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Abstract
Background  Volatile organic compounds (VOCs) encompass hundreds of high production volume chemicals and 
have been reported to be associated with adverse respiratory outcomes such as chronic obstructive pulmonary 
disease (COPD). However, research on the combined toxic effects of exposure to various VOCs on COPD is lacking. We 
aimed to assess the effect of VOC metabolite mixture on COPD risk in a large population sample.

Methods  We assessed the effect of VOC metabolite mixture on COPD risk in 5997 adults from the National Health 
and Nutrition Examination Survey (NHANES) from 2011 to 2020 (pre-pandemic) using multivariate logistic regression, 
Bayesian weighted quantile sum regression (BWQS), quantile-based g-Computation method (Qgcomp), and Bayesian 
kernel machine regression (BKMR). We explored whether these associations were mediated by white blood cell (WBC) 
count and total bilirubin.

Results  In the logistic regression model, we observed a significantly increased risk of COPD associated with 9 VOC 
metabolites. Conversely, N-acetyl-S-(benzyl)-L-cysteine (BMA) and N-acetyl-S-(n-propyl)-L-cysteine (BPMA) showed 
insignificant negative correlations with COPD risk. The overall mixture exposure demonstrated a significant positive 
relationship with COPD in both the BWQS model (adjusted odds ratio (OR) = 1.30, 95% confidence interval (CI): 1.06, 
1.58) and BKMR model, and with marginal significance in the Qgcomp model (adjusted OR = 1.22, 95% CI: 0.98, 1.52). 
All three models indicated a significant effect of the VOC metabolite mixture on COPD in non-current smokers. WBC 
count mediated 7.1% of the VOC mixture associated-COPD in non-current smokers.

Conclusions  Our findings provide novel evidence suggesting that VOCs may have adverse associations with COPD 
in the general population, with N, N- Dimethylformamide and 1,3-Butadiene contributing most. These findings 
underscore the significance of understanding the potential health risks associated with VOC mixture and emphasize 
the need for targeted interventions to mitigate the adverse effects on COPD risk.
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Background
Disease burden of Chronic obstructive pulmonary disease 
(COPD)
COPD is the most common chronic respiratory disease 
worldwide. It is characterized by persistent respiratory 
symptoms and airflow limitation. Although age-stan-
dardized rates of prevalence, incidence, and mortality 
have significantly declined, the absolute burden of COPD 
has continued to increase over the last four decades 
[1]. High-income North America had the highest age-
standardized prevalence of COPD in 2019. Among U.S 
adults, COPD prevalence ranges from approximately 5 to 
20%, contingent on the populations assessed and the dis-
ease criteria used [2]. Several factors, including smoking, 
air pollution, and respiratory infection, were reported to 
increase the risk of COPD [1].

Source of Volatile organic compounds (VOCs)and Adverse 
effects of VOCs on human health
VOCs encompass hundreds of high production volume 
chemicals such as cleaning products, paints, solvents, 
personal care products, automotive exhaust, and tobacco 
smoke [3–5]. These compounds are characterized by 
their volatility, and are important sources of air pollution 
and occupational exposure. Although VOCs are essential 
for many industrial processes and consumer goods, their 
potential health hazards have raised concerns among 
researchers, policymakers, and public health profession-
als. Exposure to certain VOCs may increase the risk for 
a spectrum of illnesses ranging from mild, such as irrita-
tion, to very severe, such as cancer [6, 7]. Human expo-
sure to VOCs principally occurs through different routes, 
including inhalation, ingestion, and skin contact. How-
ever, respiratory inhalation route was significantly associ-
ated to the exposure [8]. Accordingly, several VOCs have 
been associated not only with an increased risk of respi-
ratory diseases, such as asthma and COPD, but also with 
the exacerbation of symptoms and emergency room vis-
its [9–11]. VOCs have emerged as potential biomarkers 
for the detection and diagnosis specific diseases, such as 
COPD and lung cancer [12].

VOCs and COPD risk
Prior studies on VOCs and respiratory illness have mostly 
used short-term measurements of VOC air concentra-
tions to characterize exposures, which may not reflect 
chronic exposure to these compounds [13–15]. Instead, 
measuring the internal dose based on human specimens, 
such as blood and urine, is more appropriate for the mea-
surement of VOC exposure because it may better reflect 
chronic exposures and reduce the intra- and inter-person 
variations in VOC concentration in the air [16]. Recently, 
several studies have reported an increased risk of COPD, 
asthma, or reduced lung function in relation to VOC 

metabolites [17–21]. Significant associations between 
metabolites of various VOCs, including 1,3-Butadiene, 
acrylonitrile, acrylamide, propylene oxide, styrene, ben-
zene, ethylbenzene, o-xylene, styrene, toluene, m-p-
xylene and reduced lung function/ emphysema and 
chronic bronchitis were found in American adults [17, 
18, 21–24]. Similarly, metabolites of dimethylformamide, 
acrolein and 1-bromopropane have been also reported 
to be associated with pulmonary function decline in the 
general Chinese population [19, 20, 25]. The association 
between VOC and COPD might be mediated by oxida-
tive damage or systemic inflammation. A previous study 
suggested that increased C-reactive protein, a marker 
of systemic inflammation, significantly mediated 5.39% 
and 5.87% of the N-ace-S-(N-methlcarbamoyl)-L-cys 
(AMCC)-associated forced vital capacity and forced 
expiratory volume in 1 s declines, respectively [19]. Other 
studies have also demonstrated that the decline in lung 
function due to single VOC metabolite is partly mediated 
by oxidative DNA damage, inflammation, and pulmonary 
epithelial injury [20, 21, 23, 25].

Novel statistical approaches for VOCs mixture and COPD 
are needed
Environmental pollutants, including VOCs, are typically 
in complex mixtures. Traditional regression-based risk 
assessment methods lead to biased and highly unstable 
results when confronted with the complex exposure 
pattern, high correlation, and complicated interactions 
within environmental mixtures [26–28]. Recently, vari-
ous statistical approaches have been developed to assess 
the health effects of environmental chemical mixtures in 
epidemiological studies, such as weighted quantile sum 
(WQS) regression and Bayesian Kernel Machine Regres-
sion (BKMR) [29–32]. Although the association between 
VOCs in urine and blood and COPD has been previously 
evaluated, most of these studies only included limited 
components of VOC metabolites in their analysis or did 
not utilized the novel statistical approaches for environ-
mental mixtures [17–20, 22]. Tobacco smoking has been 
recognized as the most significant risk factor for COPD, 
serving as the primary non-occupational source of expo-
sure to certain VOCs in the U.S. population [33, 34]. 
However, no study has analyzed the confounding effect 
and interaction between smoking and VOC metabolite 
mixture on the COPD risk. Additionally, the direct and 
indirect effects of a complex VOC mixture on COPD via 
a mediator variable have not been previously reported.

