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Abstract 

Background  Epigenome-wide association studies of ambient fine particulate matter (PM2.5) have been reported. 
However, few have examined PM2.5 components (PMCs) and sources or included repeated measures. The lack of high-
resolution exposure measurements is the key limitation. We hypothesized that significant changes in DNA methyla-
tion might vary by PMCs and the sources.

Methods  We predicted the annual average of 14 PMCs using novel high-resolution exposure models across the con-
tiguous U.S., between 2000–2018. The resolution was 50 m × 50 m in the Greater Boston Area. We also identified PM2.5 
sources using positive matrix factorization. We repeatedly collected blood samples and measured leukocyte DNAm 
with the Illumina HumanMethylation450K BeadChip in the Normative Aging Study. We then used median regression 
with subject-specific intercepts to estimate the associations between long-term (one-year) exposure to PMCs / PM2.5 
sources and DNA methylation at individual cytosine-phosphate-guanine CpG sites. Significant probes were identified 
by the number of independent degrees of freedom approach, using the number of principal components explain-
ing > 95% of the variation of the DNA methylation data. We also performed regional and pathway analyses to identify 
significant regions and pathways.

Results  We included 669 men with 1,178 visits between 2000–2013. The subjects had a mean age of 75 years. The 
identified probes, regions, and pathways varied by PMCs and their sources. For example, iron was associated with 6 
probes and 6 regions, whereas nitrate was associated with 15 probes and 3 regions. The identified pathways from bio-
mass burning, coal burning, and heavy fuel oil combustion sources were associated with cancer, inflammation, 
and cardiovascular diseases, whereas there were no pathways associated with all traffic.

Conclusions  Our findings showed that the effects of PM2.5 on DNAm varied by its PMCs and sources.
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Introduction
Ambient fine particulate matter (an aerodynamic diam-
eter ≤ 2.5 µm; PM2.5) is a complex mixture of many com-
ponents (PM2.5 components; PMCs) that differ in their 
physicochemical, and toxicological properties [1]. Studies 
have not only found that exposure to ambient PM2.5 was 
linked with death [2] and multi-systemic diseases [3–7] 
but have observed that PM2.5-related effects vary by its 
PMCs [8–10]. In addition, there are multiple sources of 
ambient PM2.5, including direct emissions (e.g., biomass 
burning, and inefficient fuel combustion) [11, 12] and 
secondary particles (chemical reactions of gas-phase 
pollutant precursors, e.g., nitrogen oxides). Studies also 
have suggested that PM2.5-related adverse health effects 
vary by different sources [13–15]. However, there are 
inconsistent results on which PMCs or PM2.5 sources are 
responsible for the adverse health effects [16–19]. Fur-
ther, the underlying molecular changes caused by PMCs 
and the sources have not been adequately investigated.

DNA methylation (DNAm), a chemical modification 
of DNA with a methyl group addition predominantly at 
a cytosine-phosphate-guanine (CpG) site [20], has been 
associated with poor health outcomes, such as cardio-
vascular diseases (CVDs), cancer, aging, oxidative stress, 
and inflammation [20–24]. Meanwhile, DNAm has been 
linked with PM2.5 across different time windows [25–28]. 
For instance, our group have conducted an epigenome-
wide association study (EWAS) of PM2.5 across a 28-day 
time window in the Normative Aging Study and found 
2,717 statistically significant CpGs [29]. Since PM2.5 is 
a combination of multiple PMCs with different charac-
teristics, these PMCs may be associated with DNAm at 
different sites. To date, only six studies have assessed the 
associations between PMCs and DNAm across different 
time windows [29–34], among which only one examined 
the long-term effects of PMCs on DNAm in an epige-
nome-wide scope [34] and two were conducted by our 
group previously [29, 34]. However, five [29–31, 33, 34] of 
the six studies obtained the PMCs’ concentrations from 
limited monitoring sites that do not reflect the spatial 
variation in the concentrations.

One vital limitation in studies using PMCs from fixed 
monitors is the lack of high-resolution exposure meas-
urements. It leads to a low spatial resolution of PMCs 
in these studies despite evidence that some components 
(e.g., black carbon) can vary substantially over distances 
as small as 100 ~ 200 m [35, 36]. Emerging exposure pre-
diction models which utilize methods such as chemical 
transport models [37, 38] and land use regression models 
[39, 40] provide higher exposure resolution. Neverthe-
less, these models have relatively moderate prediction 
accuracies and/or spatial resolutions. Our group recently 
developed novel prediction models with 50 m resolution 

of PMCs across the contiguous U.S, using machine 
learning and a mixture of land use, remote sensing, and 
other inputs [41]. These new models not only diminish 
the measurement errors for each PMC (out of sample 
R2 ~ 0.9) but minimize the extent of measurement errors 
across PMCs. We have applied the predicted PMCs in 
several epidemiological studies [42, 43]. To date, however, 
no EWAS of PMCs from high-resolution models nor 
EWAS of PM2.5 sources has been previously performed.

