
Lee et al. Environmental Health           (2024) 23:48  
https://doi.org/10.1186/s12940-024-01088-w

RESEARCH Open Access

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. Open 
Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, 
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecom-
mons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Environmental Health

Accommodating detection limits of multiple 
exposures in environmental mixture analyses: 
an overview of statistical approaches
Myeonggyun Lee1, Abhisek Saha2, Rajeshwari Sundaram2, Paul S. Albert3 and Shanshan Zhao1* 

Abstract 

Background Identifying the impact of environmental mixtures on human health is an important topic. How-
ever, such studies face challenges when exposure measurements lie below limit of detection (LOD). While various 
approaches for accommodating a single exposure subject to LOD have been used, their impact on mixture analysis 
has not been thoroughly investigated. Our study aims to understand the impact of five popular LOD accommodation 
approaches on mixture analysis results with multiple exposures subject to LOD, including omitting subjects with any 
exposures below LOD (complete case analysis); single imputations by LOD/

√

2 , and by estimates from a censored 
accelerated failure time (AFT) model; and multiple imputation (MI) with or without truncation based on LOD.

Methods In extensive simulation studies with high-dimensional and highly correlated exposures and a continuous 
health outcome, we examined the performance of each LOD approach on three mixture analysis methods: elastic 
net regression, weighted quantile sum regression (WQS) and Bayesian kernel machine regression (BKMR). We further 
analyzed data from the National Health and Nutrition Examination Survey (NHANES) on how persistent organic pollut-
ants (POPs) influenced leukocyte telomere length (LTL).

Results Complete case analysis was inefficient and could result in severe bias for some mixture methods. Imputation 
by LOD/

√

2 showed unstable performance across mixture methods. Conventional MI was associated with consist-
ent mild biases, which can be reduced by using a truncated distribution for imputation. Estimating censored values 
by AFT models had a minimal impact on the results. In the NHANES analysis, imputation by LOD/

√

2 , truncated MI 
and censored AFT models performed similarly, with a positive overall effect of POPs on LTL while PCB126, PCB169 
and furan 2,3,4,7,8-pncdf being the most important exposures.

Conclusions Our study favored using truncated MI and censored AFT models to accommodate values below LOD 
for the stability of downstream mixture analysis.
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Background
Environmental exposures to chemical, biological, or 
physical substances found in air, water, food, or soil are 
common during the human life course [1–3]. These high-
dimensional and highly correlated exposures can act 
synergistically or antagonistically on human health [4, 
5]. Studying individual exposures only addresses their 
marginal effects, without accounting for others, which 
can result in misleading conclusions about effects of the 
whole mixture [6, 7].

Several popular modeling approaches exist to analyze 
complex environmental mixtures, including but not lim-
ited to regularized regressions, weighted quantile sum 
regression (WQS) [8, 9], and Bayesian kernel machine 
regression (BKMR) [10, 11]. Briefly, regularized regres-
sions such as elastic net regression [12] and lasso (least 
absolute shrinkage and selection operator) [13] can be 
used to identify the relative importance of driver(s) in the 
mixture through variable selection [14–16]. WQS derives 
a one-dimensional weighted sum score of the exposures 
with a linear relationship to a continuous health outcome 
under the assumption that all exposure effects are in the 
same direction. WQS has been generalized to several 
types of outcomes [17] and is widely used in practice [16, 
18–20]. BKMR is a Bayesian nonparametric method to 
handle complex nonlinear relationships between expo-
sure mixtures and continuous, binary, and time-to-event 
outcomes [10, 21]. It has been widely used in mixtures 
studies, due to its flexibility and abundant visualization 
tools [16, 22]. Details of these methods are illustrated in 
Appendix A.

Environmental health studies often face challenges of 
exposure values below limit of detection (LOD) (i.e., left-
censored). All the above-mentioned mixture methods 
assume accurate measurements of exposures, thus some 
procedure for accommodating LOD is needed before 
applying these mixture methods. For example, with data 
from the National Health and Nutrition Examination 
Survey (NHANES) 2001–2002 cycle, Gibson et  al. [23] 
investigated the relationship between persistent organic 
pollutants (POPs) and leukocyte telomere length (LTL), a 
biomarker associated with chronic diseases [24–27] and 
dioxin-associated cancers [28–31]. Among the 34 POPs 
with 1.4% to 99.9% of values below LOD [32], Gibson 
et  al. [23] restricted their analysis to the 18 POPs with 
less than 40% of values below LOD and imputed all val-
ues below LOD by LOD/

√

2 . However, it is unclear how 
this imputation influenced the analysis results.

Recovering the true effects of environmental mixtures, 
where multiple exposures are subject to different propor-
tions of values below LOD, is thus an important prob-
lem to address. Several approaches for accommodating 
values below LOD for a single exposure have been used 

in practice, including complete case analysis by omit-
ting subjects with any measured values below LOD, 
single imputation by LOD/

√

2 , and multiple imputa-
tion. Ortega-Villa et al. [33] empirically compared these 
approaches in an environmental study setting with a 
binary outcome and a single exposure. However, the 
impact of these LOD approaches on downstream mix-
ture analysis results has not been thoroughly investigated 
in settings where multiple exposures within the high-
dimensional and highly correlated exposure mixtures are 
subject to LOD.

In this manuscript, we aim to understand the impact 
of five popular approaches for accommodating LOD: 
complete case analysis; single imputation of values below 
LOD by LOD/

√

2 and by estimates from censored accel-
erated failure time (AFT) models; and multiple imputa-
tion (MI) with and without LOD-based truncation. We 
conducted extensive simulation studies to examine their 
influences on three popular mixture methods, including 
elastic net regression, WQS and BKMR, after applying 
the above-mentioned LOD approaches. We also re-ana-
lyzed the 2001–2002 NHANES dataset as described in 
Gibson et al. [23], to illustrate how different ways of han-
dling LOD can impact the identification of associations 
between the POPs and LTL. Through these simulated 
and real data examples, we would like to draw read-
ers’ attention to carefully choose LOD accommodation 
approaches for mixture analysis, rather than recom-
mending one approach as the gold standard.

Methods
LOD accommodation approaches
Here we give a brief review of the five LOD accommo-
dation approaches. Complete case analysis only includes 
subjects whose exposure values are all above LOD. In 
theory, this approach provides unbiased results for lin-
ear regressions when the missingness only depends on 
the exposures [34, 35]. However, its performance may be 
unstable in practice with reduced sample sizes [36, 37]. 
An alternative approach is to replace values below LOD 
with a pre-specified constant value such as LOD, LOD/2, 
or LOD/

√

2 based on the observed exposure distribution 
[37–39]. In this study we chose LOD/

√

2 , which is widely 
used for log-normally distributed (or right skewed) 
chemical exposures. This approach is popular due to its 
simplicity, but results may be biased when the distribu-
tion of values below LOD is not centered on the substitu-
tion value [37, 38, 40].

Chen et  al. [41] recently proposed a new approach 
using multivariate accelerated failure time (AFT) regres-
sions to model multiple left-censored chemicals through 
baseline covariates, which is a flexible approach special-
ized to handle censored outcomes with mild assumptions 
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about the joint distribution. Note that this is an extension 
of the approach proposed in Kong and Nan [42] from a 
single exposure subject to LOD to multiple exposures. 
Due to simultaneously fitting multiple AFT models, it 
allows one to specifically account for the correlations 
between chemicals through shared baseline covariates 
and correlation between error terms. The originally pro-
posed approach in Chen et al. [41] allows one to simul-
tanueous model the exposures and health outcomes with 
efficiency gain. However, due to practical considerations, 
we only adopted the first part of this approach with the 
multivariate AFT model to conduct a single imputation 
for simplicity. The details of this approach are described 
in Appendix B.

