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Abstract 

Background:  Air pollution epidemiology has primarily relied on measurements from fixed outdoor air quality moni-
toring stations to derive population-scale exposure. Characterisation of individual time-activity-location patterns is 
critical for accurate estimations of personal exposure and dose because pollutant concentrations and inhalation rates 
vary significantly by location and activity.

Methods:  We developed and evaluated an automated model to classify major exposure-related microenvironments 
(home, work, other static, in-transit) and separated them into indoor and outdoor locations, sleeping activity and five 
modes of transport (walking, cycling, car, bus, metro/train) with multidisciplinary methods from the fields of movement 
ecology and artificial intelligence. As input parameters, we used GPS coordinates, accelerometry, and noise, collected 
at 1 min intervals with a validated Personal Air quality Monitor (PAM) carried by 35 volunteers for one week each. The 
model classifications were then evaluated against manual time-activity logs kept by participants.

Results:  Overall, the model performed reliably in classifying home, work, and other indoor microenvironments 
(F1-score>0.70) but only moderately well for sleeping and visits to outdoor microenvironments (F1-score=0.57 and 
0.3 respectively). Random forest approaches performed very well in classifying modes of transport (F1-score>0.91). We 
found that the performance of the automated methods significantly surpassed those of manual logs.

Conclusions:  Automated models for time-activity classification can markedly improve exposure metrics. Such 
models can be developed in many programming languages, and if well formulated can have general applicability in 
large-scale health studies, providing a comprehensive picture of environmental health risks during daily life with read-
ily gathered parameters from smartphone technologies.

Keywords:  Portable sensor technologies, Multi-pollutant personal exposure, Automated time-activity classification

Background
Ambient air pollution is a leading environmental risk fac-
tor for chronic disease and millions of premature deaths 
every year worldwide [1]. Much of this evidence comes 

from epidemiological studies conducted in western coun-
tries where networks of outdoor reference monitoring 
stations have been used to provide indications of the 
effects of ambient air pollution on population health [2]. 
Recent studies focused on a global analysis of estimated 
source contributions to outdoor air pollution and related 
health effects using updated emissions inventories, satel-
lite and air quality modelling, and relationships between 
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air quality and health at global, regional, country, and 
metropolitan-area scales [3].

However, as individuals move between different, highly 
heterogeneous microenvironments that are mainly situ-
ated indoors, outdoor static measurements become 
potentially poor metrics of actual personal exposure [4], 
leading in many cases to bias and error in health estima-
tions [5]. Adding to the complexity of measuring per-
sonal pollutant concentrations, physical activity levels, in 
turn, affect the dose of inhaled air pollution. For exam-
ple, while a comprehensive review of the literature found 
the highest exposure to particulate matter when travel-
ling by car compared with cycling [6], the highest whole 
trip doses were in fact experienced by cyclists [7] because 
their higher physical activity levels resulted in greater 
amounts of pollutant received by the body through larger 
volumes of inhaled air [8].

Accounting for individual mobility and activity patterns 
is therefore critical for improved exposure and dose esti-
mations. Such information has been commonly collected 
with different self-reported questionnaires [9] which 
often introduce participant error and missing data [10, 
11] and increase the participation burden (i.e. time and 
effort required to complete) [12]. A growing number of 
studies have taken advantage of increasingly widespread 
sensor technologies, such as geographical positioning 
system (GPS) sensors in smartphones, to improve the 
accuracy of indirect air pollution exposure assessment in 
large-scale health studies by tracking people’s time-loca-
tion patterns [13–16].

Time-activity patterns and modes of transport cannot 
be derived from the GPS raw data directly without fur-
ther data processing. Only a few studies aim to classify 
time-activity patterns during daily life using GPS tracking 
data (smartphone-based or handheld devices), in some 
cases combined with temperature, light or motion sen-
sors [17–24] to develop primarily rule-based models and/
or random forest (RF) learning techniques for a small 
number of participants over a few days.

In a previous paper [25], we developed, deployed and 
comprehensively evaluated the performance of a highly 
portable air pollution sensor platform (PAM) for per-
sonal exposure assessments in health studies. We now 
aim to present a methodological framework as the basis 
of an approach that automatically classifies and integrates 
time-activity patterns in personal exposure assessments. 
This work is toward an overarching aim of capturing total 
personal multi-pollutant dose in unprecedented detail 
and, together with medical outcomes, identifying under-
lying mechanisms of the detrimental effects of specific 
air pollutants on health. While we use auxiliary param-
eters collected with a custom-made sensor platform as 
inputs, such parameters can be readily collected with 

smartphone technologies, making this method transfer-
able to large-scale health studies.

Conceptual structure of the time activity model
We developed a model to classify major exposure-rel-
evant microenvironments (home, work, other static, in 
transit) and subclassified them into indoor and outdoor 
locations, sleeping activities and five modes of transport 
(walking, cycling, car, bus, train/metro) using two open-
source software components, R [26, 27] and Post-
greSQL [28, 29]. The input parameters for this model 
(GPS coordinates, noise and accelerometry) were col-
lected with the PAM [25] (S1). Information on data man-
agement, post-processing and sensor performance can be 
found in Chatzidiakou et al., 2019 [25] and in S1.

The PAM has been previously deployed in a number of 
health studies to monitor the thermal parameters (tem-
perature and RH) and personal exposure of participants 
to multiple pollutants at high spatial and temporal reso-
lution [30, 31] including carbon monoxide (CO), nitric 
oxide (NO), nitrogen dioxide (NO2 ), ozone (O3 ) and size 
segregated particulate matter (PM). However, pollutant 
measurements1 and thermal parameters were not used 
as predictors in this model in order to make this meth-
odology generally applicable to other studies and also 
transferable to different geographical settings and vary-
ing seasons.

The model can be conceptualised as a series of six con-
secutive steps, as shown in Fig. 1, to classify major micro-
environments, activities and modes of transport (shown 
in red font), combining rule-based algorithms (blue) and 
artificial intelligence (AI) methods (purple) summarised 
in Table 1.