The aims of this study
In this study, we investigated the association between 
urinary VOC metabolites and COPD risk using several 
novel statistical methods specific to environmental mix-
tures and utilized data from the National Health and 
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Nutrition Examination Survey (NHANES) 2011–2020, 
which offers a representative sample of the adult popula-
tion in the United States. In addition, for the first time, 
we performed a stratified analysis to investigate the inter-
action between smoking and VOC metabolites on COPD 
risk, and assessed the potential mediating effect of oxi-
dative damage or systemic inflammation on these asso-
ciations at the mixture level. The above comprehensive 
analysis provided a less biased and more robust estima-
tion of the single and joint effects of urinary VOC metab-
olites on COPD risk.

Methods
Data source and study population
The data used in this cross-sectional study were derived 
from the NHANES, which was designed to assess the 
health and nutritional status of adults and children 
in the United States. The program utilizes a complex, 
multistage, probability sampling design to ensure rep-
resentative results. Various data, including interviews, 
physical examinations, and laboratory tests, were col-
lected to gather information on a range of health topics. 
This comprehensive dataset provides a unique opportu-
nity to analyze the associations between multiple envi-
ronmental exposures and specific health outcomes [35, 
36]. Written informed consent was obtained from all par-
ticipants NHANES. As this study involved a secondary 
analysis of publicly available data, ethical approval from 
the institutional review board was not required.

The study included five cycles of NHANES: 2011–2012, 
2013–2014,2015–2016, 2017–2020 pre-pandemic. Due 
to the coronavirus disease 2019 pandemic, data collected 
from 2019 to March 2020 were combined with data from 
the NHANES 2017–2018 cycle to form a nationally rep-
resentative sample of NHANES 2017-March 2020 (pre-
pandemic) data [35]. Among the 45,462 participants 
who completed the questionnaire interview and physi-
cal examination, 26,216 provided definite information 
regarding COPD and urinary VOC metabolite. Subse-
quently, participants with missing information on body 
mass index (BMI), family poverty income ratio (PIR), 
serum cotinine concentration, who were pregnant or 
younger than 20 years old, or participants with extreme 
values of VOC metabolites (more than six standard devi-
ations from the mean after log-transformation and cen-
tralization of VOCs) were excluded, resulting in a total of 
5997 participants included in the analysis. A detailed par-
ticipant selection flowchart from NHANES 2011–2020 
pre-pandemic is illustrated in Figure S1.

Measurement of urine VOCs
In this study, 18 VOC Metabolites were analyzed. 
Detailed information on these VOC metabolites, includ-
ing their full names, parent VOCs, and the proportions 

at or above the detection limit for the 5997 participants, 
is presented in Table S1. In the NHANES, spot urine 
samples were collected from a sub-sample of the par-
ticipants. The urine specimens were processed, stored, 
and shipped to the Division of Laboratory Sciences, 
National Center for Environmental Health, Centers for 
Disease Control and Prevention, Atlanta GA. The vials 
were stored under the appropriate freezing conditions 
(–20 °C) until the assay. The VOC metabolites in human 
urine were measured performed using ultra-performance 
liquid chromatography coupled with electrospray tan-
dem mass spectrometry (UPLC-ESI/MSMS). Details on 
laboratory methods and quality control have been pre-
viously described [37]. A imputed fill value was used for 
analytes with results below the lower limit of detection, 
an imputed fill value was used. This value is calculated as 
the lower limit of detection divided by the square root of 
2 (LLOD/sqrt [22]). To reduce the effect of urine dilution 
on the measurements, we used urine creatinine to cali-
brate the levels of urinary VOC metabolites(ng/g).

Definition of COPD
Information on COPD was derived from self- and proxy-
reported personal interview data using the NHANES 
MCQ questionnaire section. Specific questions related 
to COPD were asked for the cycles of 2011–2012, 2013–
2014, 2015–2016 and 2017–2018,. Participants were 
asked whether a doctor or other health professional had 
ever told them that they had emphysema (MCQ160G, 
2011–2018), chronic bronchitis (MCQ160K, 2011–2018), 
or COPD (MCQ160O, 2013–2016). In the 2019-20 sur-
vey cycle, these questions (MCQ160G, MCQ160K 
and MCQ160O) were replaced by MCQ160P, which 
asked participants if they had ever been told by a doc-
tor or other health professional that they had chronic 
obstructive pulmonary disease, or COPD, emphysema, 
or chronic bronchitis. To ensure compatibility between 
the 2017-18 data and the 2019-20 data, respondents 
who answered “Yes” to either MCQ160G, MCQ160K, 
or MCQ160O were coded as “Yes” to MCQ160P. These 
respondents were considered COPD patients with 
COPD.

Covariates
Characteristics including age, sex, race/ethnicity (non-
Hispanic white, non-Hispanic black,  Mexican Ameri-
can, and others), education level, PIR, and BMI were 
obtained from interview questionnaires and examination 
data. The participants’ smoking status was categorized 
into three groups: never smokers, former smokers, and 
current smokers. Never smokers were defined as indi-
viduals who smoked < 100 cigarettes in their lifetime. 
Former smokers were defined as those who had smoked 
more than 100 cigarettes in their lifetime but had quit 
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smoking at the time of the survey. Current smokers were 
defined as those who had smoked > 100 cigarettes in their 
lifetime and were still smoking at the time of the survey. 
Serum cotinine levels, white blood cell (WBC) count and 
total bilirubin levels were also measured.