Lastely, instead of single imputation approaches 
described above, multiple imputation (MI) also has 
been widely used by treating values below LOD as 
missing, and then imputing with models such as Bayes-
ian linear regression or linear regression with boot-
strap samples [35, 43]. MI generates multiple datasets 
(e.g., 5 or 10) for downstream analysis and combine 
analysis results using the Rubin’s rule [44]. In this 
study we chose to use the bootstrap linear regression 
implemented in the R ‘mice’ package [45] due to its 
superior performance in the settings we investigated. 
However, conventional MI does not guarantee that 
imputed values are below LOD. Thus, we improved 
it by truncating the estimated normal distribution at 
LOD to ensure all imputed values are in the correct 
range, and named this approach as truncated MI. The 
details of conventional and truncated MI are described 
in Appendix C.

Simulation settings
We conducted extensive simulations to empirically evalu-
ate the impact of LOD accommodation approaches on 
three popular downstream mixture analysis methods, 
including elastic net regression, WQS and BKMR, under 
various settings. First, covariates X = (1,X1,X2)

T were 
independently generated from X1 ∼ Bern(p = 0.5) and 
X2 ∼ N (1, 1) . Given that environmental exposures are 
commonly highly correlated, right-skewed and associated 
through covariates, a mixture of p = 10 exposures 
Z = (Z1, . . . ,Z10)

T was generated from a multivariate  
linear regression model with covariates X and log link, 
that is, Zlog = log(Z) = ηTX + ξ , with η = [η1, . . . , η10] =

0.20 0.35 0.30 0.25 0.35 0.25 0.25 0.40 0.25 0.30

0.50 0.50 0.25 0.05 0.03 0.10 0.25 0.25 0.50 0.25

0.05 0.02 0.00 0.50 0.25 0.25 0.25 0.50 0.25 0.25

, and 

ξ ∼ MVN (0,�) with � = σ
2







R1 0 0

0 R2 0

0 0 R3







 , where R1 and R2 

are 3 × 3 correlation matrices with all off-diagonal entries 
as 0.25 and 0.75, respectively, and R3 is a 4 × 4 correlation 
matrix with all off-diagonal entries as 0.5. Through this 
formulation, we imposed correlations between exposures 
through two sources: shared covariate effects X , where 
the correlations are governed by η , and correlation 
between error terms through off-diagonal entries in � . By 
the group structure in � (i.e., {Z1,Z2,Z3} for group 1, 
{Z4,Z5,Z6} for group 2, and {Z7,Z8,Z9,Z10} for group 3), 
we allowed a higher within-group correlation than 
between-group correlations. We varied σ = 1/2 and 1/8 
for moderate and high correlations within the groups, 
respectively (see Figure S1 for Spearman correlation coef-
ficients between simulated variables). Because Z were 
right-skewed, we generated outcome Y  under a linear 
regression with the log-transformed Zlog , as in many envi-
ronmental health studies, that is, Y = βTZlog + αTX + ǫ, 
where ǫ ∼ N (0, 2) . With a sample size of 500, we fixed 
α = (1, 1, 1) , and varied β and percent of value below 
LOD in various scenarios as follows.

– Scenario 1. We set β = (1.0, 0.8, 0.0, 0.6, 0.4, 0.0, 0.2, 0.1, 0.0, 0.0)T 
to reflect the relative importance of these exposures, 
and assumed that Z2,Z3,Z5,Z7 , and Z9 have approxi-
mately 30% of values below LOD.

– Scenario 2. Z2 is assumed to have approximately 
70% of values below LOD, while all the other set-
tings are the same as in Scenario 1. In this scenario, 
we handled Z2 in two ways that are widely used in 
practice: (i) Z2 was completely excluded from the 
analysis (Scenario 2A), and (ii) an indicator vari-
able of whether Z2 is above the LOD was used 
(Scenario 2B), while the other exposures subject 
to LOD were handled with the above-mentioned 
approaches. This scenario allows us to understand 
how to handle an exposure with a high percent of 
values below LOD.

– Scenario 3. We generated all the exposures as in 
Scenario 1, but we re-generated a new Z2 from 
Unif (0, LOD) if the original Z2 was below LOD. This 
essentially resulted in the marginal distribution of Z2 
being a mixture distribution of uniform below LOD 
and normal above LOD, and the new Z2 was used 
to simulate the outcome Y  . In this scenario, we aim 
to investigate whether the LOD accommodation 
approaches hold when the distributions of exposures 
are different below and above LOD. In this example, 
we arbitarily assumed that the change point of distri-
bution was exactly at LOD as a case study. In practice 
we may not know the change point unless there are 
external information. All the other settings are the 
same as in Scenario 1.
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– Scenario 4. We assumed a null effect (i.e., β2 = 0 ) 
of Z2 for values below LOD and β2 = 0.8 for val-
ues above LOD. The other settings are the same 
as those in Scenario 1. This allows us to investi-
gate whether the LOD accommodation approaches 
hold when the relationships between exposures 
and outcome are different below and above the 
LOD. Again, as a case study we arbitrarily picked 
the LOD as the changing point for simplicity, which 
may not happen in practice

For each exposure and a given percent of values below 
LOD, we pre-determined the LOD values as the cor-
responding percentile from an independently simu-
lated exposure dataset with sample size 20,000. With 
each simulated dataset, we first employed each of 
the five LOD accommodation approaches, then ana-
lyzed the resulting datasets with elastic net regression, 
WQS and BKMR under a unified formulation, that is, 
Y = h

(

Zlog

)

+ αTX + ǫ, where h
(

Zlog

)

 is the exposure–
response function. Specifically, h

(

Zlog

)

 is βTZlog for 
elastic net, ψ(wTZlog ) for WQS with ψ being the total 
effect of a mixture, w as the vector of weights (or relative 
importance) and Zlog as the pre-specified quantized Zlog ,  
and a general form h

(

Zlog

)

 for BKMR that allows non- 
linear relationship and interactions (see Appendix A). The R  
packages ‘glmnet’ [46], ‘gWQS’ [17] and ‘bkmr’ [47] with R 
version 4.2.1 (The R Foundation for Statistical Computing:  
http:// www.r- proje ct. org/) were used to implement these 
mixture methods.

In our implementations, all packages in R were applied 
as a default setting. Tuning parameters for elastic net 
were obtained from tenfold cross-validation. In WQS, we 
used quartiles of exposures after applying each approach 
for handling LOD with 200 bootstrap samples and 60% 
validation dataset. Five imputed datasets were generated 
for conventional and truncated MI approaches, and the 
final estimates of the MI and truncated MI were obtained 
using Rubin’s rules [44]. The R package ‘bkmrhat’ was 
used to combine the estimates of the MI and truncated 
MI in BKMR (https:// cran.r- proje ct. org/ web/ packa ges/ 
bkmrh at/ index. html). We conducted 1000 simulation 
runs for each scenario. R code is available on GitHub at 
https:// github. com/ ml5977/ LOD_ accom modat ion.

The goal of our simulation study is to evaluate how 
different LOD accommodations influence the results of 
downstream mixture analysis. Note that since we simu-
lated the data, all comparisons are made to estimates 
from the using the full datasets (i.e., not subject to LOD). 
We made this choice instead of comparing to the truth 
because some models are expected to exhibit biases even 
when all data are observed due to departure from the 

true underlying model, and certain model coefficients 
may have different interpretations. For example, elastic 
net regression explores a bias-variance trade-off, so we 
expect to see biases due to shrinkage [48]. WQS is based 
on exposure quantiles, so all the parameters can be inter-
preted as the average effect when exposures increase by 
one quantile, whereas the parameter in the true underly-
ing model represents the effect corresponding to a one-
unit change. We also do not compare across the three 
mixture analysis methods, which is beyond the scope of 
the current study.