Step 1 aims to identify the home location with a sim-
ple rule-based algorithm to effectively reduce the vol-
ume of the data that will be processed with a Lagrangian 
home-range estimation method [32, 33] in Steps 2 and 
3. In that way we effectively reduce the volume of data 
because such methods generally require higher compu-
tation power to implement more complex geometric or 
probabilistic models2. We adopt an existing technique 
[34] developed in the field of ecology and extend its 
use to human mobility studies. It combines the robust-
ness of geometric estimators with the simplicity of 

1  with the exception of the larger fraction of PM for sleeping activity
2  Geometric estimators aim to delineate the spatial extent of an individu-
al’s movement by constructing polygons (called hulls) of all visited places. 
Probabilistic estimators create the probability density (called utilisation dis-
tribution) that an individual is found at a given point in space and represent 
the density of use of space. Widely used geometric methods are convex hull 
methods while the most common probabilistic methods are kernel density 
methods to analyse animal territory and movement [32].
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probabilistic methods to identify important place-marks 
and fully characterise exposure-relevant behavioural pat-
terns of how the individual uses their activity space.

Step 4 and Step 5 employ rule-based algorithms to 
interpolate missing observations, separate indoor from 
outdoor static microenvironments and classify sleeping 
activity. Finally, in Step 6 we classify modes of transport 
observations with RF [35], the use of which is considered 
best practice in travel mode classification [36]. To assist 
the classification, we perform trajectory analysis [37] to 

extract useful metrics of movement. Important predictor 
variables for RF model development were selected with 
an automated method [38] suitable for high-dimensional 
data (see Table 1).

Additional to the above main R software environ-
ment packages that form the backbone of the model, we 
used for spatial analysis and visualisation: sp [39, 40], 
rgdal [41], raster [42], gpclib [43], OpenStreetMap [44], 
ggplot2 [45] and ggmap [46], rayshader [47]; for time-
series analysis, data manipulation and visualisation: 

Fig. 1  Flow chart of the time activity model

Table 1  Summary of AI methods integrated into the time-activity model

AI method R implementation Outputs

Home-range method that combines geometric and probabilistic 
estimators

Time Local Convex 
Hull (T-LoCoH) [34]

Polygon (hull) geometry gives information on direc-
tional movement vs. static clusters (Step 2). Visitation 
rate and duration of visit enable classifications based on 
behavioural patterns of the individual (Step 3).

Trajectory analysis Adehabitat LT [37] Segmentation of movement with the Lavielle method [57]

Predictor selection for Random Forest (RF) classification with three-
step elimination process based on data-driven thresholds for high 
dimensional datasets

VSURF [38] Predictor variables for RF models collected with the PAM 
(movement, noise, GPS information) and baseline ques-
tionnaire (common modes of transport), and extracted 
from spatial analysis

RF classification of the mode of transport with the 10-fold evaluation 
method

RandomForest [65] Probabilistic classification for each mode of transport
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openair [48], dplyr [49], plot3D [50]; and for clustering 
and classification: caret [51], dbscan [52].

The model development steps are described in detail 
below and illustrated using information from one repre-
sentative participant over a period of one week.

Step 1: Rule‑based algorithm for home location 
identification to reduce computational demand 
of the time‑activity model
The rationale of this simple algorithm relies on com-
mon behavioural patterns of most people in western 
settings, who tend to spend most of their nighttime at 
home (Fig. 2b). This assumption holds particularly in this 
study but it can be readily adjusted to shift workers who 
may be at home at different times. We identified periods 
when the PAM was in the base-station - the dock used 
by participants to charge the PAM at home - (as indi-
cated by the input voltage of the unit) and when the local 
time was between 02:00-04:00 AM; therefore, making it 
more likely that the participant was at home. Due to GPS 
errors, these points tended to be displaced around the 
home location as illustrated in Fig. 2c, often falling out-
side the GIS building boundaries.

A clustering algorithm (in this case k-means in R) was 
applied to this data subset to determine whether the scat-
tered points formed a single cluster for each participant. 
For a few participants, multiple clusters were detected 
hence home could not be determined in this step (for 
example, due to sleeping in multiple locations or lack of 
satellite reception during the selected period) and for 

these participants home was subsequently classified in 
Step 2 as the location where the participant spent most 
of their time.

If a single cluster was identified, a spatial elliptical zone 
(“buffer zone”) was created around each home microen-
vironment by extracting the centroid coordinates and 
the individual spread distances ( δLon and δLat) (Fig. 2c). 
Any spread is expected to depend on contextual factors 
(such as building construction characteristics and GPS 
signal quality) and was typically found to range from 60m 
to 500m( [23, 24]. Data points within that spatial zone 
(Fig. 2c) were classified as home and were separated into 
indoor and outdoor in Step 4.

Step 2: Stationary locations and movement patterns 
from space‑use metrics
The remaining observations (i.e. those not belonging 
within the home spatial zone) were analysed with the R 
package T-LoCoH [34] (Table 1) to distinguish between 
movement and static activities. The strength of this tech-
nique is that it models space-use (Step 2) and time-use 
(Step 3) simultaneously. It does that by employing a scal-
ing that relates distance and time in reference to an indi-
vidual’s characteristic velocity (time-scaled distance). 
Previous studies have found that such estimators that 
incorporate a temporal component with individual-spe-
cific parameters generally perform better than traditional 
estimators [53]. We first used the extracted geomet-
ric features to classify static clusters and directional 

Fig. 2  Graphical flow chart of home identification of the time-activity model. (a) Map of the raw GPS data (blue) collected from a representative 
participant carrying a personal air quality monitor over a week. (b) 3D density plot of participant’s time budget projected on a map. “Home” location 
has the highest point density (i.e. most time spent). (c) A spatial elliptical zone created with a rule-based model to identify “home” that included 
indoor (red) and outdoor (blue) micro-environments (separated in Step 4). The spread distances ( δLon and δLat) around the centroid are often larger 
than the GIS footprints of the buildings (grey) and depend on multiple factors. Map data from Google Maps 2021 (a and b) and OpenStreetMap(c)
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movement following the workflow illustrated in Fig.  3 
and described below:

•	 Figure 3a: Defining nearest neighbours with the 
adaptive method. GPS data were first converted to 
a conformal (Universal Transverse Mercator) projec-
tion because it preserves local angles and represents 
shapes accurately and without distortion for small 
areas. The algorithm begins by identifying a set of 
nearest neighbours around each point (Fig. 3a) based 
on their time-scaled distance. Participants did not 
utilise areas in a uniform pattern, but rather selected 
areas based on their individual activities, resulting 
in heterogeneous coverage of both dense and sparse 
areas. To account for these patterns, the selection 

of nearest neighbours [34] was performed with the 
adaptive method ( α-NN).3

•	 Figure 3b: Geometry of the enclosing polygons. 
Each parent point and its nearest neighbours were 
bound together with a minimum convex polygon or a 
hull (Fig. 3b). Hulls are the building blocks of the sub-
sequent analysis and have different properties (point 
density and shape) which in turn provide important 

Fig. 3  Example graphical flow of space-time utilisation distribution analysis (step 2) implemented with the T-LocoH package in R. (a) First, nearest 
neighbours were identified with the adaptive method ( α-NN) (b) Minimum convex polygons (hulls) were then produced from these α-NN (c) Hulls 
were merged by point density to create density isopleths (utilisation distributions) to characterise space intensity use. (d) Hulls were merged by the 
eccentricity of the bounding ellipse to create elongation isopleths to characterise movement and were projected on a map (Google Maps 2021)

3  The adaptive method specifies that the sum of the distances of all nearby 
points around each parent point is less than or equal to α . Essentially, this 
method adjusts the size of the circles that enclose nearest neighbours based 
on the frequency of use of each area. In regions with more data, smaller cir-
cles can be constructed resulting in a higher resolution of space-use metrics. 
Because α is defined empirically, we used an automated method to find a suit-
able value for each participant [34].
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information on the use of space. The eccentricity of 
the ellipse bounding a hull is a good approximation 
of its shape, which specifies whether an individual is 
in movement or stationary. For example, a bounding 
ellipse with an eccentricity value close to zero resem-
bles a circle and indicates areas where the individual 
was stationary for an extended period, resulting in 
a dense cluster of points similar to the red cluster 
presented earlier in Fig.  2c. In contrast, elongated 
bounding ellipses have an eccentricity value close to 
one because they enclose nearest neighbours that 
form linear segments indicating areas of directional 
movement.

•	 Figure 3c and d: Defining areas with similar poly‑
gon geometry. Depending on the research ques-
tion, hulls can be sorted by a selected property, 
and then merged together to form isopleths that 
connect areas with the same numerical value of 
that property. In the example of Fig. 3c, areas that 
are used by the participant with the same inten-
sity were merged to produce traditional utilisation 
distributions. When hulls with similar eccentric-
ity values are merged as shown in Fig.  3d, similar 

movement patterns are connected in a single isop-
leth ranging from the highest elongation hull value 
close to 1 (cyan) capturing points in movement to 
the lowest elongation value close to 0 (red) indicat-
ing dense clusters of GPS points. In this way, simi-
lar movement patterns are grouped into a single 
isopleth. Isopleths typically contain 95% of the total 
points excluding outliers that occur frequently and 
could skew the results [34].

Figure  4 illustrates these extracted geometric features 
in 3D (top) and 2D (bottom) maps. The graphs show that 
both the eccentricity of the enclosing ellipses (Fig.  4a) 
and the number of nearest neighbours (Fig. 4b) provide 
strong discriminatory power to separate directional 
movement from static locations (Fig.  4c) with suitable 
thresholds.

Step 3: Behavioural patterns from time‑use metrics
In the previous step, we constructed hulls using the time-
scaled distance between GPS points. The time-scaled dis-
tance distinguishes points that are far away in time even 
though they may be close in Euclidean space. Therefore, 

Fig. 4  Selected features for the classification of static clusters and directional movement are shown in 3D (top) and projected on maps (bottom) 
in a colour and size-scale. (a) The eccentricity and the perimeter-to-area ratio of the enclosing ellipse provide information on hull geometry and 
directional movement. (b) Dense clusters of nearest neighbours were constructed in areas used more frequently. (c) Final classification of static 
clusters and in-movement location based on thresholds of these features
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the hulls are local not only in space but also in time ena-
bling the characterisation of behavioural patterns with 
two important temporal features: the duration of visit 
and the revisitation rate over 12 hours to capture diurnal 
patterns of human behaviour.

The scatterplot of Fig.  5b shows that, based on the 
revisitation rate and duration of visit, seven distinct clus-
ters were identified and projected on a map in Fig.  5a. 
Overall, three main categories can be identified: clusters 
which were visited often and for extended time periods 
(Clusters 1 and 2), clusters where the participant spent 
limited time (Clusters 3 and 4), and finally clusters visited 
once during the week but for longer time (i.e. more than 
an hour as in Clusters 4, 5, 6 and 7).

These extracted time-use metrics assisted the auto-
mated classification. Cluster 1 (Fig. 5b) could be classified 
as home (if it had not been classified as such in Step 1) as 
shown in Fig.  5d. The cluster visited frequently and for 
extended time periods and was classified as work (in this 
example Cluster 2).

Cluster 4 was classified as in-movement, not only based 
on the hull metrics in Step 2, but also based on the low 
duration of visit as shown in Fig.  5b. Within Cluster 4, 
differences in revisitation rates (as illustrated by the 
size of points in Fig. 5c) can be used to distinguish daily 

commuting routes. For example, points between home 
and work have been revisited 3 times compared with 
points south of work that have only been visited once.

Finally, details on locations visited for extended periods 
but less often, (Clusters 3,5,6 and 7) could be retrieved 
from GIS maps and common behavioural patterns. 
For example, Cluster 3 in proximity to home had short 
but frequent visits within the spatial zone of the over-
ground station and could be classified as waiting for the 
train (Fig. 5e). Contrary, Cluster 7 was only visited once 
but had a high duration of visit and together with the 
GIS information could have been classified as a second-
ary workplace location (Fig. 5f, KCL Waterloo Campus) 
.Both subclassifications were confirmed by the manual 
diary entries. Although this approach shows the capa-
bilities of the model, it is beyond the scope of this work 
to subclassify each microenvironment and they were, 
therefore, all grouped as other but with a unique identi-
fier (Fig.  5d). Currently, services such as Google Places 
API have the ability to return information on places of 
interest.

