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Abstract 

Background:  Undernutrition is a global public health crisis, causing nearly half of deaths for children under age 
5 years. Little is known regarding the impact of air pollution in-utero and early childhood on health outcomes related 
to undernutrition. The aim of our study is to evaluate the association of prenatal and early-life exposure to PM2.5 and 
child malnutrition as captured by the height-for-age z-score (HAZ), and stunting in 32 countries in Africa. We also 
evaluated critical windows of susceptibility during pregnancy to each environmental risk.

Methods:  We linked nationally representative anthropometric data from 58 Demographic and Health Surveys (DHS) 
(n = 264,207 children < 5 years of age) with the average in-utero PM2.5 concentrations derived from satellite imagery. 
We then estimated associations between PM2.5 and stunting and HAZ after controlling for child, mother and house-
hold factors, and trends in time and seasonality.

Results:  We observed lower HAZ and increased stunting with higher in-utero PM2.5 exposure, with statistically sig-
nificant associations observed for stunting (OR: 1.016 (95% CI: 1.002, 1.030), for a 10 μg/m3 increase). The associations 
observed were robust to various model specifications. Wald tests revealed that sex, wealth quintile and urban/rural 
were not significant effect modifiers of these associations. When evaluating associations between trimester-specific 
PM2.5 levels, we observed that associations between PM2.5 and stunting was the largest.

Conclusions:  This is one of the first studies for the African continent to investigate in-utero and early-life exposure to 
PM2.5 is an important marker of childhood undernutrition. Our results highlight that PM2.5 concentrations need to be 
urgently mitigated to help address undernutrition in children on the continent.

Introduction
Child undernutrition is a major public health crisis. 
Globally, nearly half of the deaths of children under 
5 years of age are caused by poor nutrition. Undernour-
ishment in the first few years of life has been shown to be 
associated with adverse cognitive health that manifests 
in lower educational achievement and lower economic 
productivity later in life, and physical health effects such 

as lower adult height and higher morbidity and mortality 
during childhood [2, 3, 7, 17, 24, 25].

The global burden of childhood undernutrition is 
uneven. According to a 2015 Millennium Development 
Goals (MDG) report sub-Saharan African accounts for 
one-third of all undernourished children globally with 
about 39% stunted, 10% wasted and 25% underweight 
children under-5 years of age [37]. In light of this, the 
United Nations Sustainable Development Goal (SDG 2) 
is to end all forms of malnutrition by 2030 (https://​sdgs.​
un.​org/​goals/​goal2, Last accessed December 16, 2021).

Yet, worsening air pollution can undermine future 
reductions in undernutrition through direct and indirect 
effects of health and livelihoods. Population-weighted 
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annual average exposure to PM2.5 has increased over the 
last decade in many African countries [20]. This paper 
examines associations between exposure to concentra-
tions of fine particulate matter (PM2.5), experienced in-
utero in 32 African countries and malnutrition in early 
childhood. Stunting, derived from height-for-age meas-
ures, is widely accepted as an indicator of growth and 
nutrition in children < 5 years of age [8]. We also consider 
whether factors such as household wealth, urban or rural 
residence, or sex modify the relationship between PM2.5 
and malnutrition. Finally, we attempt to identify the criti-
cal windows of susceptibility during pregnancy to each 
air pollution.

Review of existing evidence that has evaluated 
associations between PM2.5 and post‑natal growth
Epidemiologic studies have consistently observed that 
high concentrations of fine particulate matter (PM2.5) has 
been linked with a wide range of health effects including 
premature mortality [4, 12], cardiovascular disease [11, 
13], respiratory illnesses [14], and cognitive and develop-
mental disorders [5], among others.

Most of the evidence of a link between air pollution and 
child growth has focused on adverse health outcomes 
such as early foetal loss [21], and preterm birth, small 
for gestational age, and low birthweight [9, 15, 30]. Very 
few studies have evaluated association between ambient 
air pollution and postnatal growth. One study that used 
DHS estimates for Bangladesh found that after control-
ling for other factors that contribute to child anthropo-
metric failure, the relative risks of stunting in the second, 
third and fourth quartiles of exposure to in-utero PM2.5 
were 1.074 (95% CI: 1.014, 1.138), 1.150 (95% CI: 1.069, 
1.237) and 1.132 (95% CI: 1.031, 1.243), respectively [16]. 
Another DHS study for India found that after controlling 
for potential confounders, a 100 μg/m3 increase in PM2.5 
in the month of birth was associated with a 0.05 (95% CI: 
0.01–0.09) standard deviation reduction in child height 
[29]. A final study found that mean in-utero exposure to 
PM2.5 in Indonesia during the 1997 forest fires was asso-
ciated with a half standard-deviation (0.41) decrease in 
HAZ at age 17 [31].