For elastic net regression and WQS, we reported the 
average bias and empirical standard error (SE) of the 
parameter estimations. For BKMR, using model assess-
ment measures similar to those in Bobb et  al. [11], we 
regressed the estimated exposure–response function ̂h 
with each LOD accommodation approach on ̂h from the 
full dataset and reported the average intercept, slope, R2 , 
and standard error (SE) of ̂h to assess the goodness of 
fit of the overall effects [11]. An intercept close to 0 and 
slope close to 1 indicate no influence of the LOD accom-
modation approach on the downstream mixture analy-
sis. We further reported posterior inclusion probabilities 
(PIPs) for each exposure. To be consistent with BKMR 
results in assessing overall effect, R2 of regressing ̂h from 
each LOD accommodation on ̂h with the full dataset 
were also reported for elastic net regression and WQS.

NHANES data to explore the relationship between POPs 
and LTL
In addition to the simulation studies, we applied the 
above LOD accommodation approaches to the NHANES 
data collected between 2001 and 2002 as described in 
Gibson et  al. [23] and Mitro et  al. [32]. We considered 
a subset of 1,003 participants who were over twenty 
years old, and provided blood samples and consented 
to DNA analysis, with sufficient stored samples to esti-
mate telomere length, and without any missing values 
for individual exposures and covariates not related to 
LOD, as described in Gibson et al. [23]. The Institutional 
Review Board of the National Center for Health Statistics 
approved the survey [49].

To be consistent with Gibson et al. [23], we restricted 
our analysis to 18 POPs with less than 40% of values 
below LOD, which include 11 polychlorinated biphenyls 
(PCBs), 3 dioxins, and 4 furans (Gibson et  al. [23]). All 
samples were measured using high-resolution gas chro-
matography/isotope-dilution high-resolution mass spec-
trometry [50, 51]. LODs were typically ∼ 2ng/g , although 
they could be as high as 10.5ng/g [32], and 68.4% of sub-
jects had at least one exposure below LOD. Using the 
data, Gibson et al. [23] and Mitro et al. [32] hypothesized 

http://www.r-project.org/
https://cran.r-project.org/web/packages/bkmrhat/index.html
https://cran.r-project.org/web/packages/bkmrhat/index.html
https://github.com/ml5977/LOD_accommodation
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that exposures to dioxins, furans, and PCBs were associ-
ated with longer LTL, which is the outcome of interest in 
this analysis.

Demographics and exposure levels were described in 
Gibson et  al. [23]. POPs are moderately to highly cor-
related with Spearman correlation from 0.20 to 0.95 
approximately (Gibson et  al. [23]). These exposures can 
be categorized into three groups as described in Gibson 
et  al. [23]: (i) non-dioxin-like PCBs (including PCBs 74, 
99, 138, 153, 170, 180, 187 and 194), (ii) non-ortho PCBs 
(including PCBs 126 and 169), and (iii) all other expo-
sures including mono-ortho-substituted PCB 118, four  
dibenzo-furans, and three chlorinated dibenzo-p-dioxins, 
here refered to as mPFDs.

We employed the above-mentioned approaches for 
accommodating exposures subject to LOD. All exposures 
were log-transformed due to their right-skewness. We 
adjusted for all the covariates as in Mitro et al. [32] and 
Gibson et al. [23], including age,  age2, sex, race/ethnicity, 
educational attainment, BMI, serum cotinine, and blood 
cell count and distribution (white blood cell count, per-
cent lymphocytes, percent monocytes, percent neutro-
phils, percent eosinophils and percent basophils).

Using the same data, Gibson et al. [23] handled expo-
sure values below LOD through substituting them by 
LOD/

√

2 . They found three potential drivers (PCB 126, 
PCB 118, and furan 2,3,4,7,8-pncdf) selected by penal-
ized regression methods, a positive overall effect of the 
POPs by WQS, a positive linear association with furan 
2,3,4,7,8-pncdf, suggestive evidence of linear associa-
tions with PCBs 126 and 169, and a positive overall effect 
of the mixture but no interactions among exposures by 
BKMR. We re-analyzed the data with the same mixture 
methods after processing the values below LOD with five 
LOD accommodation approaches.

We recognized the need for sampling weights to 
account for the complex NHANES sampling scheme, in 
order to obtain results generalizable to the US popula-
tion [49]. However, our goal was to empirically compare 
the impact of different LOD accommodation approaches, 
rather than to provide estimates generalizable to the 
population. Thus, we simplified our analysis here by not 
including sampling weights for the NHANES cohort, so 
our results were consistent with those in Gibson et  al. 
[23]. We do recommend incorporating sampling weights 
into the analysis if an generalizable estimate is needed. 
We note some of the mixture analysis methods explored 
here, such as BKMR and WQS, require additional efforts 
to appropriately incorporate sampling weights, which is 
beyond the scope of this paper.

Results
Simulation results: elastic net regression
Depending on the scenarios, the overall percent of sub-
jects without any value below LOD in the simulated data 
was approximately 30% to 40%. Table 1 showed the bias 
of exposures Z1 to Z3 (group 1) and R2 for each LOD 
accommodation approach with elastic net regression, 
while all other results for elastic net is in Table S1.

In Scenario 1 as a general case, when the exposures 
were moderately correlated, most approaches were unbi-
ased except for the complete case analysis which also had 
higher SE, indicating inefficiency. In the high correlation 
setting, the biases in complete case analysis persisted, 
while imputing values below LOD by LOD/

√

2 and con-
ventional MI also showed biases for β2 . The bias in MI 
decreased when truncated MI was used. Imputation by 
estimates from the AFT model (F-AFT) and truncated 
MI were empirically unbiased and efficient in both mod-
erate and high correlation settings under Scenario 1.

When Z2 was subject to 70% values below LOD and 
was completely ignored in the elastic net regression 
(Scenario 2A), all LOD accommodations performed 
poorly with low R2 and large biases for exposures in the 
same group ( β1andβ3 ) and covariate X1 ( α1 ). Note that 
exposures in other groups were relatively less impacted 
since the effect of Z2 was potentially accounted for by 
those in the same group (i.e., Z1 and Z3 ). These biases 
decreased when correlations were higher, again presum-
ably because the information in Z2 was better captured 
by other exposures in the same group. These biases in β1 
and β3 were further alleviated when an indicator variable 
of Z2 (Scenario 2B), i.e., I(Z2 > LOD ), was used. How-
ever, β2 now has a different interpretation (i.e., the differ-
ence between values above LOD versus below the LOD), 
so we expected to see its large bias. Although Group 1 
exposures were still biased in Scenario 2B for most of the 
LOD accommodation approaches, F-AFT and truncated 
MI generally performed well, especially in high correla-
tion setting, followed by imputation by LOD/

√

2 and 
conventional MI.

When different distributions below and above LOD 
were assumed for Z2 (Scenario 3) or Z2 had different 
effects below and above LOD (Scenario 4), all approaches 
for handling LOD, including model-based approaches 
such as truncated MI and F-AFT, performed poorly for 
β2 because we lack any information to make inference 
about the values and relationship below LOD. Surpris-
ingly, we observed a smaller bias of β2 with conventional 
MI. However, the bias increased dramatically when 
the percent of values below LOD increased (results not 
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shown). Furthermore, conventional MI was substantially 
biased in the intercept α0 and was inefficient in β2 com-
pared to other LOD approaches with a lower R2. There-
fore, truncated MI and F-AFT still performed relatively 
better than other approaches and using LOD/

√

2 yielded 
slightly worse results but comparable.