Statistical analysis
Demographic and personal data, as well as the con-
centrations of urine VOC metabolite, were compared 
between non-COPD and COPD patients using the chi-
square test for categorical covariates and Kruskal-Wallis 
test for quantitative data (due to their non-normal distri-
bution). Because the urinary VOC metabolite data exhib-
ited a highly right-skewed distribution (approximating 
a log-normal distribution), we performed a logarithmic 
transformation for subsequent analysis. They were then 
centered to achieve an equal scale, because both BKMR 
and logistic regression were sensitive to extreme values 
[38]. We assessed the correlation between the ln-trans-
formed and centralized urinary VOC metabolite data 
using Pearson correlation analysis.

We used a multivariate logistic regression model to 
evaluate the effect of a single urinary VOC metabolite on 
COPD. In the logistic regression model, single urinary 
VOC metabolite was first included as continuous vari-
able, and then divided into quartiles with the lowest quar-
tile (Q1) serving as the reference group. We used three 
logistic regression models. Model 0 was not adjusted 
for any covariates, Model 1 was adjusted for age and sex 
only, and Model 2 was adjusted age, sex, race, education, 
BMI, PIR and survey cycle. Furthermore, we examined 
potential nonlinear dose-response associations between 
urinary VOC metabolites and COPD using a restricted 
cubic spline within the logistic regression model. The 
number of knots was determined using the Akaike infor-
mation criterion (AIC) for optimal model fit [39].

We then used a novel Bayesian extension of WQS 
regression, referred to as Bayesian WQS (BWQS), to 
evaluate the joint effect of urinary VOC metabolite mix-
ture on COPD. In the BWQS, the estimated coefficient 
mapped to the mixture identifies the association between 
the overall mixture and the outcome, whereas the esti-
mated coefficients mapped to the weights represent the 
relative contribution of the corresponding components 
to the mixture [40]. BWQS regression retains many fea-
tures of the frequentist WQS regression, but does not 
require a priori specification of a single direction of effect 
for the entire mixture or splitting of the original dataset, 
thereby improving the statistical power, flexibility, and 
stability of the estimates. Among the 18 VOC metabo-
lites, N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cyste-
ine (GAMA) and N-acetyl-S-(2-hydroxyethyl)-L-cysteine 
(HEMA) were excluded from BWQS regression because 
more than 40% of their results were below the limit of 

detection. In this study, the chain length in Hamilto-
nian Monte Carlo algorithm in BWQS model was set to 
10,000.

Quantile-based g-Computation method (Qgcomp) was 
ued to evaluate the overall effect of the VOC metabo-
lite mixture on COPD and the relative importance of 
the individual constituents in the mixture. As an inno-
vative modeling technique for environmental mixtures, 
Qgcomp builds on WQS regression by integrating its 
estimation procedure with g-computation. It estimates 
the overall mixture effect utilizing the same procedure 
as WQS, but fits the parameters of a marginal structural 
model rather than a standard regression [31]. In contrast 
to WQS, Qgcomp does not enforce the assumption of 
“directional homogeneity”. This model can estimate the 
combined effects of the mixtures and elucidate the posi-
tive or negative weights of each component. In this study, 
the number of bootstrap iterations in the Qgcomp model 
was set to 10,000, the Parameter q was set to 4. Besides, 
GAMA and HEMA were also excluded.

We used the BKMR model to investigate the combined 
effect and individual potential nonlinear and interactive 
effects of urinary VOC metabolites on COPD risk. BKMR 
integrates Bayesian and statistical learning methods to 
iteratively regress an exposure–response function using 
a Gaussian kernel function [29, 41]. The combined effect 
of the chemical mixture was assessed by calculating the 
expected outcome variations for the chemicals at specific 
quantiles compared with those at medians. In the BKMR 
model, posterior inclusion probabilities (PIPs), an index 
ranging from 0 (least important) to 1 (most important), 
provide measures of variable importance for each expo-
sure. The estimated univariate exposure-response func-
tion of each VOC metabolite was graphically depicted 
to examine the potential nonlinearity of the exposure 
response. Furthermore, bivariate exposure-response 
curves visualized the interactions between mixture com-
ponents, with the slopes of the curves of a certain chemi-
cal being varied at the 10th, 50th, and 90th percentiles 
of another chemical (the remaining variables were fixed 
at the median), which indicated a possible interaction. 
GAMA and HEMA were also excluded from the BKMR 
model. The number of iteration was set to 20,000 using 
the Markov Chain Monte Carlo algorithm.

To explore the potential interaction between urinary 
VOC metabolites and smoking in COPD, we performed 
stratified analysis in both logistic regression and mixture 
analysis by smoking status (non-current and current).

Finally, we explored the potential mediation of the 
associations by WBC count and total bilirubin levels. We 
used BKMR-causal mediation analysis (BKMR-CMA) to 
estimate counterfactually defined estimates of natural 
direct effects (NDE) and natural indirect effects (NIE) 
which sum up to the total effect (TE) [42]. In this study, 
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NDEs captured a change in urinary VOC mixtures from 
the 75th percentile to the 25th percentile while fixing the 
mediator to the level it would have taken if the exposure 
was set to the 25th percentile, and considered smok-
ing status (non-current, current smoking) as an effect 
modifier.

We conducted a series of sensitivity analyses to assess 
the robustness of our findings. First, as previously 
described, we applied logistic regression analysis and fit-
ted three models, namely Model 0, Model 1, and Model 
2, each with different covariate adjustments. Second, 
considering the complex multistage sampling design 
employed in NHANES, we conducted a survey-weighted 
logistic regression analysis. Third, in both the logistic 
regression analysis and subsequent mixture analyses, 
we adjusted for serum cotinine levels instead of the cat-
egories of smoking status. All statistical analyses were 
performed using R software (versions 4.0.2 and 4.2.2; R 
Core Team), with a significance level set at α = 0.05 for 
two-sided testing. The key R packages utilized in the sta-
tistical analysis and figure production included “survey”, 
“BWQS”, “qgcomp”, “BKMR”, and “BKMR-CMA”.

Results
The general characteristics of the 5997 participants are 
presented in Table 1. The prevalence of COPD was 7.4%. 
Distributions of age, ethnicity, educational level, BMI, 
family income and smoking status were significantly dif-
ferent between the COPD and non-COPD participants.