This study, therefore, sought to investigate the asso-
ciations between long-term exposure to PMCs/sources 
and DNAm by conducting EWAS analyses, using whole-
blood samples and exposure data from high-resolution 
models. We hypothesize that the changes in DNAm var-
ied by PMCs and sources.

Materials and methods
Study population
The participants in this study included 669 elderly men 
in the Greater Boston Area who are part of the Norma-
tive Aging Study, a closed and ongoing cohort established 
by the U.S. Veterans Administration [44]. For the initial 
cohort, the participants were aged 21–82 years and were 
free of any known chronic diseases. They have physical 
examinations, including blood collection, and question-
naires in a clinical center every 3–5 years. In this study, 
we included subjects who had visits with their DNA 
samples collected in 2000 and later. To dimmish study 
heterogeneity that may be introduced by diverse genetic 
ancestry, we dropped non-white participants (~ 3%) [45]. 
The Harvard T.H. Chan School of Public Health and the 
Institutional Review Boards of the Department of Veter-
ans Affairs approved the study proposal. All study par-
ticipants provided their written informed consent before 
enrollment and at sample collection.

PM2.5 and its 14 components measures
We predicted annual average ambient PMCs based on 
a combination of machine learning algorithms in a geo-
graphically weighted regression. The resolution was 
50 m × 50 m in the Greater Boston Area. The algorithms 
used ground monitoring data collected from 987 moni-
toring sites across the contiguous U.S., satellite-derived 
measurements (available through the Google Earth 
Engine), chemical transport model simulations, mete-
orological conditions, and land-use data (e.g., traffic 
counts, distance to OpenStreetMap features), between 
2000–2018. The predicted PMCs included Bromine (Br), 
Calcium (Ca), Copper (Cu), elemental carbon (EC), Iron 
(Fe), Lead (Pb), Nickel (Ni), nitrate (NO3

−), organic car-
bon (OC), Potassium (K), Silicon (Si), sulfate (SO4

2−), 
Vanadium (V), and Zinc (Zn). Excellent model perfor-
mance was achieved with out of sample validation R2 
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for individual PMCs ranging from 0.821 (Br) to 0.975 
(SO4

2−). We further matched the annual average PMCs 
data with each residential address based on the grid cell 
centroid closest to the address and year at the time of 
DNA samples’ collection in the study population. Addi-
tionally, we predicted daily PM2.5 mass concentrations 
between 2000–2016, using an ensemble model at a res-
olution of 1  km × 1  km (R2 = 0.86). We then calculated 
the annual PM2.5 concentrations based on the daily data 
across that year [46]. The National Human Activity Pat-
tern Survey in the U.S. reported that U.S. adults spent 
69% of their time at home and 8% of the time immedi-
ately outside their home [47]. Given the age range of our 
study population, the time that they stayed at or near 
their residence was probably even longer. It is reasonable 
to use residential air pollution to capture the exposure.

Source apportionment using positive matrix factorization
We used positive matrix factorization (PMF, version 5.0) 
analysis to apportion the measured PMCs to realizable 
sources [48]. PMF was developed by Paatero and Tap-
per [49] and has been widely used for sources appor-
tionment studies [17, 50–52]. It requires two input files: 
the measured concentrations of the species and the esti-
mated uncertainty of the concentration [48]. Similarly to 
cluster analysis, a correlation between species indicates 
a common factor which can represent a source category 
[48]. We tested for possible source numbers of 4,5, and 
6. For each possible source number, 100 base runs were 
conducted to obtain the best factorization fit over all 
runs that achieved the minimization of weighted residual 
error for the linear fitting of a multivariate system of vari-
ables. We then selected the idea number of sources based 
on not only the minimization of weighted residual error 
but also the realistic scenario of component sources [50].

DNAm measures
DNA samples were extracted using the IQAamp DNA 
Blood Kit (Qiagen, CA, U.S.) from the buffy coat of 
the whole food collected between 1999 and 2013 (We 
dropped samples in 1999 in this study because there were 
no predicted PMCs in that year). We measured DNAm 
using Illumina Infinium Human Methylation450K Bead-
Chip (450 K; Illumina Inc., San Diego, CA, U.S.), which 
includes ~ 485,000 CpG sites. Based on a two-stage 
age-stratified algorithm, we randomized the samples 
across plates and chips to minimize batch effects [34]. 
As described previously, we preprocessed DNAm data 
via the ewastools package in Github [45]. We dropped 
low-quality samples [53] and corrected dye-bias using 
a regression on the logarithm of internal control probes 
[54]. We elaborated on the steps for probes cleaning 

previously [45]. In total, we included 360,272 high-qual-
ity probes remote from SNPs in this study.