Simulation results: WQS regression
We summarized the β1 to β3 and R2 results in Table 2 and 
all remaining results for WQS in Table S2. We expected 
WQS to be less sensitive to values below LOD due to 

using quantized exposures. However, some LOD accom-
modations could disrupt the quantiles and result in 
large biases. For example, in Scenario 1, we found that 
F-AFT and truncated MI mostly maintained the expo-
sures’ quantiles and were empirically unbiased and effi-
cient (Table 2). Complete case analysis showed relatively 
large biases, especially for overall effect estimate ( ψ ) in 
the setting of moderate correlation, due to the loss of 
all values below LOD and complete change of quantiles. 
Conventional MI also showed slightly larger biases com-
pared to truncated MI because the imputed values could 

Table 1 Bias (SE) for exposures in Group 1 and R2 with elastic net regression and each LOD accommodation approach compared to 
using full dataset

Bias (SE) was reported for exposures in Group 1 ( β1,β2 and β3 ). All other results are provided in Table S1. All comparisons were made to the parameters with full 
datasets without LOD. R2 was calculated by regression ̂h from each LOD accommodation on ̂h with the full dataset. In Scenario 2A, β2 was not estimated because Z2 
was not included in the analysis

Abbreviations: Imputation by LOD/
√

2 (LOD/
√

2 ), MI Conventional multiple imputation, Truncated MI Truncated multiple imputation, F-AFT Imputation by estimates 
using the AFT model

LOD accommodation Moderate correlation ( σ = 1/2) High correlation ( σ = 1/8)

 β1  β2 β3 R2 β1 β2 β3 R2

Scenario 1

 Complete case -0.12 (0.26) -0.13 (0.28) 0.02 (0.21) 0.74 -0.16 (0.65) -0.12 (0.41) -0.03 (0.42) 0.60

 LOD/
√

2 0.03 (0.14) -0.03 (0.14) 0.01 (0.11) 0.84 -0.03 (0.53) -0.16 (0.23) -0.04 (0.22) 0.79

 MI 0.05 (0.14) 0.02 (0.20) 0.02 (0.20) 0.80 0.06 (0.52) 0.12 (0.50) -0.03 (0.53) 0.82

 Truncated MI 0.00 (0.14) 0.01 (0.15) 0.00 (0.12) 0.83 0.04 (0.52) 0.08 (0.46) -0.01 (0.40) 0.85

 F-AFT 0.02 (0.14) 0.01 (0.15) 0.00 (0.12) 0.84 0.02 (0.53) -0.06 (0.41) -0.01 (0.34) 0.84

Scenario 2A

 Complete case 0.00 (0.26) 0.09 (0.22) 0.52 -0.17 (0.65) 0.00 (0.40) 0.56

 LOD/
√

2 0.14 (0.14) 0.10 (0.13) 0.62 -0.01 (0.54) -0.02 (0.21) 0.77

 MI 0.15 (0.15) 0.12 (0.20) 0.61 0.09 (0.55) 0.05 (0.50) 0.77

 Truncated MI 0.15 (0.15) 0.13 (0.20) 0.61 0.07 (0.54) 0.04 (0.48) 0.78

 F-AFT 0.14 (0.14) 0.11 (0.14) 0.62 0.03 (0.54) 0.01 (0.32) 0.80

Scenario 2B

 Complete case -0.04 (0.24) -0.26 (0.26) 0.06 (0.21) 0.64 -0.19 (0.63) -0.27 (0.14) -0.01 (0.39) 0.54

 LOD/
√

2 0.09 (0.14) -0.18 (0.17) 0.06 (0.12) 0.73 -0.05 (0.54) -0.26 (0.12) -0.02 (0.20) 0.76

 MI 0.10 (0.14) -0.17 (0.17) 0.06 (0.20) 0.73 0.05 (0.54) -0.25 (0.14) 0.03 (0.48) 0.76

 Truncated MI 0.09 (0.14) -0.17 (0.17) 0.07 (0.19) 0.73 0.03 (0.54) -0.26 (0.13) 0.02 (0.46) 0.78

 F-AFT 0.09 (0.14) -0.18 (0.17) 0.06 (0.13) 0.74 -0.01 (0.54) -0.26 (0.13) 0.01 (0.31) 0.80

Scenario 3

 Complete case -0.10 (0.26) -0.28 (0.30) 0.01 (0.21) 0.71 -0.17 (0.35) -0.34 (0.35) 0.02 (0.26) 0.65

 LOD/
√

2 0.00 (0.14) 0.13 (0.15) -0.01 (0.11) 0.85 0.00 (0.14) 0.16 (0.15) -0.01 (0.11) 0.86

 MI 0.07 (0.15) -0.03 (0.22) 0.03 (0.20) 0.78 0.07 (0.15) 0.00 (0.25) 0.04 (0.24) 0.77

 Truncated MI -0.03 (0.14) 0.18 (0.15) -0.02 (0.12) 0.83 -0.04 (0.14) 0.22 (0.16) -0.03 (0.12) 0.83

 F-AFT 0.00 (0.14) 0.15 (0.15) -0.02 (0.12) 0.84 0.00 (0.14) 0.19 (0.16) -0.03 (0.12) 0.84

Scenario 4

 Complete case -0.12 (0.26) -0.10 (0.30) 0.02 (0.22) 0.74 -0.19 (0.32) -0.18 (0.35) 0.03 (0.28) 0.67

 LOD/
√

2 0.00 (0.14) 0.10 (0.15) 0.00 (0.11) 0.86 0.00 (0.13) 0.14 (0.15) 0.00 (0.11) 0.86

 MI 0.04 (0.14) 0.06 (0.22) 0.03 (0.18) 0.81 0.05 (0.14) 0.06 (0.23) 0.03 (0.22) 0.79

 Truncated MI -0.02 (0.14) 0.12 (0.15) -0.01 (0.11) 0.84 -0.02 (0.13) 0.15 (0.15) -0.02 (0.12) 0.84

 F-AFT 0.00 (0.14) 0.12 (0.16) -0.01 (0.12) 0.85 0.00 (0.13) 0.15 (0.16) -0.02 (0.12) 0.85
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occasionally exceed the detection limit that can change 
quantile estimates. When LOD/

√

2 was used, perfor-
mance was unstable because the exposure’s quantiles may 
not be maintained in the analysis of WQS if the percent 
of value below LOD is high (e.g., potential mis-assign-
ment of quantiles). In evaluating the overall effects of the 
mixture with R2 , complete case analysis underperformed 
across all LOD approaches while the others were similar.