Potential mechanisms underlying the relationship 
between in‑utero and early‑life exposure to PM2.5 
and anthropometric status
Sinharoy et  al. [27], found that studies investigating air 
pollution and intrauterine growth impairment focus 
on effects at the cellular level. Specifically, these studies 
hypothesize that exposure to air pollution during preg-
nancy can cause oxidative stress, which in turn causes 
inflammation, and potentially poor foetal growth. In 
addition, they suggest that exposure to particulate matter 

in-utero modulates DNA methylation, affecting foetal 
growth. Further, exposure to poor air quality in-utero and 
in early-life can affect immune ontogeny, which can lead 
to growth failure in multiple ways. Moreover, children’s 
lungs are not fully formed until approximately 6 years of 
age. Exposure to air pollution in young children could 
affect the formation of the respiratory system, which 
could in turn affect growth. Finally, the authors posit 
that air pollution might be responsible for some prenatal 
vitamin D deficiency, with implications for immune func-
tion and bone metabolism. More research is needed to 
explore these relationships and the critical window of in-
utero and early-life exposure to PM2.5 that most impacts 
postnatal growth.

Methods
Study population
We drew data from 58 Standard DHSs conducted in 
32 countries (Burkina Faso (BF), Benin (BJ), Burundi 
(BU), Cameroon (CM), Chad (TD), Comoros (KM), 
Democratic Republic of Congo (CD), Côte d’Ivoire (CI), 
Eswatini (SZ), Ethiopia (ET), Gabon (GA), Ghana (GH), 
Guinea (GN), Kenya (KE), Lesotho (LS), Liberia (LB), 
Madagascar (MD), Malawi (MW), Mali (ML), Mozam-
bique (MZ), Niger (NI), Namibia (NM), Nigeria (NG), 
Rwanda (RW), Senegal (SN), Sierra Leone (SL), South 
Africa (ZA), Tanzania (TZ), Togo (TG), Uganda (UG), 
Zambia (ZM), Zimbabwe (ZW) between 2005 and 2019, 
where the GPS data were available. We restricted our 
analysis to DHS surveys for African countries from after 
2005, as earlier surveys tend to avoid inconsistencies in 
measurements, data collection and data reporting.

DHS (https://​www.​dhspr​ogram.​com/, Last accessed 
October 18, 2022) are nationally representative house-
hold surveys that collect detailed nutrition and health 
information on children, their parents, and households 
using a multistage, stratified sampling design. The first 
stage involves the division of each country into geo-
graphic areas. Within these subnational regions, popu-
lations are divided into urban and rural areas. These 
primary sampling units or clusters are selected with 
probability proportional to the contribution of that clus-
ter’s population to the total population. In the second 
stage of sampling, all households within the cluster are 
listed, and an average of 25 houses are randomly selected 
for an interview with equal-probability systematic 
sampling.

The eligibility criteria for our analytic sample included 
survey respondents with:

1) geographic coordinates for each cluster, and 2) 
complete measures on height-for-age, and 3) same loca-
tions for conception and survey interview (when data 
was collected), 4) estimates for PM2.5, and climate data 

https://www.dhsprogram.com/
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(temperature and precipitation) during the prena-
tal period and early-life, 5) non-missing information 
on covariates. Table S1 in Supplementary Information 
reports the number of children who met these crite-
ria in each of the DHS surveys considered in this study. 
Our final sample had 264,207 children from 32 countries 
in Africa (Table 1). Due to the lack of data on important 
covariates (such as mother’s height, or the outcome varia-
bles themselves, we did not include data from other DHS 
surveys conducted during this time period. For example, 
the 2003 DHS survey in Ghana did not have information 
on the anthropometric outcomes considered in this anal-
ysis and was therefore, excluded.

Our study followed the Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE) 
reporting guidelines.

Stunting
Environmental factors explain more variation in height 
for children under 5 y of age than ethnic differences. 
Consequently, child height is a widely accepted indica-
tor of child nutrition. We built our model using the HAZ 
for children under 5 y of age as the outcome variable, a 
standardized measure of child heights and a common 
indicator of stunting. The height-for-age z-score (HAZ) 
was calculated by comparing the child’s measurements 
with the median value in the reference population of 
the National Centre for Health Statistics International 
Growth Reference. Stunting was defined as a HAZ < -2 
standard deviations from the median (WHO Expert 
Committee on Physical Status: the Use and Interpre-
tation of Anthropometry [34]. Stunting is affected by 
chronic long-term undernutrition and reflects exposures 
in-utero, unlike other anthropometric outcomes like 
underweight and wasting.

