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Abstract

Background: More people die in the winter from cardiac disease, and there are competing hypotheses to explain
this. The authors conducted a study in 48 US cities to determine how much of the seasonal pattern in cardiac
deaths could be explained by influenza epidemics, whether that allowed a more parsimonious control for season
than traditional spline models, and whether such control changed the short term association with temperature.

Methods: The authors obtained counts of daily cardiac deaths and of emergency hospital admissions of the elderly
for influenza during 1992–2000. Quasi-Poisson regression models were conducted estimating the association
between daily cardiac mortality, and temperature.

Results: Controlling for influenza admissions provided a more parsimonious model with better Generalized
Cross-Validation, lower residual serial correlation, and better captured Winter peaks. The temperature-response
function was not greatly affected by adjusting for influenza. The pooled estimated increase in risk for a temperature
decrease from 0 to −5°C was 1.6% (95% confidence interval (CI) 1.1-2.1%). Influenza accounted for 2.3% of cardiac
deaths over this period.

Conclusions: The results suggest that including epidemic data explained most of the irregular seasonal pattern
(about 18% of the total seasonal variation), allowing more parsimonious models than when adjusting for
seasonality only with smooth functions of time. The effect of cold temperature is not confounded by epidemics.
Background
Epidemiological studies have shown that extremes in am-
bient temperature are associated with short term increases
in mortality [1-4]. While cold weather is associated with
increased winter time deaths, it is unlikely to explain the
seasonal pattern of rising and falling mortality rates. To
see this, consider Figure 1 (upper panel), which shows the
daily temperature vs. time in Detroit and Honolulu, and
Figure 1 (lower panel), which shows a smoothed plot of
the percent difference from the mean mortality rate in
each city. There are similar patterns of winter time in-
crease in both cities despite Honolulu having both an
order of magnitude lower oscillation in temperature and
much higher winter time temperatures than Detroit.
Therefore, most time series studies of the effects of

temperature or air pollution have used functions of time,
such as trigonometric functions [5], natural splines [6-9]
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and smoothing functions [2,10-12] to capture the poten-
tial confounding by the unnamed confounders that pro-
duce the seasonal pattern. These flexible approaches
showed that seasonal patterns varied widely from year to
year in the height and shape of the winter time peaks in
cardiac deaths. Since the confounders are unnamed and
controlled by capturing seasonal scale temporal fluctua-
tions with functions of time, there can be much debate
about the number of degrees of freedom necessary to
adequately control for confounding.
Recently, Reichert and coworkers have hypothesized

that the principle reason for the winter time increase
in cardiac deaths is respiratory, primarily influenza epi-
demics [13]. Using monthly, nationwide data, they
showed that influenza pandemics were associated with a
downward shift in the age of the cardiac deaths, similar
to the shift in severe influenza cases, and that year to
year variations in the timing of the peaks of the influ-
enza epidemic coincide with year to year shifts in the
timing of the peak of cardiac deaths. Since an influenza
virus infection may cause inflammatory processes which
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Figure 1 Daily Temperature in Detroit and Honolulu (upper Panel), and smoothed percent Difference from the mean Mortality Rate in
each City (lower Panel).
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are accompanied by large increases and C reactive pro-
tein [14,15], this pattern has some biological plausibility.
This raises the following questions with respect to

modeling the temporal pattern of cardiac mortality in
time series studies: can we better adjust for confounding
with a more parsimonious model using epidemics of in-
fluenza rather than arbitrary functions of time? How
much of the seasonal pattern of the cardiac mortality can
be explained by influenza epidemics? And, does control
for respiratory epidemics change the observed associa-
tion between cold weather and increased cardiac death?
To examine these questions, we conducted a large

multi city study in the US evaluating whether adjustment
for the counts of influenza admissions in the same city
changes the exposure response function of temperature,
whether it improves the overall model fit and whether
controlling for it the remaining seasonal pattern could be
modeled more simply.