When the percent of values below the LOD for Z2 was 
increased to 70% and Z2 was ignored in the WQS analy-
sis (Scenario 2A), in the moderate correlation setting, 
the biases increased, especially for effects of exposures in 

the same group ( Z1 and Z3 ), total effect ψ , intercept and 
covariate X1 . When an indicator variable I(Z2 > LOD) 
was used as in Scenario 2B, the bias of total effects was 
slightly alleviated, but biases in weights of group 1 expo-
sures, intercept and covariate X1 persisted. All LOD 
accommodations performed similarly well in the high 
correlation setting, except complete case analysis was 
substantially biased in intercept and with lower R2 . In 
the scenarios with different distributions (Scenario 3) or 
different effects (Scenario 4) below and above LOD for 
Z2 , truncated MI and F-AFT maintained better perfor-
mance in both parameter estimates and R2 compared to 

Table 2 Bias (SE) for exposures in Group 1 and R2 with WQS and each LOD accommodation approach compared to using full dataset

Bias (SE) was reported for the total effect ( ψ ) and exposures in group 1 ( w1,w2 and w3 ). All other results are provided in Table S2. All comparisons were made to the 
parameters with full datasets without LOD. R2 was calculated by regression ̂h from each LOD accommodation on ̂h with the full dataset. In Scenario 2A, w2 was 
not estimated because Z2 was not included in the analysis

Abbreviations: Imputation by LOD/
√

2 (LOD/
√

2 ), MI Conventional multiple imputation, Truncated MI Truncated multiple imputation, F-AFT Imputation by estimates 
using the AFT model

LOD accommodation Moderate correlation ( σ = 1/2) High correlation ( σ = 1/8)

ψ w1 w2 w3 R
2 ψ w1 w2 w3 R

2

Scenario 1

 Complete case -0.34 (0.33) -0.03 (0.10) -0.04 (0.10) 0.02 (0.06) 0.73 -0.03 (0.33) -0.02 (0.13) 0.01 (0.13) 0.01 (0.10) 0.87

 LOD/
√

2 0.15 (0.22) -0.02 (0.06) 0.00 (0.08) 0.01 (0.05) 0.86 0.01 (0.26) 0.00 (0.13) -0.02 (0.11) 0.00 (0.10) 0.92

 MI -0.06 (0.18) 0.03 (0.06) -0.05 (0.06) 0.00 (0.04) 0.79 0.01 (0.24) 0.00 (0.13) 0.00 (0.11) 0.00 (0.09) 0.93

 Truncated MI 0.00 (0.18) 0.00 (0.06) 0.00 (0.07) 0.00 (0.04) 0.84 0.01 (0.24) 0.00 (0.13) 0.00 (0.11) 0.00 (0.10) 0.93

 F-AFT -0.01 (0.18) 0.00 (0.06) 0.00 (0.07) 0.00 (0.04) 0.85 -0.01 (0.24) 0.00 (0.13) -0.01 (0.11) 0.00 (0.10) 0.93

Scenario 2A

 Complete case -0.49 (0.29) 0.08 (0.12) 0.05 (0.08) 0.54 -0.05 (0.30) 0.02 (0.14) 0.03 (0.11) 0.83

 LOD/
√

2 -0.17 (0.19) 0.08 (0.07) 0.05 (0.07) 0.65 -0.01 (0.25) 0.03 (0.14) 0.02 (0.11) 0.88

 MI -0.28 (0.17) 0.11 (0.07) 0.02 (0.05) 0.63 -0.01 (0.23) 0.03 (0.14) 0.02 (0.10) 0.90

 Truncated MI -0.28 (0.17) 0.12 (0.07) 0.03 (0.05) 0.63 -0.01 (0.23) 0.04 (0.14) 0.02 (0.11) 0.90

 F-AFT -0.28 (0.17) 0.11 (0.07) 0.04 (0.06) 0.65 -0.02 (0.23) 0.04 (0.14) 0.02 (0.12) 0.90

Scenario 2B

 Complete case -0.33 (0.34) -0.14 (0.04) -0.20 (0.05) 0.04 (0.07) 0.45 -0.01 (0.34) -0.06 (0.04) -0.06 (0.08) 0.01 (0.10) 0.82

 LOD/
√

2 0.09 (0.22) -0.11 (0.04) -0.22 (0.03) 0.04 (0.06) 0.57 0.04 (0.29) -0.06 (0.05) -0.07 (0.07) 0.01 (0.11) 0.88

 MI -0.10 (0.19) -0.15 (0.02) -0.21 (0.03) 0.01 (0.04) 0.50 0.03 (0.25) -0.08 (0.01) -0.07 (0.07) 0.01 (0.09) 0.89

 Truncated MI -0.12 (0.19) -0.15 (0.02) -0.21 (0.03) 0.02 (0.05) 0.50 0.03 (0.26) -0.08 (0.01) -0.07 (0.07) 0.01 (0.10) 0.89

 F-AFT -0.12 (0.19) -0.16 (0.02) -0.21 (0.03) 0.03 (0.05) 0.52 0.01 (0.26) -0.08 (0.01) -0.07 (0.08) 0.01 (0.10) 0.89

Scenario 3

 Complete case -0.46 (0.35) 0.00 (0.10) -0.11 (0.10) 0.03 (0.06) 0.69 -0.54 (0.44) -0.03 (0.11) -0.12 (0.11) 0.04 (0.07) 0.66

 LOD/
√

2 0.16 (0.23) -0.01 (0.06) -0.01 (0.08) 0.01 (0.04) 0.85 0.20 (0.24) -0.02 (0.06) 0.01 (0.07) 0.01 (0.04) 0.86

 MI -0.14 (0.20) 0.05 (0.07) -0.10 (0.07) 0.01 (0.04) 0.75 -0.14 (0.21) 0.05 (0.07) -0.10 (0.07) 0.01 (0.04) 0.74

 Truncated MI 0.03 (0.19) -0.01 (0.06) 0.01 (0.07) 0.00 (0.04) 0.83 0.05 (0.19) -0.01 (0.06) 0.02 (0.07) 0.00 (0.04) 0.83

 F-AFT 0.01 (0.20) 0.00 (0.06) 0.00 (0.07) 0.00 (0.04) 0.84 0.01 (0.20) 0.00 (0.06) 0.00 (0.07) 0.00 (0.04) 0.84

Scenario 4

 Complete case -0.35 (0.34) -0.02 (0.11) -0.06 (0.10) 0.03 (0.06) 0.72 -0.45 (0.42) -0.05 (0.11) -0.08 (0.10) 0.04 (0.07) 0.69

 LOD/
√

2 0.18 (0.22) -0.02 (0.06) 0.01 (0.08) 0.01 (0.04) 0.86 0.20 (0.22) -0.03 (0.06) 0.02 (0.08) 0.01 (0.04) 0.87

 MI -0.08 (0.18) 0.03 (0.07) -0.07 (0.07) 0.00 (0.04) 0.78 -0.08 (0.18) 0.04 (0.07) -0.07 (0.06) 0.00 (0.04) 0.76

 Truncated MI 0.02 (0.17) 0.00 (0.07) 0.01 (0.07) 0.00 (0.04) 0.84 0.03 (0.18) -0.01 (0.06) 0.02 (0.07) 0.00 (0.04) 0.84

 F-AFT 0.00 (0.18) 0.00 (0.07) 0.00 (0.07) 0.00 (0.04) 0.85 0.00 (0.18) 0.00 (0.07) 0.00 (0.07) 0.00 (0.04) 0.85
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the other LOD accommodation approaches. Imputation 
by LOD/

√

2 showed similar R2 , but there was a large bias 
in estimating the total effect ψ.