Environmental exposures
PM2.5 concentrations
The main exposure variable in this study was long-term 
ambient PM2.5 concentrations. Because most of Africa 
lacks surface PM2.5 monitoring sites at the spatial reso-
lution required for the study, we used satellite-derived 
monthly PM2.5 estimates at a 0.01° × 0.01° (~ 1 km × 1 km 
at the equator) resolution derived for Africa (Fig. 1) [32]. 
Satellite aerosol optical depths (AODs) were combined 
from multiple satellite products: MISR, MODIS Dark 
Target, MODIS and SeaWiFS Deep Blue, and MODIS 
MAIAC with simulation-based results based on their 
relative uncertainties. These AODs were related to near-
surface monthly PM2.5 concentrations using the ratio of 
simulated AOD and PM2.5 from the GEOS-Chem model. 
The modeled estimates of PM2.5 used in this study agree 

well with concentrations from global ground-based mon-
itors (R2 = 0.81). However, we note that due to the lack of 
ground-based monitors on the African continent, more 
validation of the modeled estimates in Africa is needed.

Each child was assigned the average ambient PM2.5 
exposure estimates of members of his/her household 
cluster, based on GPS coordinates of different house-
hold clusters available from the DHS. To maintain the 
privacy of these respondents, the clusters are randomly 
displaced by a maximum of 5 km from the true location 
for rural areas and 2 km in urban areas, with a further 5% 
of all clusters displaced by 10 km. We extracted the mean 
PM2.5 values from a 2 km buffer around urban clusters 
and a 5 km buffer around rural clusters (Fig. 2).

We calculated the mean PM2.5 exposure corresponding 
to the 9 months in-utero period (not including month of 
birth) for the respondent as our main exposure of inter-
est. We also calculated PM2.5 exposures for each trimes-
ter for each child in the dataset, as well as average PM2.5 
concentrations experienced in early-life following birth 
from the month of birth to the month of the DHS inter-
view, which we term as early-life PM2.5. The mean age in 
children in months at the time of the DHS interview was 
28.4 (minimum = 0, first quartile = 13, median = 28, third 
quartile = 43, maximum = 59).

Temperature and precipitation
Monthly average temperature and precipitation data 
during the study period were obtained from the Univer-
sity of East Anglia Climate Research Unit’s Time Series 
(CRUTS) version 4.05 dataset [19]. CRUTS is a global 
dataset of monthly weather conditions. The CRUTS data 
are constructed at a 0.5o resolution and are based on the 
statistical interpolation of data from over 4000 weather 
stations, and are considered highly accurate [6, 18, 26, 
36]. Mean cluster-level temperature and precipitation 
were estimated using a spatially-weighted average of the 
grid cells in the respective buffer around each cluster, in a 
similar manner to assigning cluster-specific PM2.5 expo-
sures. As with PM2.5, we also evaluated the mean temper-
ature and precipitation corresponding to the 9 months 
in-utero, as well as for each trimester, and early-life for 
every child in our dataset.

Statistical approach
Characteristics of the 264,207 children in our study were 
explored using descriptive statistics. We examined cor-
relations between each of the environmental exposures 
analyzed using Pearson correlations.

We applied a linear model with HAZ as a continu-
ous variable and a logistic model comparing stunted 
and non-stunted children to evaluate associations with 



Page 4 of 13deSouza et al. Environmental Health          (2022) 21:128 

Table 1  Descriptive Statistics of the DHS variables used as controls in our analysis

DHS Variable definition Total Sample (%) Stunted (% of 
children stunted)

Not Stunted (% 
of children not 
stunted)

246,207 (100%) 99,856 (37.8%) 164,351 (62.2%)

Urban 66,253 (25.1%) 18,664 (18.7%) 47,589 (29.0%)

Male 132,811 (50.3%) 53,332 (53.4%) 79,479 (48.4%)

Female 131,396 (49.7%) 46,524 (46.6%) 84,872 (51.6%)

High indoor air pollution due to the use of a solid fuel for cooking 251,836 (95.3%) 97,644 (97.8%) 154,192 (93.8%)

Wealth quintile 1 (poorest households) 67,608 (25.6%) 30,006 (30.0%) 37,602 (22.9%)

Wealth quintile 2 59,403 (22.5%) 34,360 (34.4%) 25,043 (15.2%)

Wealth quintile 3 53,837 (20.4%) 33,062 (33.1%) 20,775 (12.6%)

Wealth quintile 4 47,395 (17.9%) 31,651 (31.7%) 15,744 (9.6%)

Wealth quintile 5 (wealthiest households) 35,964 (13.6%) 27,676 (27.7%) 8288 (5.0%)

Maternal Education No formal education 120,534 (45.6%) 51,638 (51.7%) 68,896 (41.9%)

Mother Education Primary Education 91,418 (34.6%) 34,990 (35.0%) 56,428 (34.3%)

Mother Education Secondary Education 46,584 (17.6%) 12,433 (12.5%) 34,151 (20.8%)

Mother Education Advanced 5671 (2.15%) 795 (0.8%) 4876 (3.0%)