We normalized DNAm data by controlling for the nor-
malization factors in the outcome regression instead of 
using other commonly used approaches, such as beta-
mixture quantile normalization [55]. This normalization 
approach ensures a better adjustment for batch effects 
as their impact often varies across probes, and we have 
applied it previously [45, 56, 57]. The normalization fac-
tors included five experimental covariates (i.e., Non-pol-
ymorphic Red, Specificity I Red, Bisulfite Conversion I 
Red, Bisulfite Conversion II, Extension Red) [58]. DNAm 
level was expressed as the ratio of methylated cytosines 
over the sum of the methylated and unmethylated 
cytosines at each CpG location and then multiplied by 
100 (mean %5-methylcytosine, i.e., %5-mC). Thus, the 
DNAm level ranged from 0- to 100%5-mC.

Statistical analyses
We examined EWAS of annual exposure to PMCs/
sources at three levels: single CpG site, regional, and 
pathway analyses.

Single CpG analyses
We performed traditional EWAS at single CpG level to 
identify statistically significantly differentially methylated 
probes (DMPs) by PMCs/sources. As described previ-
ously [45], we used median regression to analyze asso-
ciations between exposures and DNAm because median 
regression has no assumption on the distribution of 
dependent variables (i.e., DNAm in this study) [59]. In 
addition, we applied median regression for longitudinal 
data using the Koenker et al. method [60] because ~ 60% 
of the participants had repeated DNAm measures. It 
allowed us to model fixed-effects and correlated random-
intercepts for each subject and use bootstrap for statis-
tical inference. For PMCs, we investigated the effects of 
each PMC one a time with PM2.5 mass in the model to 
control for other particle components; for sources, we 
investigated the effects of each source with other three 
sources and PM2.5 mass in the model. In all regression 
analyses, we controlled for the following covariates a pri-
ori based on the relevant literature [34, 57]: chronologi-
cal age (years), years of education, smoking status (ever/
never), cigarette pack-years, alcohol consumption (< 2 
or ≥ 2 drinks/day), body mass index (BMI, kg/m2), the 
estimated cell type compositions (CD4 + T lymphocytes, 
CD8 + T lymphocytes, natural killer cells, B cells, and 
monocytes) by the Houseman et al. method [61], techni-
cal factors such as batch effects and five normalization 
factors, and ambient annual mean temperature and rela-
tive humidity from gridMET [62]. The model for PMC is 
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shown in Eq.  (1) and the model for sources is shown in 
Eq. (2).

, where Mij is the median of DNAm level for subject i at 
visit j. PMCij in Eq. (1) is the annual average of its concen-
tration. Sourcemij in Eq.  (2) is the annual concentration 
of the mth (4 ≤ m ≤ 6) source for subject i at visit j. (We 
determined the value of m as described in 2.3 Source 
appointment using positive matrix factorization.) PM2.5ij 
are the annual average for subject i at visit j. Xij are the 
covariates that we listed above. ωi in Eq.  (1) and θi in 
Eq.  (2) are the random intercepts for participant i. and 
εij in Eq.  (1) and in Eq.  (2) are the residuals. In order to 
account for the possible selection bias that healthier men 
were more likely to return for subsequent exams, we 
used inverse probability weighting [63]. It calculated the 
probability of having a subsequent visit given chronologi-
cal age, education, BMI, blood pressure, smoking status, 
cigarette pack years, alcohol consumption, C-reactive 
protein, asthma, chronic bronchitis, and emphysema at 
previous visit, using logistic regression. We reported our 
results as the median difference in DNAm (%5-mC) per 
one interquartile range (IQR) increase in PMCs and its 
sources after annual exposure.

To account for the multiple testing in the context of the 
high correlation among CpG sites, we needed a method 
to consider that correlation, which reduces the effective 
number of independent tests. Following related work 
this area [64, 65], we used the “number of independent 
degrees of freedom” approach. Specifically, we used prin-
cipal component analysis to project the probes to fewer 
dimensions. Fig. S1 showed the scree plot and cumulative 
scree plot that explained more than 95% of the variation 
of the DNAm data in this study. Thus, we set the num-
ber of independent degrees of freedom to be the number 
of components that explained 95% of the variation of the 
DNAm data (see Fig. S1). We then obtained the Bonfer-
roni threshold for statistical significance of each estimate 
by dividing 0.05 by the independent degrees of freedom 
(i.e., PC-correction; p-value < 0.05/908/14 (3.93 × 10–6) 
for PMCs; p-value < 0.05/908/m for sources (4 ≤ m ≤ 6)).