Overall, the technique illustrated here provides a simul-
taneous analysis of spatial and temporal patterns to sepa-
rate static locations from directional movement and infer 
behavioural patterns on the use of space of the individual.

Fig. 5  Flow chart of the time activity model (a) Map of seven distinct clusters identified based on temporal information contained in the isopleths. 
(b) Scatterplot of the visitation rate (over 12h) vs the duration of visit (average points per visit). The dashed black line indicates the threshold in 
the duration of visit that discriminates between static locations from directional movement. (c) Map of time-use metrics during the participation 
week. The colour scale indicates the total minutes spent in each location while the size of the points corresponds to the number of visits. (d) Final 
classification of static locations into three microenvironments (“home”, “work”, “other”) and in movement based on spatiotemporal behavioural 
patterns of the individual. (e and f ) Subclassifications of “other” visited microenvironments derived from GIS information and behavioural patterns
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Step 4: Separating indoor from outdoor 
microenvironments
GPS signal loss is common in indoor microenvironments, 
such as in the underground metro system, in urban areas 
with tall buildings and structures, or when the monitor is 
static in an indoor microenvironment for extended peri-
ods. In such cases, a large percentage of geo-coordinated 
observations may be missing. While this percentage will 
vary between deployments, in our sample it was found to 
be ∼ 40%. A rule-based algorithm was developed to inter-
polate the missing locations using previous- and last-
known locations and PAM auxiliary parameters as inputs 
(S2, Fig. A1), and in this way classify indoor microenvi-
ronments with limited GPS satellite reception.

Once missing observations were largely accounted for, 
each static microenvironment (home, work, other) was 
classified as indoor or outdoor with a rule-based algo-
rithm (Fig.  1) formulated on the hypothesis that abrupt 
changes in acceleration and GPS signal quality are indica-
tive of transitions between microenvironments. The algo-
rithm used participant-specific thresholds of these two 
parameters to classify indoor and outdoor microenviron-
ments and is visualised in Fig. 6 using data from a single 
participant-day.

Figure 6 presents the time-series of selected parameters 
(acceleration, number of satellites) to develop the indoor-
outdoor separation algorithm (Fig.  6b and c), the cor-
responding map (Fig. 6f ) with indoor (red) and outdoor 
(blue) classifications, as well as a 3D map of the number 
of satellites transmitting to the PAM receiver (Fig.  6g). 
Higher numbers of satellites are typically seen outdoors 
due to signal blockage in indoor environments (Fig.  6c 
and g).

We have included the manual diary logs, ozone lev-
els measured with the PAM (Fig.  6e and h) and the 
time-derivative of RH as indirect ways to confirm the 
performance of the algorithm. During daytime, ozone 
levels are consistently very low indoors as shown in the 
3D map in Fig. 6h (for example, locations A, B and C) 
due to the high reactivity and depletion on indoor sur-
faces, the limited solar radiation and the lack of indoor 
sources [54]. They are also significantly reduced dur-
ing certain modes of transport (for example, B to C) 
for similar reasons. Finally, we have previously shown 
in a controlled experiment that fast changes in RH can 
flag rapid environmental changes as a person moves 
between different microenvironments [25]. There-
fore, the time-derivative of RH could be used to flag 

Fig. 6  Identifying transitions between indoor and outdoor microenvironments. (a) Time series of manual activity logs. Grey shaded areas indicate 
periods flagged as outdoor microenvironments with the rule-based algorithm. (b and c) Participant-specific thresholds (black dashed lines) of 
two parameters collected with the PAM (acceleration and number of visible satellites) were used to flag transitions between microenvironments. 
(d and e) In addition to manual logs, sudden changes in RH and ozone levels were used to evaluate the performance of the algorithm indirectly 
(f ) Corresponding map of indoor (red) and outdoor (blue) microenvironments classified with the rule-based algorithm (g) 3D map visualising the 
number of satellites transmitting to the PAM GPS receiver. (h) 3D map of PAM ozone levels
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the indoor-outdoor transition with high time precision 
(Fig. 6d).

The evaluation of the model with a single par-
ticipant-day so far shows a high level of agreement 
between the algorithm predictions (grey shaded areas) 
and the manual activity logs (black line) shown in 
Fig.  6a. Additionally, the sharp spikes in the deriva-
tive of RH (Fig.  6d), and the rapid changes in ozone 
concentrations (Fig. 6e) further support that the rule-
based model can discriminate between indoor and 
outdoor microenvironments well. Full evaluation is 
presented in Section 3.

Step 5: Characterisation of sleeping activity
The indoor home microenvironment was subdivided 
into sleep and non-sleep periods with a rule-based model 
(Fig.  1) based on the hypothesis that participants sleep 
when background noise levels and movement are the 
lowest. Additionally to the accelerometer showing that 
the PAM was stationary (Fig. 7), relative changes in the 
larger fractions of particulate matter were used as an 
indicator of movement in the room because larger par-
ticles would be expected to resuspend during periods of 
physical activity of the occupants [55]. The time deriva-
tive of PM10 was used to detect these changes of concen-
trations (Fig. 7). While in this case we use a specialised 
optical particle counter, such information on participant 

movement could have been collected with widely used 
wearable sensors (such as smartwatches). Participant-
specific statistical thresholds were set for these three 
parameters to detect sleep activities followed by a 
smoothing filter over a 10 min rolling window applied on 
the binary classification to remove small disruptions.

Figure 7 shows that in this example there is an excellent 
agreement between manual activity logs (grey shaded area 
projected from time series) and algorithm-based classifi-
cation (line segments highlighted in red) with a marginal 
overprediction of sleep because the algorithm cannot sep-
arate downtime before sleep from actual sleeping activity 
as recorded in the diary. This rule-based model for sleep is 
evaluated using the whole dataset in Section 3.