Maternal height (cm) Mean: 158.4
Median: 158.3

Mean: 157.0
Median: 157.0

Mean: 159.3
Median: 159.2

Maternal BMI (kg/m2) Mean: 22.6
Median: 21.8

Mean: 21.9
Median: 21.3

Mean: 23.0
Median: 22.1

Mother married at < 18 years of age 137,904 (52.2%) 55,762 (55.8%) 82,142 (50.0%)

Mother married at ≥ 18 years of age 126,303 (47.8%) 44,094 (44.2%) 82,209 (50.0%)

Safe drinking water source if the household had access to piped water 
into dwelling, yard or plot, public tap or standpipe, tube well or bore‑
hole, protected well or spring, rain water, and bottled water

156,973 (59.4%) 54,843 (54.9%) 102,130 (62.1%)

No access to Safe drinking water source 107,234 (40.6%) 45,013 (45.1%) 62,221 (37.9%)

Household had access to an improved sanitary facility such as access 
to flush to piped sewer system, septic tank or pit latrine, ventilated 
improved pit latrine, pit latrine with slab, and composting toilet

103,183 (39.1%) 34,021 (34.1%) 69,162 (42.1%)

No access to an improved sanitary facility 161,024 (60.9%) 65,835 (65.9%) 95,189 (57.9%)

In-utero PM2.5 (μg/m3) Mean: 36.4
Median: 31.1

Mean: 38.9
Median: 32.7

Mean: 34.9
Median: 30.2

Trimester 1 PM2.5 (μg/m3) Mean: 36.2
Median: 29.8

Mean: 38.5
Median: 31.0

Mean: 34.8
Median: 29.1

Trimester 2 PM2.5 (μg/m3) Mean: 36.3
Median: 30.3

Mean: 38.8
Median: 31.7

Mean: 34.8
Median: 29.5

Trimester 3 PM2.5 (μg/m3) Mean: 36.6
Median: 30.5

Mean: 39.3
Median: 32.1

Mean: 34.9
Median: 29.6

Early-life PM2.5 (μg/m3) Mean: 35.7
Median: 31.0

Mean: 38.0
Median: 32.6

Mean: 34.3
Median: 30.1

In-utero Temperature (°C) Mean: 24.9
Median: 25.9

Mean: 24.8
Median: 25.8

Mean: 24.9
Median: 26.0

Trimester 1 Temperature (°C) Mean: 24.9
Median: 25.6

Mean: 24.7
Median: 25.4

Mean: 24.9
Median: 25.7

Trimester 2 Temperature (°C) Mean: 24.9
Median: 25.6

Mean: 24.8
Median: 25.4

Mean: 24.9
Median: 25.7

Trimester 3 Temperature (°C) Mean: 24.9
Median: 25.6

Mean: 24.8
Median: 25.5

Mean: 24.9
Median: 25.7

Early-life Temperature (°C) Mean: 24.9
Median: 26.0

Mean: 24.8
Median: 25.9

Mean: 25.0
Median: 26.0

In-utero Precipitation (mm/month) Mean: 95.7
Median: 89.1

Mean: 92.4
Median: 87.0

Mean: 97.7
Median:90.4

Trimester 1 Precipitation (mm/month) Mean: 99.3
Median: 82.1

Mean: 96.8
Median: 80.2

Mean: 101.0
Median: 83.4
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in-utero PM2.5. These methodologies have been applied 
in previous air pollution research [16, 29].

We included the following factors as controls in our 
model:

1)	 Child-level characteristics: sex fixed effects, linear 
and squared terms for the child’s age in months to 
account for the nonlinear relationship between age 
and child growth in early childhood [33], birth order, 
whether the birth was singleton.

2)	 Maternal characteristics: education level with catego-
ries: 1) no education, 2) primary school education, 3) 
secondary school education, 4) higher); height (cm) 
and BMI (kg/m2), marital status < 18 years of age.

3)	 Household-level variables: if an improved sanita-
tion facility was present, if a source of safe water 
was available, if solid fuels were used in the house-
hold for cooking, if the household was in an urban 
or rural environment, and household wealth quintile. 
The wealth quintile for each household is provided by 
DHS based on a composite measure of a household’s 
living standard.

4)	 Temporal and country fixed effects: birth-year and 
country-month fixed effects to control for time-var-
ying trends

5)	 Spatial fixed effects: cluster fixed effects (clusters cor-
respond to villages in rural areas and census enumer-
ation blocks in urban areas) to control for time-invar-
iant cross-region differences (for example higher or 
lower stunting rates) (Table 1).

6)	 Meteorological exposures: In-utero and early-life 
exposure to temperature and precipitation.

This statistical approach was chosen to address 
sources of confounding. We added the potential con-
founders in stages to evaluate the robustness of the 
association between air pollution and HAZ to model 
specification. We first estimated the model with-
out cluster-level fixed effects. We then added child, 
mother and household characteristics and meteoro-
logical exposures. We report the change in the different 

outcome parameters for a 10 μg/m3 increase in in-utero 
PM2.5 concentrations.