Simulation results: BKMR
Table  3 showed the simulation results of BKMR under 
different scenarios. In Scenario 1, F-AFT performed the 
best among all the approaches, with intercept close to 
0 and slope close to 1, indicating empirically unbiased 
results of h

(

Zlog

)

 . The F-AFT also led to high R2 and 
lower SE. Truncated MI performed similarly to F-AFT 

but was slightly less efficient. Complete case analysis 
and imputation by LOD/

√

2 underperformed, especially 
in the high correlation setting. In Scenario 2, none of 
the LOD accommodation approaches performed sat-
isfactorily, despite the indicator variable (Scenario 2B) 
resulting in slightly better estimation than Scenario 2A. 
In Scenarios 3 and 4, F-AFT and truncated MI were the 
most unbiased and efficient in both correlation settings. 
In identifying important mixture components by PIPs, 
F-AFT and truncated MI performed similarly to using 
the full dataset, while complete case analysis showed dis-
crepancies (Figure S2). The performance of imputation 

Table 3 Summary measures of estimated h(Z)with BKMR and each LOD accommodation approach compared to using full dataset

Summary measures were obtained by regressing the estimated̂h of each LOD-accommodation approach on̂husing full datasets, and reported average intercept, 
slope, andR2across simulation iterations. Zero intercept and 1 of slope indicate LOD accommodation approach does not influence BKMR results. “SE” denotes the 
posterior standard deviation of thêh

Abbreviations: Imputation by LOD/
√

2(LOD/
√

2 ), MI Conventional multiple imputation, Truncated MI Truncated multiple imputation, F-AFT Imputation by estimates 
using the AFT model

LOD accommodation Moderate correlation ( σ = 1/2) High correlation ( σ = 1/8)

Intercept Slope R
2 SE Intercept Slope R

2 SE

Scenario 1

 Complete case 0.07 0.91 0.83 0.42 0.58 0.68 0.56 0.21

 LOD/
√

2 0.11 0.94 0.96 0.28 0.44 0.77 0.75 0.16

 MI 0.23 0.88 0.87 0.30 -0.23 1.14 0.81 0.18

 Truncated MI 0.05 0.98 0.95 0.32 -0.21 1.13 0.85 0.18

 F-AFT 0.08 0.97 0.96 0.28 0.12 0.95 0.82 0.16

Scenario 2A

 Complete case 0.54 0.68 0.70 0.37 0.79 0.57 0.51 0.20

 LOD/
√

2 0.47 0.72 0.82 0.25 0.50 0.74 0.73 0.16

 MI 0.47 0.72 0.79 0.27 0.23 0.89 0.73 0.17

 Truncated MI 0.45 0.72 0.81 0.27 0.28 0.86 0.75 0.17

 F-AFT 0.47 0.72 0.82 0.25 0.39 0.80 0.77 0.15

Scenario 2B

 Complete case 0.31 0.79 0.78 0.40 0.80 0.55 0.48 0.21

 LOD/
√

2 0.31 0.81 0.89 0.27 0.55 0.71 0.71 0.16

 MI 0.31 0.82 0.87 0.29 0.23 0.88 0.72 0.18

 Truncated MI 0.29 0.82 0.88 0.29 0.29 0.85 0.74 0.18

 F-AFT 0.31 0.82 0.89 0.27 0.45 0.77 0.75 0.16

Scenario 3

 Complete case 0.29 0.87 0.81 0.43 0.36 0.80 0.70 0.50

 LOD/
√

2 0.05 0.98 0.95 0.31 0.07 0.98 0.95 0.30

 MI 0.30 0.84 0.83 0.33 0.33 0.83 0.81 0.33

 Truncated MI 0.00 1.03 0.92 0.36 0.01 1.04 0.91 0.36

 F-AFT 0.04 1.01 0.95 0.31 0.06 1.01 0.95 0.31

Scenario 4

 Complete case 0.18 0.89 0.82 0.43 0.24 0.82 0.72 0.50

 LOD/
√

2 0.05 0.98 0.96 0.28 0.05 0.98 0.96 0.28

 MI 0.21 0.89 0.88 0.30 0.24 0.88 0.86 0.30

 Truncated MI -0.01 1.02 0.95 0.32 -0.01 1.02 0.94 0.32

 F-AFT 0.03 1.01 0.97 0.28 0.03 1.01 0.96 0.28
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by LOD/
√

2 in PIPs was comparable to those of F-AFT 
and truncated MI, despite this approach showing unsta-
ble results in some cases (e.g., high correlation settings).

NHANES data analysis results
When applying the elastic net regression to the mixture, 
F-AFT, truncated MI, and imputation by LOD/

√

2 gen-
erally resulted in similar findings (Fig.  1). Specifically, 
they all identified six important POPs: PCB99, PCB118, 
PCB126, PCB169, furan 2,3,4,7,8-pncdf, and furan 

1,2,3,4,6,7-hxcdf with similar effects. Complete case anal-
ysis only identified PCB126 and PCB169 to be important, 
while conventional MI resulted in selecting many more 
exposures. We additionally conducted group lasso with 
the 18 POPs categorized into three groups: non-dioxin-
like PCBs, non-ortho-PCBs, and mPFD, as described 
above. None of exposures in non-dioxin-like PCBs were 
selected except when using conventional MI, while non-
ortho PCBs (i.e., PCB126 and PCB169) were associated 
with non-zero coefficients in all LOD approaches (Figure 

Fig. 1 Coefficients for 18 POPs with elastic net regression and each LOD approach using NHANES data 2001–2002. Abbreviations: Imputation 
by LOD/

√

2 (LOD/sqrt(2)); conventional multiple imputation (MI); truncated multiple imputation (Truncated MI); imputation by estimates using 
the AFT model (F-AFT)
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S3). The magnitudes of the non-ortho PCB effects were 
larger with complete case analysis and conventional MI 
while the other three approaches yielded similar effects. 
For the mPFD exposures, again, F-AFT, truncated MI 
and imputaiton by LOD/

√

2 estimated similar coeffi-
cients and they all selected furan 2,3,4,7,8-pncdf as the 
most important exposures, followed by PCB118. Com-
plete case analysis resulted in null effects for all mPFDs, 
and conventional MI showed mild effects for some non-
dioxin-like PCBs and opposite direction for some of the 
mPFDs.

Deciles in exposures were used in the analysis of WQS 
regression to be consistent with Gibson et  al. [23]. The 
total effect of 18 POPs ranged between 0.014 and 0.018 
under various LOD-handling approaches, and they 
were statistically significant except for with complete 
case analysis, which is expected due to loss of efficiency 
with only 317 subjects included in the analysis (Table 4). 
Applying a priori cut-off weight of 1/18, we found 3 to 
4 important POPs across these LOD accommodation 
approaches. Imputation by LOD/

√

2 and truncated MI 
found 2,3,4,7,8-pncdf as the most important exposure, 
followed by PCB126 and 1,2,3,4,6,7,8-hxcdf. In addi-
tion to these three, the F-AFT approach also identified 
PCB194.

Using BKMR, we employed hierarchical variable selec-
tion with the three pre-defined groups, which provided 
importance scores for both the groups (i.e., group PIPs) 
and each exposure within a group (i.e., conditional PIPs). 
Truncated MI and imputation by LOD/

√

2 both resulted 
in the non-ortho PCB group with the highest PIP among 
three groups, while mPFD group has the highest PIP 
with F-AFT, conventional MI and complete case analysis 
(Table S3). Within the mPFD exposures, furan 2,3,4,7,8-
pncdf contributed most to the model, followed by PCB 
118 when imputation by LOD/

√

2 , truncated MI and 
F-AFT approaches were used. PCB 169 and PCB 126 
in the non-ortho PCB group had similar importance 

weights when we applied imputation by LOD/
√

2 , trun-
cated MI and F-AFT approaches. The individual effects 
of the POP exposures showed linear trends across LOD 
accommodation approaches (Fig.  2A), while the magni-
tudes of associations varied, especially for PCB169 and 
furan 2,3,4,7,8-pncdf which were selected as important 
exposures among the 18 POPs. The overall mixture effect 
was also close to a positive linear trend on the LTL out-
come across LOD approaches, while the strength and 
efficiency varied (Fig. 2B).