The detection rates were higher than 75% for 16 VOC 
metabolites but less than 50% for GAMA and HEMA 
(Table S1). The creatinine-corrected concentrations of 
the 18 urinary VOC metabolites are presented in Table 1. 
COPD patients exhibited significantly higher concen-
trations of most urinary VOC metabolites, except for 
2-amnothiazolne-4-carbxylic acid (ATCA) and N-acetyl-
S-(benzyl)-L-cysteine (BMA), whereas the concentration 
of N-acetyl-S-(n-propyl)-L-cysteine (BPMA) was signifi-
cantly lower than in those in non-COPD participants. A 
similar pattern of weighted distributions of general char-
acteristics according to COPD was shown in Table S2. 
The correlations between the concentrations of 18 VOC 
metabolites are shown in Fig.  1, ranging from − 0.03 to 
0.84. The most highly correlated VOC metabolites were 
2MHA and 34MH, MHBM3 and HPMMA, CYMA and 
MHBMA3, 3HPMA and HPMMA, corresponding of 
correlation coefficients of 0.84, 0.84, 0.80 and 0.80. This 
suggests that data analysis with traditional regression 
method will lead to multicollinearity.

We observed a significant difference in serum coti-
nine concentrations based on the smoking status, with 
notably higher levels observed in current smokers (Fig-
ure S2). Consequently, we combined never- smokers and 
former smokers into non-current smokers. Compared 

with non-current smokers, current smokers possessed 
higher concentrations of most VOC metabolites, except 
for BMA and BPMA, which had lower concentrations 
among current smokers (Figure S3).

The associations between urinary VOC metabo-
lites and COPD based on unweighted multivariate 
logistic regression are presented in Fig.  2A and Table 
S3. When urinary VOC metabolites were considered 
as continuous variables, 16 out of 18 urinary VOC 
metabolites associated with an increased risk of COPD, 
and significant increase observed for AMCC, N-ace-
tyl-S-(2-carboxyethyl)-L-cysteine (CEMA), N-ace-
tyl-S-(2-cyanoethyl)-L-cysteine (CYMA), Urinary 
N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), 
N-acetyl-S- (3-hydroxypropyl)-L-cysteine (3HPMA), 
Mandelic acid (MADA), N-acetyl-S- (4-hydroxy-
2-butenyl)-L-cysteine (MHBMA3), Phenylglyoxylic acid 
(PGA) and N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-
cysteine (HPMMA). Conversely, we found an insignifi-
cant decrease in COPD risk with increasing BPMA and 
BMA levels. Similar patterns were observed when the 
analyses were repeatedly stratified by smoking status 
(non-current and current smokers), as shown in Fig. 2A 
and Table S4. Furthermore, significant non-linear asso-
ciations between 2-methylhippuric acid (2MHA), 34MH, 
AMCC, ATCA, MHBMA3, PGA and COPD were 
observed from the RCS curves (Figure S4).

The 18 urinary VOC metabolites were categorized into 
four groups based on their quartiles (Fig.  2B and Table 
S3). After adjusting for age, sex, race, education, BMI, 
PIR, survey cycle, and smoking status, a significant eleva-
tion in COPD risk was observed in the highest quartile 
(Q4) of CEMA (OR = 1.61, 95% CI: 1.15, 2.29), CYMA 
(OR = 1.63, 95% CI: 1.05, 2.52), 3HPMA (OR = 1.80, 95% 
CI: 1.26, 2.58), MADA (OR = 1.52, 95% CI: 1.10, 2.12), 
MHBMA3 (OR = 1.96, 95% CI: 1.33, 2.92), and HPMMA 
(OR = 1.48, 95% CI: 1.02, 2.15), when compared to the 
lowest quartile (Q1). Conversely, although not statisti-
cally significant, the BMA and BPMA showed a negative 
correlation with COPD risk. Similar associations between 
UVOC metabolites and COPD were also found in non-
current smokers. However, these associations fluctuated 
more among current smokers (Fig. 2B and Table S4).

In BWQS model, we observed a significant association 
with increased odds of COPD per 1-quartile increase in 
a mixture of 16 VOC metabolites, with a coefficient of 
0.26 (95% CI: 0.06,046), corresponding to an adjusted OR 
of 1.30 (95% CI: 1.06, 1.58) in all participants (Fig.  3A). 
Stratified analysis revealed an adjusted OR of 1.44 (95% 
CI: 1.13, 1.82, Fig. 3C) for COPD per 1-quartile increase 
in non-current smokers (Fig. 3C). However, this associa-
tion was not statistically significant in current smokers 
(OR = 1.23, 95% CI: 0.94, 1.59, Fig.  3E). The contribu-
tions of individual VOC metabolites varied based on the 
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Table 1  Participants’ characteristics by COPD in NHANES, 2011–March 2020 pre-pandemic*