Regional and pathway analyses
Single CpG may weakly associated with PMCs and its 
sources, and be difficult to identify. A region containing 
multiple DMPs that are functionally correlated may have 
more biological implications [66]. Thus, we investigated 

(1)
Mij = β0 + β1 × PMCij + β2 × PM2.5ij + · · · + βn × Xij + ωi + εij

(2)Mij = ϕ0+ϕ1×Source1ij+ϕ2×Source2ij+· · ·+ϕm×Sourcemij+ϕm+1×PM2.5ij+· · ·+ϕn×Xij+θi+δij

statistically significantly differentially methylated regions 
(DMRs) in relation to the exposures using the comb-p 
function from the ENmix package in R Bioconductor [67] 
because the comb-p tool has the best sensitivity and high-
est control of false-positive rate compared to the other 

DMR tools [68]. We defined a significant DMR as one 
with three or more probes within kilobase pair  and its 
Sidak p-value < 0.05 [45].

In addition, we used the Ingenuity Pathway Analysis 
(IPA) database (QIAGEN Inc.) to identify significantly 
enriched gene pathways in the top ranked 100 CpGs 
that were associated with each PMC/source. We calcu-
lated permutation p-values based on the results of 10,000 
random shuffles of association p-values for the CpGs on 
the 450 K array [69]. We defined significant pathways if 
p-value < 0.05 and gene set contains ≥ 3 genes with top 
ranked probes [45].

Sensitivity analyses
To check the robustness of our results, we conducted sen-
sitivity analyses. In the main analysis, we only accounted 
for the selection bias due to healthier men being more 
likely to return for the subsequent exams. In the sensitiv-
ity analyses, we then further controlled for mortality that 
occurred prior to year 2000. We applied inverse probabil-
ity weighting [63] via logistic regression to calculate the 
probability of death given the same factors that we men-
tioned above. We then multiplied this inverse probability 
weight with the one in the main analyses (for the prob-
ability of a subsequent visit). Thus, the visits in this study 
were representative of the original population. We com-
pared the effects sizes and p-values of the top 5 probes 
for each source from the main analyses with the ones 
from the sensitivity analyses.

Results
Population description
We included 669 men with 1,178 visits. The summary 
characteristics of the study subjects are shown in Table 1. 
In this present study, almost sixty percent of the par-
ticipants had more than one visit. The participants were 
older men with a mean age [standard deviation (SD)] of 
74 (7) and 75 (7) at the first and all visits, respectively.

Concentrations of PM2.5 and 14 PMCs
Table 2 presents the summary statistics of annual PM2.5 
and its PMCs during the study period (2000–2013). The 
mean (SD) concentration of annual PM2.5 mass concen-
tration was 9.75 (1.80) µg/m3, with an IQR of 2.39 µg/m3. 
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Among the investigated PMCs, SO4
2− accounted for the 

largest proportion of PM2.5 total mass (30.5%), followed 
by OC (19.4%). The annual average of metal compo-
nents such as Pb and Fe is 3.22 (SD 1.09) ng/m3 and 50.84 
(15.60) ng/m3, respectively. We reported the correlation 

coefficients among PM2.5 mass and 14 PMCs in Table S1 
(see Table S1 in the supplementary material). The corre-
lation coefficients ranged from 0.00 for Cu and K to 0.80 
for Cu and Fe. K is the components that had the lowest 
correlation with other PMCs.

Table 1  Characteristics of elderly white men from the Normative Aging Study, 2000–2013

Abbreviations: BMI body mass index, SD standard deviation

Variables First visit (N = 669) Second visit (N = 387) Third visit (N = 121) Fourth visit (N = 1) All visits (N = 1,178)

Age, Mean ± SD 74 ± 7 76 ± 7 80 ± 6 76 ± NA 75 ± 7

BMI (kg/m2), Mean ± SD 28.10 ± 4.07 27.94 ± 4.33 27.84 ± 4.26 24.68 ± NA 28.02 ± 4.18

Years of education, Mean ± SD 15.07 ± 3.01 15.29 ± 3.08 15.84 ± 3.07 13.00 ± NA 15.22 ± 3.05

Smoking status, n (%)

  Never 205 (30.64%) 118 (30.49%) 37 (30.58%) 0 (0%) 360 (30.56%)

  Ever 464 (69.36%) 269 (69.51%) 84 (69.42%) 1 (100%) 818 (69.44%)

  Pack-years, Mean ± SD 25.43 ± 21.38 20.48 ± 23.86 20.01 ± 23.52 15.00 ± NA 20.94 ± 24.71