Discussion
In this study we have compared how five popular 
approaches for handling exposures subject to LOD influ-
ence the results of mixture analysis. We did not mean to 
provide a guideline on how to handle values below LOD, 
rather to draw attention about how results can be mis-
led by the various LOD accommodation approaches, and 
would like to advocate for careful examination of LOD 
accommodation prior to applying downstream mixtures 
analysis.

Through our extensive simulations, we generally 
favored using truncated MI and censored AFT models 
to impute values below LOD for the stability of down-
stream mixture analysis when the percent of the LOD 
was low to moderate (e.g., 30–50%). Compared to other 
approaches, truncated MI and censored AFT models 
generate imputed values based on the information from 
other exposures and covariates and guarantee that the 
imputed values are below LOD. Satisfactory results were 
also found with these two approaches when evaluat-
ing statistical uncertainties, such as mean squared error 
and coverage probability of the 95% confidence interval, 
in additional linear regression simulations (Table  S4), 
as well as when incorporating grouping information in 
the analysis of group lasso and BKMR with hierarchical 
variable selection (Tables S5 and S6). Of course, these 
model-based approaches rely on modeling assumptions 

Table 4 Total effect of 18 POPs and important exposures identified from WQS with each LOD accommodation approach, with 
NHANES 2001–2002

Relative importance was reported for exposures with the weight over 1/18

Abbreviations: Imputation by LOD/
√

2 (LOD/
√

2 ), MI Conventional multiple imputation, Truncated MI Truncated multiple imputation, F-AFT Imputation by estimates 
using the AFT model

Total effect ψ (SE) Important exposures (weight)

Complete case 0.014 (0.009) PCB169 (0.538), 1,2,3,4,6,7,8-hxcdf (0.125), PCB126 (0.113)

LOD/
√

2 0.018 (0.005) 2,3,4,7,8-pncdf (0.350), PCB126 (0.186), 1,2,3,4,6,7,8-hxcdf (0.184)

MI 0.015 (0.006) PCB169 (0.580), 1,2,3,4,6,7,8-hxcdf (0.153), PCB126 (0.080)

Truncated MI 0.018 (0.005) 2,3,4,7,8-pncdf (0.346), PCB126 (0.186), 1,2,3,4,6,7,8-hxcdf (0.183)

F-AFT 0.017 (0.005) 2,3,4,7,8-pncdf (0.328), PCB126 (0.189), 1,2,3,4,6,7,8-hxcdf 
(0.184), PCB194 (0.062)
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Fig. 2 Individual and overall relationships of 18 POPs with log-LTL from BKMR using NHANES 2001–2002 data. A Exposure-specific effect estimates 
of mixture members. B Overall effect of the mixture. Abbreviations: Imputation by LOD/

√

2 (LOD/sqrt(2)); conventional multiple imputation (MI); 
truncated multiple imputation (Truncated MI); imputation by estimates using the AFT model (F-AFT)
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and borrowing information from other exposures and 
baseline demographics. However, we argue since we do 
not get to observe any information below LOD, we need 
some assumptions, and the modeling assumptions made 
in these two approaches are relatively mild and reason-
able in practice.

Complete case analysis and imputations by LOD/
√

2 
are frequently used in environmental health studies due 
to their easy implementation. However, we found that 
their performance can be quite unstable, especially in 
scenarios with high correlations or high percent of val-
ues below the LOD as commonly observed in environ-
mental mixture studies. Richardson and Ciampi [38] also 
reported the bias in risk estimates when an arbitrary con-
stant value such as LOD or LOD/2 was used to replace 
values below the LOD, and pointed out the magnitude of 
bias depends on the differences between the substitution 
value and true exposure distribution below LOD.

When the percent of values below LOD increased 
to 70% in our simulations, using an indicator variable 
of whether the values are above LOD performed bet-
ter than excluding the exposure variable in the analysis. 
When other exposures were highly correlated with the 
exposure that had a high percent of values below LOD, 
its influence on the overall effect was limited because its 
information was well captured by other exposures. Based 
on our simulation studies with various percent of val-
ues below the LOD (results not shown), we recommend 
using the indicator variable approach when the percent 
of exposures below LOD is above 50%. For the NHANES 
data analysis, we restricted to exposures with less than 
40% of values below LOD, in order to replicate the analy-
sis in Gibson et al. [23]. If we were to perform our own 
analysis, we will likely use 50% as a cutoff to include three 
additional POPs in the analysis.

We acknowledge that it is difficult to verify an assumed 
relationship or distribution between exposure subject to 
LOD and disease outcome for values below the LOD. To 
address this, we examined various LOD accommodation 
approaches assuming that the relationship has no impact 
below the LOD (Scenario 3) and the distribution is dif-
ferent for values below LOD (Scenario 4) as a case study. 
In our simulation study, none of the approaches for han-
dling LOD in this study performed satisfactorily, which 
is similar to the results given by Ortega-Villa et  al. [33] 
for a single exposure. In such cases, we recommend con-
sidering the binary indicator approach for exposures with 
suspected differential distribution or relationship with 
outcome [52], while truncated MI or F-AFT can still be 
used for all other exposures subject to LOD. Even though 
BKMR with imputation by LOD/

√

2 , truncated MI and 
F-AFT performed satisfactorily in such scenarios due 
to its flexibility in allowing non-linear relationship, the 

implementation of the missing indicator approach could 
lead to further performance enhancement in BKMR. 
Yet, interpreting the estimated coefficient for the miss-
ing indicator within the exposure–response function of 
BKMR might prove challenging, especially when indica-
tors are needed for multiple exposures.

We applied the LOD approaches to NHANES 2001–
2002 where 18 selected POPs were subject to different 
proportions of values below the LOD. In our analysis, we 
did not include sampling weights because our goal was to 
understand the impact of different LOD accommodation 
approaches on downstream mixture analysis as a com-
parison with Gibson et  al. [23], which did not incorpo-
rate sampling weights. To incorporate sampling weights, 
Zhang et  al. [53] sampled one bootstrap sample with 
replacement from the NHANES data, with probabilities 
proportional to the sampling weights to test the results. 
We also implemented the same procedure. Although 
the mixture analysis results were different, we observed 
similar patterns across LOD accommodation approaches 
(results not shown).

In this study, we considered a two-stage approach as a 
practical implementation where we first performed the 
LOD accommodation to get a “complete” dataset, then 
conducted mixture analyses using this dataset. In the 
multiple imputation (MI) with or without truncation, 
we generated five imputed datasets, and combined the 
results of mixture analysis using the Rubin’s rule [44], 
which takes imputation variability into account in the 
final results. However, single imputations by LOD/

√

2 , 
and by estimates from the censored AFT model did not 
account for the uncertainty resulting from the imputa-
tion, which could lead to an overestimation of the pre-
cision. This can also be seen in the linear regression 
simulation results in Table  S4, with somewhat worse 
coverage probabilities by F-AFT and LOD/

√

2 . Neverthe-
less, in our experience working with epidemiologists, this 
two-stage approach is highly preferred in practice due to 
its convenience. It requires handling the LOD only once 
and allows the resulting dataset to be used as the “true” 
dataset for multiple studies in the future. As mentioned 
above, Chen et al. [41] proposed a semiparametric multi-
variate AFT approach with multiple exposures to simul-
taneously model the exposures subject to LOD and the 
outcome, which accounts for uncertainty in the expo-
sure assessment. This approach was applied to study the 
relationship between a panel of urinary trace metals and 
oxidative stress in pregnant women. The use of this pow-
erful approach is limited by its computational complex-
ity. Thus, it is of great interest to extend this approach to 
allow simultaneous modeling of the exposures subject to 
LOD with various mixture outcome models, and provide 
user-friendly software.