Step 6: Classification of transit modes
The periods classified as in transit were classified into, 
in this case, five modes of transportation. First, we cre-
ated and selected predictor variables for the RF models 
which were trained and evaluated with a k-fold method 
as described below:

Trajectory analysis and segmentation
In-transit observations for each participant were grouped 
into individual commuting events (journeys). Stops were 

Fig. 7  Illustrative time series waterfall plot of selected PAM parameters used to classify sleep activity with a rule-based algorithm. 
Participant-specific thresholds (black dashed lines) were set for microphone and accelerometer levels and for the time-derivative of PM10 . Red line 
segments show time periods that the model classified as “sleep” while the blue line segments indicate non-sleep activities. Manual activity logs are 
presented for comparison as a time-series and as a grey shaded area
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part of a journey if the participant stayed in a static loca-
tion for less than 20 min (see Fig.  8a, otherwise a new 
journey was defined). Each journey was assigned to a 
“regular trajectory” [56] i.e., a continuous curve connect-
ing successive locations of an individual recorded at reg-
ular intervals.

During a single journey, people are likely to change 
their mode of transport (for example, walking to the 
metro and then taking the train). To account for that, 
each trajectory was partitioned into smaller segments 
based on changes in patterns of movement data with the 
Lavielle method [57] implemented in the adehabitat LT 
package in R [37]. To illustrate this method, one journey 
is selected as a case study, partitioned automatically into 
two segments (Fig.  8b). These two segments of the tra-
jectory are plotted on a map (Fig. 8c) by colour and pro-
jected on GIS (Fig. 8d) to retrieve information on public 

transport infrastructure and road networks. Because 
the points of the second segment fall on the railway net-
work (magenta line in Fig.  8d), Segment 2 corresponds 
to a train ride. Manual activity logs of the participant are 
presented in Fig. 8e where a timing error in the activity 
entry in the transition between walking and train is indi-
cated by both the GIS information and the speed derived 
from the distance between successive points.

Variable selection for RF
After all participant trajectories were segmented and pro-
jected on the GIS system, we had 60 variables that could 
be potentially used as predictors for the classification:

•	 31 variables collected with the PAM: hour of the day, 
GPS coordinates and GPS diagnostic information 
(i.e., visible satellites), and extracted features from the 

Fig. 8  Flow diagram of movement analysis implemented in adehabitat LT package in R. (a) Map of commuting events (journeys) of one participant 
during a typical day. The colour scheme indicates the time of day. (b) Segmentation of one trajectory (journey 18:28 in orange in a) using the 
Lavielle method identified two segments in the data. (c) The corresponding map of the trajectory in colour scale to differentiate the two segments. 
(d) Projection of segment 2 on the GIS system retrieved from Openstreetmap. The GPS points (blue) overlap with the railway infrastructure shown in 
magenta. (e) Corresponding map of the participant manual diary logs of that journey (see subsection 3.1). Visual inspection shows a delay in diary 
input that would result in small errors in model evaluation
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accelerometer and microphone measurements which 
could have been collected with a smartphone (See 
full list Additional files, Table A1).

•	 3 variables collected with the questionnaire: car 
and bicycle ownership and frequency of public 
transport use.

•	 19 movement-phase metrics: Extracted with spatio-
temporal clustering and trajectory analysis including 
absolute and relative angle of movement, Euclidean 
distance between consecutive points (speed), PAR of 
hulls etc. (See full list Additional files, Table A2)

•	 7 variables retrieved from projecting the data on GIS: 
highway, railway, sidewalk, cycleway, busway and bus 
and train stops.

Variable selection for the classification was implemented 
using RF in the VSURF package [38] in R which is suit-
able for high dimensional datasets. This strategy does 
not depend on specific model hypotheses but is based on 
data-driven thresholds to make decisions. VSURF suc-
cessively eliminates predictor variables in three steps: 
(1) starting with the preliminary elimination and ranking 
where all 60 variables were ranked by sorting the score 
of Variable Importance (VI) averaged over 50 RF runs. 
(2) In the second step, a nested collection of RF was con-
structed to select variables that led to the smallest out-
of-the-bag (OOB) error. (3) Among those retained in the 
previous step, final variables for prediction were selected 
by constructing an ascending sequence of RF models and 
testing the variables in a stepwise manner. A variable 
was retained only if the decreased OOB error was sig-
nificantly greater than the average variation obtained by 
adding noisy variables (Fig.  9)(calculated threshold here 
= 0.01).

The most important predictor variables retained with 
this method make intuitive sense: for walking and train 
the most important predictor was distance travelled, for 
cycling and driving it was the ownership of a bike and a 
car respectively, while for the bus it was the use of pub-
lic transport (Fig. 9). This indicates that an equally valid 
approach would be to manually select and evaluate pre-
dictor variables based both on data-driven thresholds 
and hypothesis testing. Finally, we found that param-
eters extracted from GPS data with spatial and move-
ment analysis methods (T-LOCOH and adehabitat LT) 
were more important predictors than raw PAM variables 
stressing the importance of appropriate feature extrac-
tion to optimise machine learning techniques.

RF development
Sensitivity tests were conducted for determining the 
maximum tree depth and number of trees. The RF was 

evaluated with a k-fold cross-validation method [58], 
which is a robust method for estimating the accuracy of 
a model. The dataset was split randomly into 10 mutually 
exclusive datasets of equal size. Then, on each iteration 
a new RF was trained independently on 9 subsets and 
evaluated on the remaining 1 subset of data, and this pro-
cedure was repeated 10 times. The final prediction error 
rate was calculated as the average performance metric of 
the 10 models. The advantage of this method is that all 
observations are used for both training and validation, 
and each observation is used for validation exactly once.

Evaluation of the time activity model
This section firstly describes the participant sample and 
recruitment procedures before comparing manual activ-
ity logs with model classifications.

Collection of activity logs for time‑activity model 
evaluation
A convenience sample of 37 participants (office workers) 
were recruited (Additional Files, Fig. A2) via email lists 
and other methods. Participants were recruited from 
London, a megacity population ∼ 9M and Cambridge, a 
relatively small UK city population ∼125K, to allow eval-
uation of the model in different urban settings. One Lon-
don and one Cambridge participant were excluded from 
the analysis due to incomplete diary entries ( < 24h).