Alcohol consumption (drinks/day), n (%)

  ˂ 2 540 (80.72%) 318 (82.17%) 100 (82.64%) 0 (0%) 958 (81.32%)

   ≥ 2 129 (19.28%) 69 (17.83%) 21 (17.36%) 1 (100%) 220 (18.68%)

Estimated cell type (%), Mean ± SD

  Granulocytes 57.51 ± 9.24 58.83 ± 10.07 61.91 ± 8.66 63.35 ± NA 58.40 ± 9.55

  Monocytes 10.75 ± 2.74 10.16 ± 3.08 10.31 ± 2.60 9.49 ± NA 10.51 ± 2.85

  B cells 1.63 ± 2.75 1.20 ± 2.37 1.11 ± 2.44 0.62 ± NA 1.43 ± 2.60

  CD4 + T lymphocytes 8.42 ± 4.39 8.31 ± 4.76 7.37 ± 3.40 15.53 ± NA 8.28 ± 4.43

  CD8 + T lymphocytes 8.70 ± 3.15 8.52 ± 3.17 7.40 ± 2.83 6.95 ± NA 8.51 ± 3.14

  Natural killer cells 7.11 ± 3.86 7.57 ± 4.35 7.42 ± 4.11 4.19 ± NA 7.29 ± 4.05

Table 2  Distribution of annual PM2.5 and its components in the Normative Aging Study, 2000–2013

Abbreviations: Br Bromine, Ca Calcium, Cu copper, EC elemental carbonM, Fe iron, Pb lead, Ni nickel, NO3− nitrate, OC organic carbon, K potassium, Si silicon, SO4
2−, 

sulfate, V vanadium, Zn zinc

Particles Min Mean (SD) Median (Q1, Q3) Max IQR

PM2.5 (µg/m3) 4.16 9.75 (1.80) 9.78 (8.60, 11.00) 16.02 2.39

EC (µg/m3) 0.18 0.48 (0.12) 0.47 (0.41, 0.53) 1.19 0.12

OC (µg/m3) 0.86 1.89 (0.41) 1.82 (1.59, 2.16) 3.61 0.57

NO3
− (µg/m3) 0.23 0.89 (0.22) 0.88 (0.72, 1.04) 1.53 0.32

SO4
2− (µg/m3) 0.81 2.97 (0.90) 3.06 (2.63, 3.24) 6.29 0.61

Br (ng/m3) 1.58 2.69 (0.31) 2.70 (2.52, 2.90) 3.60 0.38

Ca (ng/m3) 11.82 24.60 (4.87) 24.09 (21.52, 26.80) 46.25 5.29

Cu (ng/m3) 0.49 2.58 (0.98) 2.60 (1.86, 3.19) 6.97 1.33

Fe (ng/m3) 15.28 50.84 (15.60) 51.65 (39.70, 61.03) 111.47 21.34

K (ng/m3) 30.70 47.69 (3.71) 47.32 (45.44, 49.89) 66.75 4.45

Ni (ng/m3) 0.06 1.39 (0.61) 1.32 (0.90, 1.79) 3.43 0.89

Pb (ng/m3) 1.09 3.22 (1.09) 3.32 (2.25, 4.01) 5.45 1.76

Si (ng/m3) 27.59 64.64 (19.47) 63.92 (47.17, 80.40) 113.92 33.23

V (ng/m3) 0.19 2.54 (1.18) 2.61 (1.70, 3.32) 7.44 1.62

Zn (ng/m3) 3.21 10.27 (2.54) 10.10 (8.54, 12.34) 18.22 3.80

Temperature (°C) 0.04 10.31 (2.77) 11.02 (9.27, 12.18) 21.62 2.91

Relative humidity (%) 32.89 62.17 (9.02) 66.17 (56.39, 68.71) 81.72 12.32
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Sources from PMF analysis
Based on an evaluation of three PMF models with the 
number of sources equal to 4, 5, and 6, we chose 4 as 
it provided the most feasible source results. The source 
profiles and the distributions of 14 PMCs are presented 
in Fig.  1. The four sources included biomass burning 
(source 1), all traffic (source 2), secondary particles 

(source 3), and coal burning and heavy fuel oil combus-
tion (source 4).