The Pearson correlation coefficient between early-life 
PM2.5 concentrations and in-utero PM2.5 concentra-
tions are 0.84 (Fig.  3). In sensitivity analyses, we used 
early-life PM2.5 instead of in-utero PM2.5 levels as our 
main exposure of interest. We also applied a model that 
mutually adjusted for both in-utero PM2.5 exposure as 
well as early-life PM2.5 concentrations.

In further sensitivity analyses, we used fixed effects 
at the household-level instead of at the cluster-level in 
our fully-adjusted models. In this design, the effects 
of in-utero PM2.5 on HAZ and stunting derive from 
determining if a child born in a given household dur-
ing a high period of PM2.5 levels is less likely to survive 
compared to a child born in the same household dur-
ing a period of low PM2.5 concentrations. This design 
addresses the concern that households with different 
levels of pollution exposure could be inherently differ-
ent in unobservable ways.

We tested univariate effect modification of the associa-
tion by wealth quintile, urban/rural and sex by adding into 
the model a cross-product term between the modifier and 
the in-utero PM2.5 using Wald tests. We evaluate subgroup-
specific associations between in-utero PM2.5 and the child 
growth metrics by including interaction terms between: 
wealth quintile, urban/rural and sex and in-utero PM2.5.

As an additional analysis, we estimated the country-
specific relationships between exposure to in-utero PM2.5 
and HAZ and stunting for each country (except for South 
Africa where we only have 334 children) in our sample. 
We then conducted pooled-analyses to combine the 
country-specific estimates. Estimates are presented for 
a 10 μg/m3 increase in PM2.5 to the pooled global esti-
mate and we present these results using a forest plot. In 
our meta-analysis, the relative contribution (weight) of 
each country-specific estimate to the pooled estimate is 
calculated along with the 95% CI from each country-spe-
cific analysis. We included random effects in accordance 
with the DerSimonian and Laird method [10], and we 
conducted a test of whether the overall pooled estimate 

Table 1  (continued)

DHS Variable definition Total Sample (%) Stunted (% of 
children stunted)

Not Stunted (% 
of children not 
stunted)

Trimester 2 Precipitation (mm/month) Mean: 94.8
Median: 76.3

Mean: 91.7
Median: 73.6

Mean: 96.7
Median: 77.9

Trimester 3 Precipitation (mm/month) Mean: 92.9
Median: 74.3

Mean: 88.7
Median: 69.8

Mean: 95.5
Median: 77.0

Early-life Precipitation (mm/month) Mean: 96.1
Median: 88.5

Mean: 93.2
Median: 87.2

Mean: 97.8
Median: 89.5
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is equal to the null as well as a test for heterogeneity, i.e. 
whether the country-specific estimates are the same. This 
heterogeneity is quantified using the I-squared measure.

Finally, we developed separate models considering tri-
mester exposures, instead of in-utero PM2.5 levels. We 
controlled for the corresponding trimester temperature 
and precipitation, and early-life temperature and pre-
cipitation in these models. However, because of season-
ality bias described in Wilson et  al. [35], ,the estimates 
derived for trimester-specific associations could be 
biased. Pronounced seasonal variations result in correla-
tions of PM2.5 levels between exposure windows (Pearson 

correlation coefficients range between 0.25 to 0.61) 
(Fig. 3).

Exposures in other time windows are analogous to 
confounders, with the possibility that PM2.5 in one time 
period may have an independent association with the 
outcome, and through its correlations with exposures in 
other time periods, may confound the observed associa-
tion. Therefore, we also used the residuals of regressing 
exposure during each trimester against the other two 
remaining trimester-specific exposures, as our main 
exposure of interest. The residuals obtained represent 
exposure to PM2.5 in the given trimester of interest after 

Fig. 1  Monthly averaged PM2.5 (μg/m3) for each cluster in our study for January, 2018 classified into quantiles. The countries we focus on in this 
study are highlighted
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adjusting for other trimester-specific exposures. This 
approach avoids covariance among variables represent-
ing trimester exposures [1].

We used cluster-adjusted standard errors when report-
ing results from our models to reflect the assumption 
that metrics of child growth in the same cluster are not 
independent. DHS data include sampling weights, to 
enable generation of representative estimates of the 
population of the respective country for children under 
five. Sampling weights are not appropriate for estimat-
ing associations [28] as the impact of each environmental 
exposure on the different administrative units are likely 
not homogeneous. Sample weights that do not account 
for such interactions may yield biased associations and so 
we do not include them in our main analysis.

All statistical tests were 2-tailed, and p-values < .05 
were considered statistically significant. All analyses were 
done in R. The main analysis was carried out using the 
fixest package.

Results
Information about stunting, PM2.5, as well as other covar-
iates were available for 264,207 children across the 58 
surveys considered in the study conducted in 32 African 
countries (Table 1).