Characteristics Total(n = 5997) Non-COPD(n = 5552,92.6%) COPD(n = 445,7.4%) P value
Age 49.0 (34.0, 63.0) 48.0 (34.0, 62.0) 61.0 (48.0, 70.0) < 0.001
  < 40 2,013 (33.6%) 1,942 (35.0%) 71 (16.0%) < 0.001
  40–59 2,034 (33.9%) 1,895 (34.1%) 139 (31.2%)
  ≥ 60 1,950 (32.5%) 1,715 (30.9%) 235 (52.8%)
Gender
  Female 2,975 (59.6%) 2,739 (49.3%) 236 (53.0%) 0.146
  Male 3,022 (50.4%) 2,813 (50.7%) 209 (47.0%)
Race
  Mexican American 707 (11.8%) 683 (12.3%) 24 (5.4%) < 0.001
  Other Hispanic 617 (10.3%) 585 (10.5%) 32 (7.2%)
  Non-Hispanic White 2,221 (37.0%) 1,951 (35.1%) 270 (60.7%)
  Non-Hispanic Black 1,468 (24.5%) 1,388 (25.0%) 80 (18.0%)
  Other Race 984 (16.4%) 945 (17.0%) 39 (8.8%)
Education
  Less than 9th grade 481 (8.0%) 444 (8.0%) 37 (8.3%) < 0.001
  9-11th grade 709 (11.8%) 633 (11.4%) 76 (17.1%)
  High school graduate 1,365 (22.8%) 1,238 (22.3%) 127 (28.5%)
  Some college or AA degree 1,875 (31.3%) 1,735 (31.2%) 140 (31.5%)
  College graduate or above 1,567 (26.1%) 1,502 (27.1%) 65 (14.6%)
Smoking
  Never 3,394 (56.6%) 3,274 (59.0%) 120 (27.0%) < 0.001
  Former 1,439 (24.0%) 1,282 (23.1%) 157 (35.3%)
  Current 1,164 (19.4%) 996 (17.9%) 168 (37.8%)
BMI
  <25 1,709 (28.5%) 1,612 (29.0%) 97 (21.8%) < 0.001
  25–30 1,920 (32.0%) 1,805 (32.5%) 115 (25.8%)
  ≥30 2,368 (39.5%) 2,135 (38.5%) 233 (52.4%)
PIR
  < 1.30 1,874 (31.2%) 1,684 (30.3%) 190 (42.7%) < 0.001
  1.30–3.5 2,238 (37.3%) 2,067 (37.2%) 171 (38.4%)
  3.5- 1,885 (31.4%) 1,801 (32.4%) 84 (18.9%)
Urinary VOC concentrations (ng/g)
  2MHA 27,899.2 (13,677.4, 68,970.6) 27,230.8 (13,518.1, 65,018.4) 45,400.0 (16,160.7, 129,600.0) < 0.001
  34MH 151,141.6 (79,577.5, 444,444.4) 147,129.1 (78,335.9, 422,204.1) 247,887.3 (103,797.5, 829,411.8) < 0.001
  AAMA 51,111.1 (31,764.7, 91,197.2) 50,000.0 (31,406.4, 88,506.1) 68,240.7 (39,387.8, 127,424.7) < 0.001
  AMCC 145,925.9 (81,818.2, 266,666.7) 140,465.9 (79,099.7, 255,043.1) 243,750.0 (128,859.1, 543,209.9) < 0.001
  ATCA 116,666.7 (57,543.9, 217,977.5) 115,669.2 (58,055.6, 216,021.0) 125,535.7 (55,284.6, 260,392.2) 0.097
  BMA 6,465.1 (4,020.3, 11,389.8) 6,466.2 (4,041.4, 11,455.9) 6,463.4 (3,777.8, 10,294.1) 0.299
  BPMA 4,396.0 (1,760.3, 11,450.0) 4,473.7 (1,808.5, 11,836.2) 3,551.7 (1,416.7, 9,093.0) < 0.001
  CEMA 99,038.5 (62,682.9, 164,565.2) 97,598.9 (61,598.6, 158,594.6) 143,347.6 (84,347.8, 284,033.6) < 0.001
  CYMA 1,645.6 (956.8, 11,409.4) 1,610.6 (947.0, 7,640.2) 3,444.4 (1,180.0, 148,550.7) < 0.001
  DHBMA 314,018.7 (243,396.2, 407,983.2) 308,213.9 (240,528.2, 399,409.9) 388,125.0 (300,970.9, 511,711.7) < 0.001
  GAMA 10,230.8 (6,650.0, 16,625.0) 10,051.8 (6,584.2, 16,219.5) 12,442.4 (8,209.9, 20,781.2) < 0.001
  HEMA 968.2 (553.5, 1,863.3) 961.7 (548.0, 1,815.3) 1,118.0 (601.1, 2,676.5) < 0.001
  HPM2 29,154.9 (18,500.0, 54,137.9) 28,774.9 (18,333.3, 53,274.6) 37,135.9 (21,744.2, 75,111.1) < 0.001
  3HPMA 236,111.1 (147,979.8, 458,823.5) 231,268.7 (146,395.7, 439,120.5) 325,853.7 (177,000.0, 1,143,518.5) < 0.001
  MADA 133,884.3 (95,820.9, 195,312.5) 132,107.8 (94,918.5, 190,909.1) 168,354.4 (113,953.5, 284,210.5) < 0.001
  MHBMA3 4,711.1 (2,923.5, 9,769.6) 4,581.7 (2,865.8, 9,043.8) 7,494.3 (3,895.1, 33,800.0) < 0.001
  PGA 209,375.0 (152,845.5, 292,647.1) 206,153.8 (151,438.1, 284,540.9) 265,600.0 (178,181.8, 408,510.6) < 0.001
  HPMMA 212,857.1 (149,650.3, 410,126.6) 207,998.7 (148,190.0, 384,681.1) 320,000.0 (181,927.7, 1,217,821.8) < 0.001
* Categorical variables are expressed as number (percentage), while continuous variables are expressed as median and 25th/75th percentiles. Urinary VOC 
concentrations were correct with urinary creatinine
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smoking status. For all participants, the top two contribu-
tors were CEMA and DHBMA. In non-current smokers, 
the top contributors were AMCC and CEMA, whereas in 
current smokers, the top contributors were DHBMA and 
ATCA (Fig. 3B and D, and 3F).

The overall effect of the 16 VOC metabolite mixture 
and the contributors in both the positive and negative 
directions based on the Qgcomp model are shown in 
Fig.  4. We observed a marginally significant increase in 
the risk of COPD for each quartile increase in VOC mix-
ture concentrations, with an adjusted OR of 1.22 (95% 
CI: 0.98, 1.52) for all participants (Fig. 4A). When strati-
fied by smoking status, this positive association was sig-
nificant in non-current smokers, with an adjusted OR of 
1.37 (95% CI: 1.05–1.77, Fig. 4C). However, no significant 

relationship between the VOC mixture and COPD was 
found in current smokers (Fig.  4E). The highest posi-
tive weights for all participants, non-current smok-
ers and current smokers were from 3HPMA, AMCC 
and DHBMA respectively, whereas the highest negative 
weights were from BMA, 34MH and BPMA (Fig. 4B, D 
and F).