EWAS of PMCs and sources
Significant probes
In the site-by-site analyses, we observed multiple sig-
nificant DMPs for the 14 PMCs and 4 sources (see 

Fig. 1  The proportion of PMCs in each source. Abbreviations: PMC, particulate matter components; Br, bromine; Ca, calcium; Cu, copper; EC, 
element carbon; Fe, iron; K, potassium; Ni, nickel; NO3-, nitrate; OC, organic carbon; Pb, lead; Si, silicon; SO4

2-, sulfate; V, vanadium; Zn, zinc
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Table  3). For example, we found 7 significant DMPs 
associated with SO4

2−, 11 with K, 10 with source 1, and 
8 with source 2. We presented the significant DMPs 
associated with PMCs ranked by p-values with their 
annotated genes in Tables S2; we showed the signifi-
cant DMPs associated with sources ranked by p-values 
with their annotated genes in Tables S3. We also pre-
sented the Manhattan plots and the quantile–quantile 
plots with the estimated genomic inflation factor for 
each exposure (Fig. S2) and source (Fig. S3).We com-
pared the significant DMPs by the 4 sources and found 
a few common probes across sources: source 1 had 
a common probe with source 2 (cg15911114), 6 com-
mon probes with source 3 (cg09852920, cg04660698, 
cg25277509, cg01252659, cg01733795, cg10692118), 
and 4 common probes with source 4 (cg09852920, 
cg25277509, cg01252659, cg10692118); source 3 and 
source 4 had 12 overlapping probes (cg09852920, 
cg16756998, cg21675770, cg25277509, cg25631650, 
cg10692118, cg05524450, cg21468420, cg01252659, 
cg17367077, cg08753391, cg05970846). Additionally, 
sources 1, 3, and 4 had 4 common probes (cg09852920, 
cg25277509, cg01252659, cg10692118). We also 

compared the significant DMPs by 14 PMCs (see sup-
plementary material). There were many DMPs that 
were not similar across sources or PMCs.

Significant regions and pathways
We identified multiple significant DMRs for PMCs 
and sources (see Table  3). For example, we observed 6 
DMRs due to EC: chr19: 37,825,307–37825680, chr4: 
57,773,149–57,773,309, chr12: 14,720,834–14721289, chr3: 
48,694,451–48,694,674; chr14: 24,779,959–24,780,405; 
chr17: 3,704,494–3704622 and 5 DMRs due to source 3 
(i.e., secondary particles): chr6: 29,594,830–29595662, chr 
16: 8,806,531–8807044, chr6: 33,048,254–33048486; chr10: 
32,216,031–32216391, chr11: 6,291,879–6,292,312. We pre-
sented the significant regions ranked by p-values for PMCs 
in Table S4 and for sources in Tables S5. We compared the 
significant DMRs and the annotated genes with 4 sources 
and found that sources 3 and 4 had 5 common DMRs 
(chr16: 8,806,531–8807044, chr6: 29,594,830–29595662, 
chr10: 32,216,031–32216391, chr6: 33,048,254–33048286, 
chr11: 6,291,879–6,292,312) and 5 common annotated 
genes (ABAT, GABBR1, ARHGAP12, HLA-DPB1, CCKBR). 
We also compared the significant DMRs by 14 PMCs (see 
supplementary material).

In the pathway analyses, we found multiple significant 
pathways in relation to PMCs and sources (see Table 3). 
For example, we found 8 pathways for EC: role of NFAT 
in cardiac hypertrophy, telomerase signaling, tight junc-
tion signaling, cellular effects of sildenafil, osteoarthritis 
pathway, Wnt/ β-catenin signaling, cyclins and cell cycle 
regulation, axonal guidance signaling and 2 pathways for 
source 3: PTEN signaling and ILK signaling.

We showed the significant pathways ranked by p-values 
for PMCs in Tables S6 and for sources in Tables S7. We 
compared the significant pathways of the 4 sources: the 
two significant pathways of source 3 and the seven signif-
icant pathways of source 4 were all included in the eight 
pathways of source 1 (e.g., PTEN signaling).

Sensitivity analyses
We extracted the top 5 probes from the EWAS of 4 
sources in the main analyses and compared their effect 
sizes and p-values with that from the sensitivity analy-
ses. The effect sizes in the sensitivity analyses for all four 
sources were almost the same as in the main analyses (see 
Fig. S4).

Discussion
To our knowledge, this is the first EWAS of PMCs/
sources using high-resolution air pollution models with 
50  m × 50  m resolution. We identified multiple DMPs, 
DMRs, and pathways associated with both PMCs and 

Table 3  The number of significantly differentially methylated 
probes, regions, and pathways from annual exposure to 14 PM2.5 
components and 4 sources

Abbreviations: PM2.5 fine particulate matter with an aerodynamic 
diameter ≤ 2.5 µm, Br bromine, Ca calcium, Cu copper, EC element carbon, Fe 
iron, K potassium, Ni nickel, NO3