Upon enrolment, participants were briefed on the 
aims of the study, gave informed consent and filled in a 
standardised questionnaire of baseline information on 
exposure-relevant lifestyle (including e.g. car ownership), 
personal and demographic factors. The age distribution 
of the 35 participants ranged from 18 to 65 years, and 
were all in employment (Additional Files, Table A3).

Each participant was provided with a PAM [25] and 
was asked to carry it for at least one week typical of their 
normal activities.The average deployment time was 9 
days with a minimum of 3 and a maximum of 20 days. 
Participants were informed that the monitors utilised 
GPS technology and were reassured that this informa-
tion would not be accessed in real-time, but only used at 
the end of the study to analyse overall spatial and tem-
poral relationships of anonymised data. No action was 
required by the participants to operate the PAM, other 
than to place it in its base-station overnight for charging 
and data transmission [25].

While carrying the PAM, they were asked to keep 
activity diaries using commercial smartphone apps 
[59, 60]. Smartphones were provided on request. The 
time-activity diary was semi-structured with some ini-
tial activities inserted in the diary as an example (e.g. 
“sleeping”). Participants were encouraged to fill in addi-
tional activities according to their lifestyles. At the end 
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of the study, diary entries of the time-activity-loca-
tion patterns were retrieved from their smartphones. 
Other than a personalised report of their own expo-
sure profiles as feedback (see example Additional Files, 
Fig. A3), they did not receive compensation for their 
participation.

Overall, the participants reported 665 time-activity 
entries. These entries were assigned to two core catego-
ries: location and activity. Classifications were derived 
from the diaries by grouping similar entries together 
(e.g. supermarket, grocery, food shopping). Three 
exposure-related classifications were developed for the 
category location and eight classifications for activity 
(Additional Files, Table A4). These were integrated into 
the measurement dataset by labelling each data point of 
the time series with a numerical classifier. Activity logs 
were checked manually to identify periods of obviously 
erroneous entries, such as (a) being at two locations 
simultaneously; or (b) contradictory activities (e.g., 
sleeping and cycling) which were removed ( ∼ 5% of the 
activity logs).

Aggregated participants’ time budgets
Over 1.26M observations of PAM measurements at 20 
sec time resolution were retained for the analysis (data 
capture rate 85%) and were averaged over 1-minute, 
resulting in N obs ∼422K of which ∼91% had an associated 
manual log.

The aggregated time budgets and diurnal time-activity 
patterns of the participants are shown in Fig. 10. Average 
minutes per day spent in different microenvironments 
and modes of transport classified with the model show 
an excellent agreement with the activity logs (Fig. 10a-b), 
with strong linear correlation (Fig. 10c-d). In this study, 
the participants spent most of their time indoors at 
home (59.2%, min-max: 29.1%- 89.4%) or at work (16.2%, 
min-max: 0.0%- 41.2%), together accounting on aver-
age   75.4% of the total time budget. Time spent in other 
indoor static locations accounted for 9.3% (min-max: 
0.0%-31.3%). Visits to outdoor microenvironments occu-
pied only a small portion of the participants’ time budget 
at 0.4% (min-max: 0.0%-3.9%). Travelling accounted for 
5.2%, (min: 0.1% - 11.8%).

Fig. 9  Variable importance plots selected with the VSURF package in R for each mode of transport
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The diurnal time budget aggregated among all partici-
pants captured by the model (Fig.  10f ) agreed with the 
manual activity logs (Fig. 10e). The model overpredicted 
other static but underpredicted work possibly because 
participants had multiple work microenvironments but 
the model classified only the primary cluster as work 
(visited often and for extended time periods) as shown 
in Step 3. Regardless, the model managed to capture 
the participants’ time-activity patterns well. Their pat-
terns followed wider socio-economic patterns of adults 
in employment with distinctive commuting events dur-
ing “rush hour” at 9:00 am and after 5:00 pm when par-
ticipants returned home and stayed there until 6:00 am 
(Fig. 10f ).

Evaluation of the time‑activity model with confusion 
matrices
The model performance was evaluated against the man-
ual classifications. Figure  11 visualises the confusion 
matrices for the binary classifications of different visited 
microenvironments and modes of transport.

Confusion matrices represent counts from predicted 
and actual values. The True Negative (TN) (blue, bot-
tom right) shows the number of negative examples clas-
sified accurately. Similarly, True Positive (TP) (blue, top 

left) indicates the number of positive examples classified 
accurately. A False Positive (FP) (orange, top right) value 
corresponds to the number of actual negative examples 
classified as positive; and a False Negative (FN) (orange, 
bottom left) value is the number of actual positive exam-
ples classified as negative. We examined the accuracy (the 
overall effectiveness of the classifier), the sensitivity (the 
ability of the model to identify positive labels), the speci-
ficity (the ability of the model to identify negative labels) 
and the precision (the proportion of positive labels that 
are correctly classified) of the model. We included the F1 
score, which is an overall good measure that combines 
precision and sensitivity and is a particularly useful indi-
cator of model performance when there is a large number 
of actual negatives. The range of these metrics is 0 to 1 
(or 0 to 100%). The greater the value, the better is the per-
formance of the model.

The model performed well in classifying home 
(Fig. 11a) with balanced FP and FN classifications (home: 
sensitivity: 96%, specificity: 85%, precision: 90%, F1: 93%, 
accuracy: 91%). Other indoor static locations (Fig.  11d) 
were reliably identified with a small percentage of FP 
(indoor: sensitivity: 95%, specificity: 99%, precision: 86%, 
F1: 90%, accuracy: 98%). Sleep and the work microenvi-
ronment (Fig. 11c) were classified reasonably well though 

Fig. 10  Participants’ time budgets. (a and b) Boxplots of participants’ time budgets in different static microenvironments and modes of transport 
classified with activity logs (left, shaded boxplot) and the model (right, solid-colour boxplot). (c and d) Corresponding scatterplots of mean time 
(in minutes) spent in visited microenvironments are shown in a colour scale at the bottom. (e and f ) Average diurnal time budget profile of all 
participants classified with the activity logs and with the model
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only 26 out of 35 participants reported going to work 
(sleep: sensitivity: 79%, specificity: 80%, precision: 57%, 
F1: 66%, accuracy: 80%, work: sensitivity: 70%, specificity: 
95%, precision: 72%, F1: 71%, accuracy: 90%).