In all participants, a higher level of VOC metabolite 
mixture, above the 50th percentile compared to the 50th 
percentile, was significantly correlated with an increased 
risk of COPD (Fig. 5A), according to the results from the 
BKMR model. In the stratified analysis, similar results 
were observed in non-current smokers (Fig.  5B). How-
ever, a U-shaped dose-response curve was observed for 

Fig. 1  Pearson’s correlation coefficients among 18 urinary VOC metabolites in the population (N=5997), NHANES, USA, 2011-March 2020 pre-pandemic
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Fig. 3  Associations between mixture of 16 urinary VOC metabolites and COPD from BWQS model. Estimates (coefficients) of the association between 
mixture and COPD in all participants (A), non-current smokers (C), and current smokers (E). Weights with 95% credible intervals for each mixture compo-
nent in all participants (B), non-current smokers (D), and current smokers (F). Models were adjusted for age, sex, race/ethnicity, education levels, BMI, PIR, 
survey cycle and smoking status (for all participants)

 

Fig. 2  Forest plots for the association of single urinary VOC metabolite with COPD from NHANES 2011–March 2020 pre-pandemic. Adjusted for age, sex, 
race/ethnicity, education levels, BMI, PIR, survey cycle and smoking status. OR: odds ratio; CI: confidence interval
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Fig. 4  The joint effect (95%CI) and index weights of the mixture of 16 urinary VOC metabolites on COPD risk among all participants (A, B), non-current 
smokers (C, D), and current smokers (E, F). Qgcomp models were adjusted for age, sex, race/ethnicity, education levels, BMI, PIR, survey cycle and smoking 
status (for all participants)
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the association between the VOC metabolite mixture 
and COPD risk in current smokers (Fig. 5C).

The PIP for each urinary VOC metabolite in the mix-
tures, which determines the VOCs that contribute to 
the risk of COPD, is shown in Fig.  6A. Among all par-
ticipants, MHBMA3, AMCC ranked as the top two 
metabolites with PIPs of 0.90 and 0.53, respectively. 
In the BKMR model stratified by smoking status, the 
metabolites with the highest PIPs were MHBMA3 (0.42), 
AMCC (0.31), and CYMA (0.24) in non-current smok-
ers, whereas in current smokers, the highest PIPs were 
observed for AMCC (0.82), BPMA (0.79), ATCA (0.31), 
and BMA (0.15).

The individual effects of each component of the VOC 
mixture were evaluated by comparing the COPD risk 
when one component was at the 75th percentile to 
that when it was at the 25th percentile, while keeping 
all remaining components fixed at a specific percen-
tile. When the other components fixed at 50th or 75th 
percentiles, MHBMA3 significantly increased the risk 

of COPD in all participants. Moreover, significantly 
increased risk of COPD was observed with an increase in 
AMCC in non-current smokers, whereas a significantly 
decreased risk of COPD correlated with an increase in 
BPMA in current smokers (Fig. 6B).

Figure S5 illustrates the dose-response relationships 
for each VOC metabolite while setting the other compo-
nents at their median values. In all participants, AMCC, 
MHBMA3, and DHBMA demonstrate clear dose-
response relationships with COPD risk (Figure S5A). In 
non-current smokers, significant dose-response relation-
ships were observed for AMCC, MHBMA3, and CYMA 
(Figure S5B). BPMA levels negatively correlated with 
COPD among current smokers. Additionally, a U-shaped 
dose-response relationship between AMCC and COPD 
was observed in current smokers (Figure S5C).

Furthermore, the bivariate exposure-response func-
tions suggested potential interaction effects of AMCC 
and ACTA with BPMA on COPD risk in current smok-
ers (Figure S6). The differences in the effect of AMCC on 

Fig. 5  The overall impact of PAHs COPD risk (95%CI) among all participants (A), non-current smokers (B), and current smokers (C). BKMR models were 
Adjusted for age, sex, race/ethnicity, education levels, BMI, PIR, survey cycle and smoking status (for all participants). BKMR models were adjusted for age, 
sex, race/ethnicity, education levels, BMI, PIR, survey cycle and smoking status (for all participants)
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COPD decreased at high levels across the different quar-
tiles of BPMA. No obvious interactions between the two 
urinary VOC metabolites were observed for all partici-
pants and non-current smokers.

Finally, BKMR-CMA was used to estimate the direct 
and indirect effects of mixtures through the WBC 
count or total bilirubin level according to smoking sta-
tus (Table  2). In non-current smokers, WBC count was 
estimated to account for 7.1% of the association between 
the urinary VOC mixture and COPD. In current smok-
ers, there was no evidence of an intermediating effect of 
WBC count on the association between the urinary VOC 
mixture and COPD. Similarly, we did not observe a medi-
ating effect of total bilirubin on the relationship between 
the VOC metabolite mixture and COPD.

We performed a weighted logistic regression to 
evaluate the association between single urinary VOC 
metabolites and COPD, and the results were generally 

comparable to those of unweighted logistic regression 
(Table S5). Additionally, as cotinine is a validated bio-
marker for cigarette exposure, we repeated the multivari-
ate logistic regression, BWQS and Qgcomp analyses with 
the adjustment of ln-transformed serum cotinine con-
centration instead of smoking status, and obtained simi-
lar results (Tables S5 and S6).

Discussion
The main findings of this study
In this study, we investigated the individual and com-
bined effects of VOC metabolites on COPD in the gen-
eral population in the United States using multiple 
statistical strategies. Our findings revealed that of the 18 
VOC metabolites examined, 9 showed a positive associa-
tion with COPD in the multivariate logistic regression 
analysis. The overall mixture exposure demonstrated a 
significant positive relationship with COPD in both the 

Fig. 6  The relative importance (Posterior Inclusion Probabilities) of each urinary VOC metabolite to the COPD risk (A). Single effect of urinary VOC me-
tabolite on COPD (B), expressed as estimates and 95% CI. These plots compare a latent binary outcome when a single urinary VOC metabolite is at the 
75th vs. 25th percentile, when all the other metabolites are fixed at either the 25th, 50th, or 75th percentile. The relative importance (Posterior Inclusion 
Probabilities) of each urinary VOC metabolite to the COPD risk (A). Single effect of urinary VOC metabolite on COPD (B), expressed as estimates and 95% 
CI. These plots compare a latent binary outcome when a single urinary VOC metabolite is at the 75th vs. 25th percentile, when all the other metabolites 
are fixed at either the 25th, 50th, or 75th percentile. BKMR models were adjusted for age, sex, race/ethnicity, education levels, BMI, PIR, survey cycle and 
smoking status (for all participants)
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BWQS and BKMR models, with a marginal significance 
in the Qgcomp model. Interestingly, all three mod-
els indicated a significant effect of the VOC metabolite 
mixture on COPD among non-current smokers, but not 
among current smokers. In contrast, a few other VOC 
metabolites were negatively or non-linearly correlated 
with COPD, resulting in a U-shaped dose-response rela-
tionship between the overall mixture and COPD. We 
also found interactions between two VOC metabolites 
with respect to the risk of COPD. Furthermore, we did 
not observe a mediating effect of WBC count and total 
bilirubin on the association between the VOC metabolite 
mixture and COPD risk.