− nitrate, OC organic carbon, Pb lead, Si silicon, 
SO4

2− sulfate, V vanadium, Zn zinc

Exposures DMPs DMRs Pathways

PM2.5 components

  Br 58 34 2

  Ca 1 5 16

  Cu 13 10 3

  EC 0 6 8

  Fe 6 6 2

  K 11 18 9

  Ni 8 22 4

  NO3
− 15 3 46

  OC 2 2 6

  Pb 0 3 2

  Si 10 1 7

  SO4
2− 7 3 3

  V 5 11 27

  Zn 7 10 8

Sources

  Source 1 (biomass burning) 10 0 8

  Source 2 (all traffic) 8 5 0

  Source 3 (secondary particles) 19 5 2

  Source 4 (coal burning and heavy 
fuel oil combustion)

14 7 7
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PM2.5 sources. Moreover, the identified DMPs, DMRs, 
and pathways were different across PMCs and sources. 
For example, the significant pathways suggest that the 
source 1 (i.e., biomass burning) was related to CVD can-
cer, diabetes, inflammation, Alzheimer’s disease (AD), 
and oxidative stress, whereas the source 3 (i.e., secondary 
particles) was annotated to CVD and cancer.

In terms of the significant pathways associated with 
PM2.5 sources, source 1 (i.e., biomass burning) and source 
4 (i.e., coal burning and heavy fuel oil combustion) were 
associated with almost the same pathways, such as can-
cer [70, 71], inflammation [72], CVD [73], AD [74, 75], 
and diabetes [76]. For example, the mTOR signaling path-
way is related to cancer [70], and AD [74]; IL-8 signaling 
is associated with inflammation [72]; insulin receptor 
signaling is linked to diabetes [76]. The two pathways 
associated with the source 3 (i.e., secondary air pollution) 
were linked with cancer [71] and CVD [73]. For example, 
ILK signaling has been associated with the human heart 
[73]. There were no significant pathways that were asso-
ciated with source 2 (i.e., all traffic). These findings sug-
gest that biomass burning, coal burning, and heavy fuel 
oil combustion were the most impactful PM2.5 sources 
with respect to DNAm; all traffic had the least impact on 
DNAm in the Greater Boston Area.

We further discuss the significant pathways associated 
with individual PMCs based on their proportions across 
four sources. The highest proportion of OC was from 
the source 1 (i.e., biomass burning) and it was associated 
with pathways of cancer [77] and inflammation [72]. For 
example, RhoGDI signaling has been shown to mediate 
cancer progression [77]. Source 3 (i.e., secondary air pol-
lution) had the highest percentage of NO3

−. The path-
ways linked with NO3

− were involved with CVD [78–85], 
cancer [86–88], inflammation [72, 89, 90], obesity [91], 
depression [92], and schizophrenia [93]. For example, 
cAMP-mediated signaling is typically involved in the 
regulation of heart function [78]; CXCR4 signaling con-
tributes to tumor growth and invasion [86]. Source 4 (i.e., 
coal burning and heavy fuel oil combustion) accounted 
for the highest V, which was associated with pathways in 
immune system [94], cancer [77, 88, 95, 96], and AD [97]. 
Although source 2 (i.e., all traffic) was not associated with 
any pathways, its main components Ca, EC, and K were 
related with a few pathways, including cancer [70].

While studies of PM2.5 have been done, DMPs and 
pathways associated with only certain PMCs would be 
less likely to be detected in studies of that composite 
exposure. Hence this study, with repeated measures and 
high-resolution exposure to many components, is an 
important advance. Until recently, only a few epidemio-
logical studies have linked long-term exposure to PMCs/

sources with the pathways that we identified in this study. 
[98, 99]. For example, Ostro et  al. found that long-term 
exposure to high-sulfur fuel combustion and the second-
ary particle NO3

− was associated with CVD mortality in 
a longitudinal study [99]. This is consistent with our find-
ings of pathways associated with secondary particles and 
coal burning.

We did not observe any significant associations with 
long-term exposure to source 2 (i.e., all traffic) and path-
ways. However, a few epidemiological studies found that 
exposure to traffic-related exposures were related cellu-
lar immunity, cardiovascular and neurological systems 
development, inflammation [28, 100, 101] among the 
DNA methylation features. For example, Eze et  al. per-
formed EWAS of transportation air pollution exposures. 
Their agnostic functional networks found cellular immu-
nity, gene expression, cell growth/proliferation, cardio-
vascular, auditory, embryonic, and neurological systems 
pathways [28]. The inconsistency may be attributable to 
the agents in the traffic sources. In our study, the traf-
fic source is mostly consistent of Cu, Fe, EC, and Ca, 
whereas other studies use nitrogen dioxide and PM2.5 as 
the main agents for traffic-related toxicity [102–104].