The model overpredicted travel behaviour (Fig.  11b) 
and visits to outdoor static microenvironments (Fig. 11c) 
as shown by the relatively large number of observations 
classified as FP. Only 10 participants out of 35 reported 

a small fraction of time spent in outdoor static locations. 
As a result, while the accuracy and specificity for these 
activities were high (>96%), the precision and F1 score 
were lower (F1 travel: 66% and F1 outdoor static: 30%). A 
possible explanation is that logging short-duration trips 
and visits to outdoor locations might interfere with the 
ongoing activity and were therefore not recorded but 
were nevertheless detected by the model.

Fig. 11  Fourfold displays of confusion matrices to visualise the performance of the space-use model. Model predictions were compared against 
participant logs and assigned to one of four classes represented by a quarter of a circle as shown in the legend. The size of each quarter is 
proportional to the counts of observations belonging to that class. Blue quarters indicate correctly classified positive and negative labels while 
orange quarters correspond to erroneous classifications. Quantitative evaluation metrics are displayed under each fourfold plot for each visited 
micro-environment. (a-f ) Microenvironments and activities identified with a composite model of rule-based algorithms and spatio-temporal 
movement analysis. (g-l) Modes of transport classified with an RF model applied to True Positive and True Negative transit observations
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For this reason, periods where both the spatiotem-
poral-use estimator and the participant diary logs 
reported travel were retained to create a good train-
ing dataset amounting to a total of 790 trips (Nobs = 
12670). The RF models had an excellent performance 
with sensitivity> 87%, specificity> 96%, precision>91%, 
accuracy>95% and F1 >91% (Fig. 11g-l).

Qualitative evaluation of the time‑activity model
Despite the overall good performance of the model in clas-
sifying static microenvironments and modes of transport, 
we nevertheless detected inconsistencies between manual 
logs and model classifications. The first part uses a repre-
sentative case-study participant to illustrate such incon-
sistencies originating either from limitations of the model 
itself or errors in the manual activity logs. The second part 
aims to understand the implications of these inconsisten-
cies for the overall personal exposure estimations by com-
paring the resulting personal concentrations in different 
microenvironments classified with either one of the two 
methods for all participants and in doing so to demonstrate 
how automated models such as the one presented here can 
enhance air pollution health studies by providing a com-
prehensive picture of air pollution health risks in daily life.

Proof‑of‑concept for an example case‑study participant
The case study shows a representative largely sedentary 
office worker who commuted via cycling and walking to 
work and visited other indoor and outdoor microenvi-
ronments (Fig.  12). The visual inspection of the maps in 
Fig. 12a and b indicates that the model performance sur-
passes manual classification mostly due to small timing 
errors as the participant may have had difficulty docu-
menting the precise time of microenvironment transitions. 
For example, a walking trip through the park is errone-
ously classified as work microenvironment (timing error 2, 
Fig. 12a). The diary was less likely to specify visits to out-
door microenvironments compared with the model (mis-
classified other outdoor static, Fig. 12a).

Figure  12c presents the time series of one typical day. 
The participant commuted to work on foot at around 09:00 
am, stayed there until 19:00 pm and walked back home 
choosing a different route this time. While both methods 
adequately captured the participant’s time-activity pat-
terns, the manual activity model had some missing obser-
vations and timing errors. In both trips a clear spike in all 
pollutants’ levels was noticed: PM2.5 reached maximum 

daily concentrations during the morning walk while NO2 
reached maximum daily concentrations during the evening 
walk (Fig. 12c). The participant spent the rest of the even-
ing cooking, resting and visiting a nearby indoor environ-
ment on foot before returning home for the night. Indoor 
PM2.5 levels at home were higher than in the work environ-
ment consistent with indoor emission sources during even-
ing cooking activities.

Personal concentrations in visited microenvironments
Figure 13 visualises the concentrations in different micro-
environments visited by all 35 participants (Nobs ∼ 422K) 
classified both with the manual logs and the model. The 
distribution of concentrations of individual pollutants 
in each microenvironment was visualised with boxplots 
(Fig. 13a). On the left-hand side, the hatched boxplot shows 
observations classified with the manual activity logs while 
the solid-colour boxplot shows observations classified with 
the automated model.

The corresponding scatterplots of the mean concentra-
tions in each microenvironment are shown in Fig. 13f-k in a 
colour scale. Most points fall on the one-to-one line indicat-
ing that classifying microenvironments with either one of the 
two methods resulted in insignificant differences between 
estimated concentrations. Other out was the most poorly 
classified microenvironment (Fig.  11e) possibly because 
the whole dataset contained less than 20 participant-hours 
reported to be spent outside (Fig. 10a). Figure 13f-k shows 
that mean concentrations estimated for other out microenvi-
ronments had the highest deviation from the one-to-one line 
particularly for ozone and particulate matter (PM2.5 ). The 
model overpredicted mean ozone concentrations compared 
with the activity logs. Because higher ozone levels are gen-
erally expected to be seen outdoors (Fig. 6e) due to higher 
levels of photochemistry, the model classifications likely out-
performed the manual activity logs.