Methods
Data
Mortality data
Daily mortality data from 48 cities in the US (all ages) was
obtained from the National Center for Health Statistics
for the time period from 1992 to 2000. The data included
individual information on primary and secondary causes
of death and other personal characteristics. We included
cardiac causes of death (ICD 9 390–429, ICD 10 I01-I51)
in the analyses. We chose cities to represent the range of
weather patterns seen in the U.S.
Influenza data
Hospital admissions of persons age 65 years and older in
the above cities were extracted from Medicare files
obtained from the Health Care Financing Administration
for the years 1992–2000. We calculated city specific
daily counts of urgent and emergency hospital admis-
sions with primary or secondary causes of influenza
(ICD 9 487) in the 48 cities and their adjacent counties.
Meteorology data
For each city, we obtained hourly weather data from
the nearest National Weather Service Surface Station
(Earthinfo Inc, Boulder, CO, USA). We calculated
daily mean values of relative humidity, air pressure
and temperature.
Analytical methods
Poisson regression models
We conducted separate Quasi-Poisson regression mo-
dels to estimate the association of daily cardiac mortality
and ambient temperature in each of the 48 US cities.
All models included cubic regression splines of same

day relative humidity and air pressure with two degrees
of freedom each and of temperature with four degrees of
freedom, as well as day of the week as categorical varia-
ble. The base model (model 1) included a cubic regres-
sion spline of date with five degrees of freedom per year
(i.e. 45 degrees of freedom for 9 years of data) to capture
trend and seasonality (Table 1). This reflects the standard



Table 1 Covariates included additionally to smooth Functions of Temperature, relative Humidity and Air Pressure, and
6 Terms for Weekday in Quasi-Poisson Regression Models 1 to 5, and total Degrees of Freedom

Model Effective degrees of
freedom

Degrees of freedom of
smooth function of time

Smooth function of influenza
admissions, mean of lags 0–4, df = 4

Sinusoidal function of time
with period of 1 year

Main analyses

1 60 5 per year (45)

2 31 10 x x

Sensitivity Analyses

1’ 64 5 per year (45) x

2’ 27 10 x
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approach in air pollution epidemiology and studies of the
impact of cold and hot days on mortality.
The more parsimonious alternative model (model 2)

uses a regression spline of a five day running mean of in-
fluenza hospital admissions (mean of same day and the
previous four days) with four degrees of freedom to cap-
ture the irregular component of seasonality, and sine
and cosine terms with a 1 year period each to adjust for
regular seasonality. In addition we included a 10 degrees
of freedom regression spline of date to adjust for long-
term trends. This model used half the number of degrees
of freedom compared to model 1.

Model comparisons
To quantify the model fit we used the Generalized Cross
Validation (GCV) [16] score, a measure of goodness of
fit that takes into account the effective degrees of free-
dom of the model. The smaller the GCV score the better
the fit. We examined the distributions of pairwise diffe-
rences of the GCV scores of two models. Positive values
indicate a better fit of the alternative model than the
base model. We also compared the partial autocorrela-
tion functions between models to detect potential over-
fitting (which is suggestive when there is mostly negative
autocorrelation), as well as remaining positive autocor-
relation (which would be suggestive for autoregressive
processes that would have to be accounted for or for
underfitting). We further tested the adequacy of model
choice by plotting the residuals against the linear predic-
tors. Furthermore we plotted the observed as well as the
predicted numbers of cardiac deaths versus date to
evaluate how well the seasonal peaks were fit. Finally we
compared the functional forms of temperature of the
models for each city.

Summary estimate for hot and cold days
Relative risks and confidence intervals were calculated
for each city specific increments in temperature using
the point estimates on the exposure response function
and taking into account the variance covariance matrices
of estimates, following Wood 2006 [16]. Increments
considered were a decrease from 0 to −5°C and from the
10th to the 1st percentile respectively in 24 h air tem-
perature for cold effects and for an increase from 20 to
25°C and from the 90th to the 99th percentile for the heat
effect. Summary estimates were obtained by pooling the
city specific relative risks using a restricted maximum
likelihood random effects model [17].