Across the entire sample, the average in-utero PM2.5 
(min = 4.4 μg/m3, mean = 36.4 μg/m3, median = 21.1 μg/
m3, max values = 259.4 μg/m3), and early-life PM2.5 
(min = 3.1 μg/m3, mean = 35.7 μg/m3, median = 31.0 μg/
m3, max = 233.7 μg/m3) varied considerably. Our initial 
descriptive analysis suggests that stunted children were 
generally poorer, had mothers of shorter stature, and 
mainly belonged to rural households, and experienced 
higher PM2.5 concentrations than children who were 
not stunted (Table 1). The PM2.5 exposures considered 
in this analysis in different windows ang from moder-
ately to highly correlated (Fig. 3).

Table S2 shows results for selected variables from 
running the linear and logistic models including all 
variables except for air pollution. Healthier indica-
tors, higher HAZ scores and decreased stunting, were 
observed among females in comparison to males, for 
singleton births, for subsequent children after the first 
birth, for higher educated mothers, for taller mothers, 
for mothers with a higher BMI, in wealthier households, 
and in houses with access to improved sanitation.

In Table S3, we present the association and 95% Con-
fidence Interval (CI) between in-utero PM2.5 and HAZ, 
as well as the Odds Ratios (ORs) and 95% CI corre-
sponding to the association between in-utero PM2.5 
and stunting, adjusting for different sets of covariates. 
The associations are reported for a 10 μg/m3 increase in 
PM2.5. In the simplest models that only adjust for sex 
and age, we observed significant associations between 
in-utero PM2.5 and the outcomes (Model 1). Further, 
adjusting for temporal fixed effects (Model 2), strength-
ened the associations between in-utero PM2.5 and 
stunting and HAZ. However, including DHS cluster 
fixed effects (Model 3) substantially attenuated the esti-
mated associations. This indicates that seasonality and 
spatial factors are important confounders of the impact 
of the different environmental risks on nutrition. By 
including country-month, year and cluster fixed effects, 
we adopt a conservative approach to control for resid-
ual spatial and temporal confounding in our dataset. 
The estimates appear to be robust (the change in asso-
ciations was < 5%) to the inclusion of child-level and 
maternal (Model 4), household (Model 5) and meteoro-
logical covariates (Model 6) (Table S3).

Although we did not observe a significant association 
between in-utero exposure to PM2.5 and HAZ in the fully-
adjusted Model 6 displayed in Table 2 (Main Model), the 
association demonstrated the same general trend of a 
negative association between in-utero PM2.5 and HAZ: 
-0.003 (95% CI: − 0.012, 0.006). We also observed that in-
utero PM2.5 was significantly associated with increased 
stunting OR: 1.017 (95% CI: 1.003, 1.032). The associa-
tions observed between in-utero PM2.5 and HAZ: -0.005 

Fig. 2  This figure conceptually demonstrates how environmental 
variables such as PM2.5 were joined with DHS sampling clusters. The 
blue point in the middle represents the sampling cluster. The red 
circle represents a 2 km urban area buffer around the cluster (note 
this is 5 km in rural areas). All environmental variables were averaged 
over the grid cells whose centroids fall within the red circle, which in 
this figure include cells E and F
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Fig. 3  Correlations between in-utero, trimester-specific, and early-life PM2.5, temperature and precipitation for the children in our study

Table 2  Associations (95% Confidence Intervals) between in-utero PM2.5 and HAZ, and the Odds Ratios (95% Confidence Intervals) 
corresponding to associations between in-utero PM2.5 exposure and stunting for an increase of 10 μg/m3 in PM2.5 . Standard errors 
presented are clustered at the cluster-level

*p < 0.05

HAZ Stunting

In-utero PM2.5 -0.003 (− 0.012, 0.006) 1.016* (1.002, 1.030)

Controls Sex FE + Age months + Age months2 + Singleton + country-month fixed effects + year of birth fixed effects + cluster fixed 
effects + birth order + mother characteristics + household characteristics + temperature and precipitation (in-utero and 
early-life)
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(95% CI: − 0.014, 0.004) and stunting: OR: 1.017 (95% CI: 
1.003, 1.032) remained robust to the inclusion of early-
life PM2.5 levels in a sensitivity analysis (Table S4).

In supplementary analyses, we observed that when 
we considered early-life PM2.5 exposure instead of in-
utero exposure as our main exposure of interest, we 
observed significant associations with HAZ: -0.033 
(95% CI: − 0.059, − 0.008), and indications of a general 
trend of a positive association with stunting: 1.024 (95% 
CI: 0.991, 1.059) (Table S5). However, given the strong 
correlation (0.84, Fig. 3) between in-utero and early-life 
PM2.5 levels, we retain in-utero PM2.5 concentrations as 
our main exposure of interest in this analysis.