Travelling in particular occupied only a small fraction of 
the total time budget (on average 5.2% of the participants’ 
time, Fig. 10a), but is a significant site of exposure (Fig. 13). 
Because the sample of this study is small, some caution 
must be applied to the interpretation and the generalisabil-
ity of that finding. Participants in both cities covered large 
spatial distances (Fig. 14). Cambridge participants covered 
a smaller spatial area compared with the London partici-
pants and primarily used active modes of transport (walk-
ing, cycling). In line with previous research [61], it seems 
that vehicle users (car and bus) are exposed to significantly 

(See figure on next page.)
Fig. 12  Comparison of manual logs and automated time activity model for one case study participant. Colour-coded maps illustrating visited 
microenvironments and modes of transport during a week of a representative participant. (a) Classifications according to the activity log. (b) 
Classifications according to the automated activity model. Google maps 2021. (c) Time series of the manual activity log, model classifications and 
selected PAM parameters for one typical day
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Fig. 12  (See legend on previous page.)
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Fig. 13  Boxplots and scatter plots of personal exposure of 35 UK participants to multiple pollutants in different microenvironments. (a-e) For each 
activity, the left hatched boxplot shows entries classified with participants’ activity logs and the right solid-colour boxplot with the automated 
model. (f-k) Mean concentrations of individual pollutants in visited microenvironments are shown in a colour-scale in scatter plots. The 1:1 line is in 
black
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higher NO concentrations than cyclists or pedestrians 
(Fig.  13b), who appear to be exposed to higher NO2 and 
O 3 levels(Fig. 13c-d). While this study is only a snapshot of 
exposure in transit, it seems that maximum air pollution 
levels (in this case NO) were encountered when travelling 
in major traffic arteries (for example M25 in the greater 
London area Fig. 14d) or the central bus station (Fig. 14e) 
and in areas where traffic is routinely static (i.e. bridges in 
London, Fig. 14f). Confirming previous research [62], the 
highest exposure to particulate matter (PM2.5 ) was encoun-
tered by commuters using the train/metro system(Fig. 13e).

Discussion
Mobile sensor deployments can provide a picture of the 
rapidly changing and highly granular personal concen-
trations in a way that has not been possible before. This 
paper demonstrated a methodological framework that 
expands the capabilities of validated sensor platforms 
[25] with advanced computational methods to integrate 
time-activity patterns in personal exposure estimations.

Implementation of the model in different ways 
and programming languages
The parameters used in the time-activity model as pre-
dictors can be collected with smartphones making the 
method applicable more widely than with the specific 

sensor platforms. The model is readily extendable to 
include outputs from wearable biosensors in smart-
phones, such as heart and respiratory rate.

We employed multidisciplinary tools from the fields 
of movement ecology and AI and extended their use in 
human mobility studies to build a composite model that 
automatically classifies major time-activity location pat-
terns of static spatial clusters and five modes of trans-
port. We developed the model in R, an open-source free 
software environment, but equivalent algorithms can be 
developed in other programming languages that have 
similar capabilities for spatial and statistical analysis, 
such as Python.

Limitations
There are certain caveats with the methodology employed 
to develop and evaluate the time-activity model. First, a 
high rate of false positives was detected for outdoor and 
in-transit microenvironments, although these activi-
ties generally take up a small percentage of participants’ 
time. We hypothesise that this is not due to limitations in 
the model’s accuracy, but a limitation of manual activity 
logs employed in the evaluation. Even the most compli-
ant participants may have difficulty correctly document-
ing the precise time of microenvironment transitions, as 

Fig. 14  Transportation modes and relative exposure to air pollution of 35 participants plotted on maps. (a) Cambridge and (b) London visualising 
modes of transport (c -f ) Relative exposure to pollution (in this case NO) in Cambridge and London respectively shown in a colour-scale. Map data 
Google 2021
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it might interfere with the ongoing activity. Secondly, due 
to the increased participation burden, the sample size 
of 35 participants was relatively small; however, previ-
ous research on time-activity patterns and transporta-
tion mode classification has reported that a sample size 
of around 30 participants is adequate to provide robust 
estimations of activity patterns [24, 63].

Main findings
The model had an overall good performance: the clas-
sification for static microenvironments had an F1-score 
for home of 0.93; for work of 0.71; for other indoor static 
of 0.9. The RF model for transportation mode classi-
fication had an excellent performance (F1 > 0.88). We 
found that the difference in concentrations of multiple 
pollutants in the nine microenvironments classified 
with either model or activity log was insignificant com-
pared with the large spatial and temporal variation of 
personal exposure concentrations during daily life.

In line with previous research, street-level modes of com-
muting were associated with the highest levels of NO2 and 
O 3 concentrations [61], in-vehicle trips (car and bus) were 
associated with marked exposure to NO [61] while the 
metro was associated with the highest exposure to PM 
[62]. These noticeable variations in concentrations between 
different microenvironments result in diverse personal 
exposures emphasising the potential for exposure misclas-
sification when purely ecological (home location-based) 
exposure estimations are used in epidemiological research.

Future work
The next step involves the application of the model on 
larger health panel studies [30, 31] of hundreds of par-
ticipants to characterise the exposure of vulnerable sub-
groups of the population in diverse geographical settings. 
As physical activity may lead to differing doses for simi-
lar exposures, future work aims to capture total personal 
multi-pollutant dose in unprecedented detail addressing a 
major gap in air pollution epidemiology. We will further 
investigate whether physical activity levels may be reliable 
physical, psychological, social, and cognitive health indi-
cators for elderly and chronically ill cohort participants.

More importantly, as the pollution mixture inhaled 
during different activities likely originates from differ-
ent emission sources, it may contain different chemi-
cals with varying potential toxicity [64]. Therefore, 
neglecting the activity component in air pollution 
dose-health relationships might lead to erroneous con-
clusions regarding the toxicity of air pollutants. The 
time activity model enables the dissagregation of total 
personal exposure into different microenvironment-
specific exposures from diverse emission sources and 

chemical sinks. Together with advanced source appor-
tionment methods of personal exposure, future work 
aims to explore source-specific health effects.

Conclusions
Novel sensor technologies and computational tech-
niques such as those demonstrated here have advantages 
over traditional time-activity-location diaries, which are 
laborious, prone to error and involve a limited num-
ber of participants. Collecting a wealth of time-activity 
information in unprecedented detail can increase our 
understanding of air pollution exposures and exposure-
related behaviours that may be harmful to human health. 
Because individuals may have different susceptibilities 
to environmental exposures, together with the advanc-
ing field of “-omics”, this work builds towards providing 
comprehensive personalised advice to the individual to 
reduce their environmental health risks based on their 
unique health requirements and lifestyle.
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