Comparison of this study with other studies and the 
potential explanations
The effects of single VOC metabolites on COPD and pul-
monary function have been evaluated in different popu-
lation. Based on the NHANES data, some studies have 
reported significant associations between over 10 kinds 
of VOC metabolites and COPD or reduced lung func-
tion [17, 18, 21–24]. Similar results have been observed 
in Chinese adults. Urinary metabolites of dimethylfor-
mamide, acrolein and 1-bromopropane were found to be 
related to pulmonary function decline in Chinese general 
population [19, 20, 25]. In this study, we also observed an 
increased risk of COPD associated with the metabolites 
of acrylonitrile, xylene, dimethylformamide, acrolein, 
and ethylene oxide, but no significant association with 
cyanide, toluene, 1-bromopropane and propylene oxide. 
However, it should be noted that the effect of a single 
VOC metabolite on COPD was not entirely consistent 
across studies. For example, a study based on NHANES 
demonstrated that toluene exposure may be associated 
with impaired lung function in smokers, while a signifi-
cant negative effect of 1-bromopropane on pulmonary 
function was reported in our study and a Chinese cohort 
[20]. These discrepancies may be due to differences in 

study populations, exposure levels, sample types, and 
confounders.

Most of the aforementioned studies used a generalized 
linear regression model (multivariate linear or logistic 
regression) to evaluate the relationship between VOCs 
and lung function/COPD. However, traditional regres-
sion techniques are unable to evaluate the overall effects 
of high-dimensional and multi-collinear environmental 
mixtures, and are ineffective in dealing with the nonlin-
earity and complex interactions between mixture compo-
nents. In this study, most of the VOC metabolites were 
found to be moderately or highly correlated. Therefore, 
we further analyzed the overall effect of urinary VOC 
metabolite mixture using three novel methods, including 
BWQS, Qgcomp and BKMR models. The BWQS regres-
sion model estimates associations between mixture and 
outcome based on linear and additive effect assumptions 
[40]. The Qgcomp model estimates the overall mixture 
effect using the same procedure as WQS, but estimates 
the parameters using a marginal structural model rather 
than a standard regression, which overcomes the assump-
tion of unidirectionality [31]. BKMR can accommodate 
the nonlinear and non-additive effects of the multivari-
ate exposure in a flexible non-parametric way. Thus, the 
strengths, limitations, and eventual complementation 
of these three models will be uncovered through a joint 
interpretation after evaluating the different aspects. This 
study demonstrated that both the BWQS and BKMR 
models had a significant positive impact on the COPD 
risk from VOC mixture, whereas the association was 
only marginally significant in the Qgcomp model. Similar 
results were found in a recent study that demonstrated 
a significant joint effect of VOC metabolites on emphy-
sema and chronic bronchitis, both independently and in 
combination [23]. In addition, both studies demonstrated 
that MHBMA3 and AMCC contributed the most to 
the joint effect. However, the study did not explore the 

Table 2  Mediation analysis in the association between urinary VOC metabolites and COPD
Mediator Smoking Mediation effect Estimate 95%CI Proportion

Lower Upper
WBC count Non-current Total effect 0.154 -0.144 0.404 1.000

Natural direct effect 0.144 -0.168 0.472 0.935
Natural indirect effect 0.011 -0.423 0.337 0.071

Current Total effect 0.040 -0.417 0.398 1.000
Natural direct effect 0.083 -0.631 0.738 2.075
Natural indirect effect -0.044 -0.909 0.615 -1.100

Bilirubin Non-current Total effect 0.153 -0.092 0.434 1.000
Natural direct effect 0.163 -0.120 0.502 1.065
Natural indirect effect -0.009 -0.337 0.312 -0.059

Current Total effect 0.031 -0.377 0.424 1.000
Natural direct effect 0.035 -0.818 0.749 1.113
Natural indirect effect -0.004 -0.525 0.292 -0.129
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interaction between smoking and a VOC metabolite mix-
ture on COPD risk.

In this study, BMA and BPMA were not significantly 
correlated with other VOC metabolites, suggesting that 
the sources of their parent VOCs were different from 
those of the other VOCs. In multivariate logistic regres-
sion analysis, we found that BMA and BPMA were neg-
atively correlated with COPO, especially in smokers. 
Moreover, significant nonlinear associations between 
several other VOC metabolites and COPD were observed 
in both the multivariate logistic regression and the uni-
variate dose-response curve in the BKMR model, which 
might account for the U-shaped joint effect of the VOC 
metabolite mixture on COPD. These results are con-
trary to those from another study in China, which found 
a significantly positive relationship between BPMA and 
reduced lung function [20]. However, this study only 
investigated of single effect of BPMA using linear mixed 
model; the influence of other VOC metabolites was not 
considered. Furthermore, a recent study found no sig-
nificant contribution of BPMA on Chronic bronchi-
tis or emphysema at mixture level [23]. Thus, further 
researches are required to evaluate the true effects of 
BMA, BPMA on the risk of COPD.

The reasons for the negative associations between 
BMA, BPMA and COPD risk are unknown. However, 
altering scenarios may contribute to an explanation. 
First, it is important to note that most VOCs have been 
reported to have various acute and short-term effects, 
including respiratory tract irritation [43]. This could 
potentially lead individuals who are sensitive to these 
effects to reduce their exposure to VOCs. However, 
these sensitive populations may also be susceptible to 
asthma or COPD. In fact, one study found a significant 
association between asthma and an increased risk of CB, 
emphysema, and COPD [44]. Second, the increased risk 
of COPD due to lower levels of certain VOCs metabolites 
might be due to the prevalence of patients with COPD 
who have already reduced their exposure due to illness. 
This highlights an inherent bias in cross-sectional stud-
ies, as risk factors and outcome information are obtained 
simultaneously. In addition, we used a fixed value to 
replace values that fell below the lower limit of detection. 
This may also contribute to the U-shaped joint effect of 
the VOC metabolite mixture and the nonlinear dose-
response relationship in COPD.