In further sensitivity analyses, using household-level 
fixed effects instead of cluster-level fixed effects (to 
remove potential omitted variable biases), we observed 
similar results. The association between in-utero expo-
sure to PM2.5 and HAZ was − 0.006 (95% CI: − 0.018, 
0.007), and with stunting was: OR: 1.049 (95% CI: 1.009, 
1.092) (Table S6). These associations were also robust 
to the inclusion of early-life PM2.5 exposure in models 
using household-level fixed effects (Table S7). How-
ever, only 69,226 households (with a total of 155,317 
children) had more than one child. The associations 
reported in Tables S6 and S7 were for this subset, alone.

Wald tests revealed that child sex, urban/rural and 
wealth quintile were not significant modifiers of the 
association between in-utero PM2.5 and HAZ or stunt-
ing. Subgroup-specific associations are displayed in 
Table 3. In all subgroups, the confidence intervals over-
lap widely.

We evaluated the relationship between in-utero PM2.5 
and HAZ and stunting in our study using fully adjusted 
models for each country in our study (except for South 
Africa because of the small number of children in the 
dataset) and then conducted a pooled analysis to com-
pare country-specific results against the summary 
estimate of the meta-analysis. Forest plots from country-
specific regression and the pooled analysis for the out-
comes HAZ and stunting are presented in Fig. 4A and B, 
respectively. The I-squared from these analyses (24 and 
37%) suggest that the association for all outcomes within 
individual countries exhibits moderate variation. Given 
the large CIs of the associations observed, the results 
from the pooled analyses suggest that individual coun-
try-level studies using DHS data may not have sufficient 
power to detect a relationship due to the small sample 
size within each country dataset.

When we evaluated the impact of trimester-specific 
PM2.5 on HAZ and stunting, we observed that exposure 
to PM2.5 in trimester 1, was most strongly associated with 
increased stunting Model 1, OR: 1.007 (95% CI: 1.002, 
1.012). When we accounted for correlations between 

exposures in different trimesters, by using adjusted tri-
mester exposures as described in Methods, we again 
fund that PM2.5 in trimester 1, was still most strongly 
associated with stunting OR: 1.006 (95% CI: 1.002, 1.011) 
(Table 4).

Discussion
In this study we evaluated associations between exposure 
to ambient in-utero PM2.5 and stunting and HAZ using 
data from 58 DHS surveys conducted in 32 African coun-
tries between 2005 and 2019.

Using fully adjusted models, we observed a lower HAZ 
and increased stunting with higher in-utero PM2.5 con-
centrations (Table  2), with statistically significant asso-
ciations between in-utero PM2.5 and stunting OR: 1.016 
(95% CI: 1.002, 1.030). The associations were robust to 
different model specifications (Tables S3, S4), and were 
also robust when evaluating the impact of PM2.5 on chil-
dren born in the same household (Tables S6, S7).

Child sex, wealth quintile, urban/rural were not signifi-
cant effect modifiers of the association between in-utero 
PM2.5 and HAZ and stunting. Confidence intervals of 
the associations derived for subpopulations overlapped 
widely (Table 3).

We observed moderate heterogeneity in the associa-
tion between PM2.5 and stunting in our country-specific 
analyses (Fig.  4), likely due to different baseline policies 
that impact stunting such as access to nutrition (food 
prices, food availability), health care systems, etc., as well 
as differences in activity patterns occupational exposures, 

Table 3  Subgroup specific associations (95% CI) (for HAZ), and 
OR (95% CI) (for stunting) between the outcomes of interest and 
in-utero PM2.5 derived by including interaction terms between 
sex, urban/rural, wealth quintile with in-utero PM2.5 in fully-
adjusted models (Table 2)

*p < 0.05

Exposure HAZ Stunting
In-utero PM2.5 In-utero PM2.5

Sex
  Male -0.005 (− 0.014, 0.004) 1.019 (0.998, 1.028)

  Female −0.000 (− 0.010, 0.009) 1.013* (1.005, 1.034)

Urban/Rural
  Urban 0.006 (−0.013, 0.025) 1.013 (0.999, 1.028)

  Rural −0.004 (− 0.013, 0.005) 1.033* (1.002, 1.064)

Wealth Quintile
  1: Poorest 0.002 (−0.009, 0.013) 1.002 (0.985, 1.018)

  2: −0.002 (− 0.014, 0.009) 1.019* (1.002, 1.036)

  3: −0.010 (− 0.021, 0.002) 1.023* (1.004, 1.041)

  4: −0.008 (− 0.020, 0.003) 1.024* (1.006, 1.044)

  5: Wealthiest 0.004 (−0.013, 0.020) 1.024* (0.998, 1.051)
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Fig. 4  Forest plots from country-specific regression and the pooled analysis for the outcomes HAZ and stunting
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other population characteristics, built environment, and 
particulate matter chemical composition. Other stud-
ies have demonstrated differences in the health asso-
ciations for particulate matter in different locations [22, 
23]. However, due to the limited number of observations 
within each country, we do not have the statistical power 
to detect robust relationships between PM2.5 and stunt-
ing or HAZ.

