n per 10,000) -1 (-19.1, 13.4) 0.32 -2.5 (-47.8, 27.3) 0.32

  Resp. hospitalizations (n per 10,000) -0.8 (-17.8, 12.1) 0.30 -16.4 (-93.6, 6.3) 0.45

  Violent crimes (n per 1,000) -1.1 (-18.7, 11.5) 0.31 4.5 (-10.4, 48.6) 0.30

  Property crimes (n per 1,000) -1.9 (-22.2, 9.7) 0.32 1.9 (-15.1, 31.4) 0.26

  Less than HS diploma (%) -2.8 (-30.6, 6.9) 0.33 1.5 (-22.2, 36.4) 0.28

  Unemployment (%) -2.9 (-29.3, 6.7) 0.34 -12.3 (-80.2, 7.3) 0.41

  Households speaking limited English (%) -0.7 (-16.3, 12.4) 0.30 -2.2 (-39.8, 19.4) 0.27

  Households in poverty (%) -2.4 (-27.4, 8.0) 0.33 1.3 (-21.5, 34.5) 0.26

  Persons of color (%) -0.6 (-16.5, 12.3) 0.29 1.6 (-19.4, 35.5) 0.28
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Fig. 1  Exposure response curve for the 2D smoothed term for ozone and temperature in the generalized additive model (A) and accumulated local 
effects (ALE) plots showing the effect of temperature (B) and ozone (C) on birth weight. Note: axes are restricted to the middle 95% of observed 
ozone and temperature values

Fig. 2  GAMs stratified by maternal race/ethnicity and restricted to the middle 95% of ozone and temperature observations. Plots show the 
exposure–response curve for the 2D smoothed term for ozone and temperature in the generalized additive model (A) and accumulated local 
effects (ALE) plots showing the effect of temperature (B) and ozone (C) on birth weight for non-Hispanic White (NHW) mothers and the exposure 
response curve for the 2-D smoothed term for ozone and temperature in the generalized additive model (D) and ALE plots showing the effect of 
temperature (E) and ozone (F) on birth weight for mothers identifying as any race or ethnicity other than non-Hispanic White
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in low birth weight, which is more likely as population 
mean birthweights shift downward, over the last few dec-
ades [90–92]. Relationships between race or ethnicity, 
neighborhood quality, and neonatal outcomes are com-
plicated, but stress is a likely mediating factor [93].

There were important differences between the results 
of the single-exposure linear regression analysis and the 
results from the NPB model. In the linear regression 
models, higher exposures to social stressors tended to be 
associated with lower birth weights and adiposity in the 
linear regression models, though the confidence inter-
vals for the regression coefficients tended to be wide and 
contain zero. These results are consistent with our pre-
vious index-based analysis which found that associations 
between a combined exposure index and birth weight 
were likely driven by the social stressor component of 
the score [40]. However, the NPB model identified the 
interaction between ozone and temperature as being an 
important predictor of birth weight. Neither temperature 
nor ozone were associated with birth weight in the linear 
regression models. Differences between results derived 
from the NPB model and the linear regression models 
may be due to residual confounding by co-exposures 
in the single-exposure linear regression models. These 
models also do not include the interaction term that was 
important in the NPB model. The exposures included in 
our data set are moderately to highly correlated, and a 
single-exposure model is likely not sufficient to address 
this correlation. Using NPB as a modeling approach 
allowed us to consider each of these exposures at once 
in a framework that allows correlated exposures to be 
assigned similar coefficients when effects cannot be sepa-
rated [43].

Additionally, differences between our NPB model and 
our original index-based approach also suggest that our 
combined exposure index may have characterized fac-
tors in the neighborhood that are not fully explained by 
any one variable. Notably, temperature was not included 
in our original index. Our exposures were originally cho-
sen to reflect the combination of factors often included in 
screening tools for environmental justice concerns, e.g., 
CalEnviroScreen [45] or EJScreen [94]; thus, we may have 
captured trends in neighborhood quality rather than spe-
cific etiologic factors for lower birth weight and adipos-
ity. Future mixtures-based approaches for birth weight 
should consider moving beyond the typical indicators 
of health and neighborhood quality and focus more 
on those exposures that are suspected of being causally 
linked to neonatal outcomes.

There are some important limitations to our approach 
that should be considered when interpreting these 
results. First, the census tract estimates of exposure 
generally have limited temporal resolution. Due to the 

limitations of publicly available data at the spatial reso-
lution used here, we relied on annual or five-year aver-
age estimates for most of our exposures. Second, there 
is no universal definition for neighborhood, and census 
tracts may not be the most meaningful unit of analy-
sis; boundaries that reflect policy or other jurisdictional 
boundaries (e.g., school districts or municipal bounda-
ries) may be more appropriate for some exposures [95].
Third, as discussed above, we chose our exposures based 
on existing screening tools rather than specific exposures 
known to be associated with birth weight and adiposity. 
Future work should consider how and for what purpose 
existing public health indices are developed and may 
develop separate indices for different types of health out-
comes. Lastly, we focused on a single metropolitan area 
where the range of exposures is limited. Replication of 
these methods in multi-city studies should broaden the 
range of exposures and better elucidate the relationships 
between multiple environmental and social hazards and 
neonatal health.

Despite these limitations, our approach demonstrated 
the strengths of using NPB in a mixtures context. Our 
use of NPB allowed us to include a large number of cor-
related exposures, which would otherwise be a challenge 
in a multipollutant model due to the potential for mul-
ticollinearity and variance inflation [42]. In this context, 
NPB has advantages over the least absolute shrinkage 
and selection operator (LASSO) which is widely used 
for variable selection. In particular, LASSO tends to per-
form poorly when variables are highly correlated [96, 97]. 
Additionally, LASSO does not account for uncertainty in 
variable selection [42]. In contrast, NPB can cluster and 
assign equal regression coefficients to exposures, which 
reduces the effect of correlation among exposures and 
is a strength when it is difficult to separate the effects 
of the two exposures [43]. In future cases where more 
than two exposures are identified, methods like Bayes-
ian Kernel Machine Regression (BKMR) may be useful. 
BKMR is a flexible approach for modeling the effects of 
exposure mixtures that is capable of identifying nonlin-
ear main effects and interactions among mixture compo-
nents [98], though it may not be well suited for selecting 
among a large number of predictors [43], Thus, a two-
stage approach where NPB models reduce the number 
of candidate predictors and methods like BKMR explore 
the complex interactions between exposures of interest 
might be most appropriate.

Overall, our NPB model, which was designed to 
select among a large number of correlated exposures, 
identified a joint effect of O3 and temperature as impor-
tant predictor of birth weight, and the GAM indicated 
these association may be non-linear. Our results sug-
gest there is a potential role for neighborhood-level 



Page 12 of 15Martenies et al. Environmental Health          (2022) 21:111 

environmental and social stressors in the prenatal 
period to influence fetal growth, but that additional 
studies are needed to identify important drivers in this 
exposure mixture. Future work may consider imputing 
missing values for key covariates to increase the sample 
size available for more complex statistical approaches 
such as BKMR. Further, it will be crucial to examine 
non-linear dose response relationships when assessing 
the effects of joint exposures assessed at the neighbor-
hood level. When non-linear relationships are antici-
pated, additional variable selection approaches could 
be considered [99].
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