All three novel models estimated the relative con-
tributions of the individual components of the VOC 
metabolite mixture to COPD risk, but the results were 
not entirely consistent. For all participants, the BWQS 
and BKMR models identified CEMA and AMCC as the 
most important contributors. In addition, the Qgcomp 
model highlights 3HPMA as the most positive contribu-
tor. This inconsistency may arise from the nonlinear 

associations observed between several VOC metabolites 
and COPD risk, particularly for AMCC, which is evident 
in both the RCS curve and the univariate dose-response 
cure in the BKMR model. Furthermore, both MHBMA3 
and DHBMA, which are metabolites of 1,3-Butadiene, 
consistently displayed high weights in all three models. 
Uniquely, the Qgcomp model provided weights for the 
mixture components in both the positive and negative 
directions, and the results of this study indicated that 
BMA, HPMMA and BPMA were the top three negative 
contributors to COPD. The negative effects of BMA and 
BPMA in the Qgcomp model aligned with the results of 
the multivariate logistic regression and the BKMR model. 
However, the negative effect of HPMMA in the Qgcomp 
model contradicts the previous findings. These empha-
sizes the need for diverse statistical methods to estimate 
the joint effect of mixture, and for the results to be inter-
preted collectively, considering their respective advan-
tages and limitations.

Tobacco smoking has been recognized as the most 
significant risk factor for COPD, serving as the primary 
non-occupational source of exposure to certain VOCs 
in the U.S. population [33, 34]. Therefore, we performed 
stratified analyses in non-current smokers and smokers. 
While we observed a similar dose-response relationship 
between the urine VOC metabolite mixture and COPD 
risk, its overall effect was found to be insignificant in cur-
rent smokers, which might potentially be attributed to 
the limited sample size and the increased risk of COPD 
with both higher and lower exposure compared to the 
median level of the urinary VOC metabolite mixture. 
Moreover, the effects and relative importance of individ-
ual VOC metabolites differed between non-current and 
current smokers. One possible explanation for these dif-
ferences is that the concentrations of some VOCs in non-
smokers were substantially lower than those in smokers, 
often falling below the limit of detection [33]. Another 
contributing factor may be the more complex interac-
tions between a single VOC metabolite (such as AMCC 
and BPMA in this study) and components within the 
mixture.

However, the mechanisms underlying the associa-
tion between VOCs and COPD remain unclear. Oxida-
tive damage and inflammation might be the two main 
reasons that account for obstructive lung diseases. A 
previous study suggested that increased C-reactive 
protein, a marker of systematic inflammation, signifi-
cantly mediated 5.39% and 5.87% of AMCC-associated 
forced vital capacity and forced expiratory volume in 1 s 
declines [19]. Other studies have demonstrated that the 
decline in lung function due to single VOC metabolites 
is partly mediated by oxidative DNA damage, inflam-
mation, and pulmonary epithelium injury [20, 25]. It has 
been reported that the effect of a combination of selected 
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VOC metabolites on chronic bronchitis and emphysema 
is also mediated by inflammation [23]. However, a media-
tion analysis of the mediators of the association between 
VOC metabolite and COPD at the mixture level has not 
yet been reported. In this study, we used a novel method 
to evaluate the mediating effects of the WBC count and 
total bilirubin, which are markers of systemic inflam-
mation and oxidative stress [45, 46]. We found that in 
non-current smokers, WBC count mediated 7.14% of 
the VOC mixture associated-COPD, but this mediat-
ing effect was not significant. In addition, no mediation 
effects were found for WBC count in current smokers 
or total bilirubin in either non-current or current smok-
ers. however, the mechanisms underlying the association 
between VOCs and COPD require further investigation.

Strengths and limitations
This study had several strengths. First, it is based on a 
nationally representative population with a large sam-
ple size. Second, we incorporated three novel statistical 
models, specifically developed for environmental mix-
tures, to evaluate and visualize the overall effect of VOC 
metabolite mixture and explore the mediation effect of 
markers of inflammation and oxidative stress on VOC 
mixture. Third, the analysis of VOC metabolites in urine 
offers advantages such as the relatively longer physiologi-
cal half-life of these metabolites compared to their parent 
compounds, as well as the specificity of most metabo-
lites [4]. However, this study had some limitations. First, 
the measured VOC metabolites in this study only reflect 
recent exposure, whereas COPD is a disease that devel-
ops over an extended period, potentially introducing 
confounding effects due to long-term variation in these 
metabolites. Additionally, the cross-sectional nature 
of the data limites our ability to establish a causal rela-
tionship between VOC metabolite mixture and COPD 
risk. Moreover, this study has inherent biases such as 
information bias. Second, although the NHANES sur-
vey’s weighted sampling design helped reduce selection 
bias with regarding age, sex, and ethnicity, we opted to 
use unweighted data for our analysis. This decision was 
based on the fact that these covariates had already been 
adjusted in the statistical models in this study, thus, an 
unweighted estimation was recommended [47]. Third, 
other risk factors for COPD, such as air pollution, occu-
pational exposure, diet and childhood respiratory infec-
tions are associated with VOCs [48]. Therefore, although 
we conducted statistical adjustments, stratified analyses, 
and sensitivity analyses to control for potential confound-
ers, residual confounding from unmeasured covariates 
cannot be ruled out. Finally, although the single effect 
of VOCs on COPD was found in the general popula-
tion in different regions, the joint effect of VOC metabo-
lites has rarely reported, and both studies were based on 

NHAHES data. Further studies are warranted to exter-
nally validate their joint effect and to explore the contri-
butions of individual components in other population.

Conclusions
Using novel statistical methods, we observed positive 
relationships between a mixture of urinary VOC metabo-
lites and the prevalence of COPD in the general popula-
tion of the United States, particularly among non-current 
smokers, these associations were not significantly medi-
ated by systematic inflammation and oxidative stress. N, 
N- Dimethylformamide, 1,3-Butadiene appeared to con-
tribute mostly to the toxic effect of the VOC metabolite 
mixture on COPD. The overall effect of the mixture and 
the relative weight of individual mixture components 
varied depending on the smoking status. This study pro-
vides a more realistic and holistic understanding of the 
health impacts of VOC mixtures on COPD and has sig-
nificant implications for the prevention and management 
of COPD in the general population. Additional prospec-
tive and mechanistic studies are warranted to explore the 
causal association between VOCs and the risk of COPD.
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