To date, only one study examined the associations 
between long-term exposure to PMCs and DNAm in an 
epigenome-wide scope [34], which was also conducted 
by our group (We did not perform an EWAS of sources 
in the previous study). This study used a central site for 
measurements of particle components. The number 
of significant DMPs (N = 29) and pathways (N = 9) was 
fewer in the previous study compared with this present 
one. We did not investigate the regions significantly asso-
ciated with PMCs in our previous study, which observed 
a total of 29 DMPs (20 for Fe, 8 for Ni, and 1 for V) and 
9 pathways (8 for Fe, 2 for Ni). In contrast, this present 
study totally identified 143 DMPs (among which 6 for Fe, 
8 for Ni, and 5 for V) and 143 pathways (among which 2 
for Fe, 4 for Ni, and 27 for V). We did not find any com-
mon DMPs, but a few overlapping pathways in the two 
studies, such as pathways in cancer by Ni. The different 
results in the two studies are mainly attributed to the 
data source of PMCs. The previous study estimated the 
concentrations of PMCs from monitors at a stationary 
site whereas the present study predicted the PMCs from 
high-resolution models with 50 m × 50 m.

In addition, we compared the significant DMPs in 
the present study with EWAS of long-term exposure 
to other air pollutants, such as PM2.5 mass [25, 27, 28, 
105], smoking [106], coaling-burning [107], nitrogen 
oxides [27], sulfur oxide [108], and polycyclic aromatic 
hydrocarbons [109]. We found 8 overlapping DMPs 
for our components with DMPs previously identified 
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for smoking [108], and 6 overlapping DMPs for sulfur 
oxide exposure [108], respectively. Specially, Joehanes 
et  al. compared both current and past smokers with 
nonsmokers in DNAm using 16 cohorts and identi-
fied 18, 760 DMPs in current smokers and 2,623 DMPs 
in former smokers. Among the significant DMPs, 8 
from current smokers (i.e., cg07450086, cg06644515, 
cg11436113, cg02324920, cg24807850, cg07197831, 
cg27134322, cg05661533) and 1 from former smokers 
(i.e., cg11436113, which was also identified in current 
smokers) were overlapped in this present study. These 8 
DMPs were significantly associated with Fe, Zn, Ni, and 
K in our study. Among the mapped genes, the SELENOT 
gene is highly expressed in the cerebral globus pallidus 
and caudate nucleus in patients with Parkinson’s disease 
[110]. Choi et al. found a total of 6,733 DMPs were asso-
ciated with prenatal exposure to sulfur oxide during the 
3rd trimester at age 2 [108], among which 6 DMPs were 
also identified in our study (i.e., cg09835867, cg01747792, 
cg05871607, cg07143898, cg25142954, cg05661533). 
These 6 DMPs were significantly associated with Si, Zn, 
and Br in our study. Among the mapped genes, high 
expression of LPCAT1 gene plays an important role in 
breast cancer progression [111]. However, we did not 
find any common DMPs between our study and EWAS of 
PM2.5 [25, 27, 28, 107], nitrogen oxides [27], or polycyclic 
aromatic hydrocarbons [109]. This may reflect the het-
erogeneity in DMPs across different particle components.

This study has some limitations: 1) This study only 
included elderly white men, which limits the generaliz-
ability of the findings to other age groups, races, and sex. 
However, the studies that assess the modification effects 
on age, race, and sex in the associations between PMCs 
and DNAm are not well-established [112]. 2) We do not 
have data on gene expression; thus, we are not able to 
determine the regulation directions between DNAm and 
the coded protein. 3). We only measured DNAm in leu-
kocytes, hence the identified pathways via IPA database 
(which is built based on multiple tissues) may not reflect 
all the relevant pathways.

On the other hand, our study has a number of impor-
tant strengths. 1) This is the first EWAS to assess the 
associations between DNAm and PMCs/sources using 
high-resolution models (i.e., 50 m × 50 m). 2) The median 
regression that we used in this study does not require 
normally distributed residuals. 3) Repeated measure-
ments of DNAm and PMCs provide a wide variation of 
the outcomes and exposures within-subject; thus, the 
statistical power is increased. 4) We analyzed EWAS of 
PMCs/sources at multiple dimensions: single CpG site, 
region, and pathway. It ensures us to fully elucidate the 
genes and pathways lined with the exposures.

Conclusions
In summary, this EWAS of long-term exposure to PMCs/
sources from high-resolution models indicates that the 
associations between DNAm and particles varies by the 
components and sources. PMCs with emission sources of 
biomass burning, coal burning, and heavy fuel oil com-
bustion are the most harmful. More similar studies with 
diverse study populations from different areas, using 
DNAm from other tissues are needed, to enrich the pre-
sent findings in the future.
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