When evaluating trimester-specific associations, we 
also observed the highest associations between PM2.5 
in trimester 1 (but not trimesters 2 and 3) and stunt-
ing, even after adjusting for exposures in other time 
windows and other covariates (Table  4). This suggests 
that PM2.5 experienced in early pregnancy likely has the 
greatest impact on stunting. More work is needed to 
evaluate critical windows of exposure to PM2.5 for HAZ 
and stunting.

Our study has several limitations. First, the data-
set does not include a measure of gestational age, 
and therefore, assume that each child in our sample 
is carried to term, which is reflected in our calcula-
tion of in-utero exposures. Second, our results may 
suffer from residual confounding from omitted vari-
ables that are correlated both with the environmen-
tal exposures and the outcomes considered in this 
study. Third, the exposure of interest in our analysis 
is PM2.5, which is based on modelled data rather than 
monitoring data. Although this dataset has been vali-
dated using the global distribution of ground-based 

monitors (R2 = 0.81), there is a lack of surface-moni-
tors in Africa and more research is required to evalu-
ate the modeled estimates in the countries considered 
in this study. More work is also needed to examine the 
sensitivity of the calculated health impact of the differ-
ent environmental exposures to the exposure product 
used (for example in deSouza et  al. [12],). Fourth, our 
sample pools together data on all births in the 5 years 
preceding the survey date for women of reproductive 
age (15–49 years) who lived in the sampled households. 
Since these data on births are reported by mothers, 
however, we may be missing data on children in the 
households whose mothers have died or who were 
not present at the time of the survey. Sixth, research 
has shown that anthropometry is a complex indicator 
that captures genetic, environmental, behavioral fac-
tors, as well as exposure to disease. The health out-
come: anthropometric failure must be complemented 
by other diet and food based measures in future work 
to measure the impact of PM2.5 on undernutrition. Sev-
enth, the study cannot disentangle the impacts of dif-
ferent particulate matter chemical composition and 
sources, which are likely to vary across the study area 
due to different sources, meteorology, etc. Eighth, the 
population characteristics considered are not the same 
across all the study locations, and the impact of PM2.5 is 
likely different in different locations. Finally, while this 
is one of the first (perhaps the first) to investigate this 
topic for Africa, even so large parts of the continent are 

Table 4  Associations between the outcomes (HAZ and stunting) and PM2.5 experienced during different trimesters from fully-
adjusted models

* p < 0.05

HAZ Stunting Covariates

Model 1
  Trimester 1 PM2.5 −0.001

(− 0.004, 0.002)
1.007*
(1.002, 1.012)

Child-level + Maternal + Household characteristics + cluster + country-month 
and year fixed effects + Temperature and Precipitation in trimester 1 + Lifetime 
Temperature and Precipitation

  Trimester 2 PM2.5 0.004
(− 0.004, 0.012)

0.999
(0.988, 1.010)

Child-level + Maternal + Household characteristics + cluster + country-month 
and year fixed effects + Temperature and Precipitation in trimester 2 + Lifetime 
Temperature and Precipitation

  Trimester 3 PM2.5 −0.004
(− 0.012, 0.004)

1.000
(0.989, 1.012)

Child-level + Maternal + Household characteristics + cluster + country-month 
and year fixed effects + Temperature and Precipitation in trimester 3 + Lifetime 
Temperature and Precipitation

Model 2 (Using residuals of regressing trimester-specific PM2.5 concentrations against concentrations in other trimesters)
  Trimester 1 PM2.5 −0.002

(− 0.005, 0.001)
1.006*
(1.002, 1.011)

Child-level + Maternal + Household characteristics + cluster + country-month 
and year fixed effects + Temperature and Precipitation in trimester 1 + Lifetime 
Temperature and Precipitation

  Trimester 2 PM2.5 0.005
(− 0.001, 0.011)

0.995
(0.986, 1.003)

Child-level + Maternal + Household characteristics + cluster + country-month 
and year fixed effects + Temperature and Precipitation in trimester 2 + Lifetime 
Temperature and Precipitation

  Trimester 3 PM2.5 −0.005
(− 0.011, 0.002)

1.000
(0.991, 1.009)

Child-level + Maternal + Household characteristics + cluster + country-month 
and year fixed effects + Temperature and Precipitation in trimester 3 + Lifetime 
Temperature and Precipitation
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not included and more work is needed on these other 
regions. Nevertheless, our study provides important 
insights into the relationship between air pollution and 
stunting, and demonstrates the importance of reducing 
PM2.5 concentrations in African countries to protect 
children.
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