Page 13 of 16Lee et al. Environmental Health           (2024) 23:48  

Some analytical laboratories often provide the 
machine readings for specimens whose observed values 
is declared to be below the LOD, with the understand-
ing that the specimen’s level of analyte cannot reliably 
distinguished from zero; these readings may involve 
substantial measurements errors. Machine-read values 
have been often used in environmental mixture studies 
[54–56]. However, we did not consider the machine-
read approach in our case study because it is difficult 
to justify the actual mechanism of the machine-raed 
approach given that each machine in each lab has its 
unique way of generating the reads, and the accuracy 
could vary dramatically. In our data analysis, NHANES 
2001–2002 also did not provide machine-read values.

Here, we limited to three mixture analysis meth-
ods including elastic net regression, WQS, and BKMR 
which have been widely used in environmental mixture 
studies. We are aware of many other mixtures anslysis 
methods and performed simulations to understand the 
impact of LOD accommodations on these methods too. 
However, they were not included due to the length of 
the current manuscript. For example, Keil et  al. [57] 
recently proposed a quantile-based g-computation 
method (q-gcomp) that builds up on WQS regression 
integrating its estimation procedure with a g-computa-
tion technique, which is widely used for causal inference 
[58]. The q-gcomp method relaxes the unidirectional-
ity and linearity assumptions of the WQS regression. 
Results were similar to those for WQS, which is likely 
due to their similar model structures and our simulated 
exposures were all in one direction (e.g., see Table S7 for 
q-gcomp results under Scenario 1).

Several methodological extensions are of interest for 
further exploration. First, in this study we assumed a 
linear combination of variables in MI and F-AFT for 
imputation. However, these approaches could allow non-
linearity and/or non-additivity for better recovering the 
true effects in the mixture setting. We also assumed all 
the effects were in the same direction with no interac-
tions, which limits generalizability, and assumed a mul-
tivariate normal distribution for the exposures. Second, 
our study employed popular approaches for accommo-
dating LOD before applying the mixture analysis meth-
ods to the revised data (i.e., a two-stage approach). Lastly, 
environmental mixture exposures are often repeatedly 
measured (i.e., longitudinal mixture exposures), which 
could allow more accurate modeling of the exposure tra-
jectories. We leave a consideration of LOD adjustments 
that can appropriately incorporate longitudinal mixture 
exposures as a project for further development.

Conclusion
Quantifying the impact of mixtures of environmen-
tal exposures is becoming increasingly important for 
identifying disease risk factors and developing targeted 
public health interventions. Our case study delved into 
the issue of LOD in detail to understand how common 
approaches for handling LOD impact downstream mix-
ture analysis. Our exploration provides insight into var-
ious LOD accommodation approaches in downstream 
mixture analyses, enhancing the quality and reliability 
of environmental health studies.

Appendix A. Detailed descriptions of mixture 
analysis methods
For each subject i(i = 1, . . . , n) , let Yi be a continuous 
outcome of interest. Let Zi and Xi denote p - and q-vec-
tor of exposures and covariates, respectively. Note that 
Xi includes 1 for the intercept term. Thus, we observe 
data {Yi,Zi,Xi, i = 1, . . . , n} with sample size n . Using 
these notations, ordinary linear regression can be spec-
ified as Yi = βTZi + αTXi + ǫi , with ǫi ∼ N

(

0, σ 2
)

.
Elastic net is a regularized regression method that incor-

porates the linear combination of L1 and L2 penalties of the  
lasso and ridge methods [12]. The estimates can be obtained 
from argmin

β ,α

�y−
(

βTZ + αTX
)

�

2
+ �1

(

(1−�2)
2 �β�22 + �2�β�1

)

, where  

tuning parameters �1 and �2 can be determined by cross 
validation (CV). Note that �2 = 0 and 1 yield ridge and lasso 
regressions, respectively. We used the R package ‘glmnet’ [46].

WQS regression can be specified as Yi = ψ
(

wTZi

)

+

αTXi + ǫi , where Z  is a pre-specified quantized vari-
able of exposure Z . ψ represents the coefficient for the 
overall linear effect of the mixture, and w is the weight 
of each exposure. This method assumes that sum of all 
weights is 1 and each weight is between 0 and 1. Fur-
thermore, this method assumes the same direction in 
all exposures (i.e., unidirectionality assumption). To 
conduct the WQS regression, we used ‘gWQS’ R pack-
age [17].

BKMR includes a completely nonparametric func-
tion of exposures as Yi = h

(

Z1i, . . . ,Zpi

)

+ αTXi + ǫi , 
where h(·) characterizes a high-dimensional expo-
sure–response function that may incorporate non-
linearity and/or interaction among the mixture 
components. BKMR provides the posterior inclusion 
probabilities for each exposure, plotting the expo-
sure–response function, and the cumulative (or over-
all) effects of the mixture. The R package ‘bkmr’ was 
used for the analysis [47].
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Appendix B. Algorithm for LOD accommodation 
using the AFT model (F‑AFT)
Using the same notations from Appendix A, the follow-
ing steps are performed to produce imputation values 
from the multivariate AFT model:

Step 1. Apply a monotone decreasing transforma-
tion h−1(·) to rewrite left-censored Z as right-cen-
sored T  (e.g., T = h−1(Z) = −log(Z)).
Step 2. Fit the AFT model with a normal distribu-
tion for each exposure, Zj

(

j = 1, . . . , p
)

 , subject to 
LOD, where Tj = h−1

(

Zj

)

= ηTj Xj + ǫj . Note that 
we use the estimate residuals ǫ̂j to estimate the 
parameter � where ǫ =

(

ǫ1, . . . , ǫp
)T

∼ MVN (0,�)

Step 3. Using the estimates from Step 2, obtain the 
conditional truncated multivariate normal distribu-
tion [59–61] for the i th subject, ǫ(c)i ∼ f

(c)|(o),ǫ
(c)
i >ǫ̂

(c)
i

 
where (c) and (o) indicate the vector for the index of 
the censored variables and observed variables in Z , 
respectively, and f(c),(o) is the multivariate normal 
distribution with mean zero and covariance ̂� . For 
implementation, we used mtmvnorm function in 
‘tmvtnorm’ R package [62].
Step 4. Impute Zimp

i = h
(

T
imp
i

)

= h
(

η̂TXi + ǫ̂
imp
i

)

 , 
where ǫ̂

imp
i  is the conditional expectation of 

f
(c)|(o),ǫ

(c)
i >ǫ̂

(c)
i

 for each subject.

Appendix C. Algorithm for multiple imputation 
using bootstrap linear regression
Using the notations from Appendix A, the following 
procedures are performed to produce imputation val-
ues from conventional MI:

Step 1. Draw a bootstrap sample from observed 
samples.
Step 2. Obtain estimates from linear regression for 
each exposure Z subject to LOD, Z = γ TW + ǫMI 
with ǫMI ∼ N (0, σ 2

MI ) . Note that W  includes all 
available variables including the outcome.
Step 3. Draw imputed values Zimp ∼ N

(

γ̂ TW , σ̂ 2
MI

)

.

Note that this approach can be easily generalized to 
multiple exposures using multivariate imputation by 
chained equations (see Sect. 4.5.2 of Van Buuran [43]). 
In the truncated MI, we draw the imputed values Zimp 
from a truncated normal distribution, N

(

γ̂ TW , σ̂ 2
MI

)

 
within the range based on LOD (e.g., [0, LOD] ) in Step 3.
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