Sensitivity analyses
We added the influenza term as in model 2 to model 1 to
evaluate whether more degrees of freedom are needed
(model 1’). Alternatively, we excluded the influenza term
from model 2 to explore the influence of influenza on the
regular seasonal pattern of cardiac deaths (by comparison
with model 2 (Table 1). To verify whether seasonality is
properly controlled for we examined smoothed spectral
density for the residuals of both models in each city.
Instead of using a penalized spline of a five day mean

of influenza admission counts we modelled each influenza
epidemic separately with polynomials of the length of the
episode, to allow for different strengths of each epidemic
as suggested by Braga et al. [18].
We had decided a priori to use temperature at lag 0 as

the main exposure because we were mainly interested in
acute effects of temperature. To test the robustness of
the model we compared the model fit, summary esti-
mates and the exposure response functions of the final
models with models that used longer lagged averages
(2-day mean of lag 0, 1 combined with 3 day mean of lag
2–5 or lag 0 combined with the mean of lag 1 to 25).

Quantification of seasonal variation explained by
influenza epidemics
We first compared the magnitude of the trough to peak
swing of the estimated sinusoidal functions of model 2
and model 2’ to obtain an estimate of how much of that
peak to trough swing was explained by influenza. We
then calculated the number of cardiac deaths expected
due to influenza using the estimates obtained with mo-
del 2 (as exp(η + s(influenza))-exp(η)), with η incorpo-
rating all covariates other than influenza admissions,
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and s(influenza) being the contribution of influenza) and
compared it the number of observed cardiac deaths.

Results
Figure 2 shows the locations of the cities, by size and
minimum temperatures for 1992 to 2000. Temperatures
were lower in the north-east compared to the south-
west (Table 2, Additional file 1: Figure S1). The range of
temperatures differed greatly. The smallest variation of
temperature was observed in Honolulu, which is not
shown on the map (range: 18–29°C). Meteorology data
was mostly complete with a range of 0 to 1500 missing
values. The city with 1500 missing days out of 3287 war
Terra Haute, where data was available only from 1996.
The 25th percentile of missing values was 2 for tempera-
ture and 9 for relative humidity and air pressure.
Mean number of cardiac deaths per day ranged from

1.4 in Boulder, CO to 142 in New York City, NY, reflec-
ting the population size of the included areas (Table 2,
Additional file 2: Figure S2. The mean daily number of
hospital admissions for influenza was below 1 in all ci-
ties, highest numbers of admissions on one day ranged
from 3 in Honululu, HI to 41 in Chicago, Il, (Table 2,
Additional file 3: Figure S3)).
Figure 3 shows plots of predicted temperature-mortality

dose response curves, and diagnostics (partial autocorrel-
ation plots, residuals, and observed and predicted values
versus time) of models 1 and 2 for Detroit as an example,
a city with a wide temperature range and relatively high
daily event numbers. Model 1 fit the data well. The
temperature response curve was U-shaped. Model 2, while
using half the number of degrees of freedom compared to
Figure 2 Locations of 47 US Cities included in the Study (Honolulu no
Symbol Color according to Quintiles of 99th Percentile of daily Minimum Te
model 1, also fit the data well, capturing the regular sea-
sonal pattern as well as the irregular pattern. In particular,
it captured somewhat better the higher than average win-
ter peaks in 1994 and 2000. Figure 4 (left panel) shows
that, based on GCV scores across cities, model 2 fit the
data better than model 1. The right panel shows the distri-
butions of sum of the partial autocorrelation function for
both models, indicating that model 1 may be somewhat
overfit, whereas the mean PACF sum is 0 in model 2.
The temperature response function between daily mean

temperature and mortality was mostly U or J shaped, and
similar when comparing model 1 to model 2 (Figure 3
and Additional file 4: Figure S4 and Additional file 5:
Figure S5). The minimum of the U-curve appeared to de-
pend on the temperature range of the respective city.
Looking at the geographical locations the U shaped
curves appear more frequent in the middle areas of the
country, from the west to the east coast, while J shape
with a stronger cold effect occurred more in the north,
with a tendency to the east, and J- shape with warm
temperature effect are more frequent in the coastal south.
Estimates of the temperature cardiac mortality associ-

ation were heterogeneous. Therefore pooled results were
obtained under a random effects model. The overall esti-
mated increase in risk associated with a temperature de-
crease from 0 to −5°C was 1.5% (95% confidence interval
(CI): 1.2, 1.9%) in model 1 and 1.6% (95% CI: 1.1, 2.1%)
in model 2 (Table 3). The I2 statistic for percent of he-
terogeneity was 12% for model 1, and 29% for model 2.
Note that only 35 cities with a temperatures as low
as −5°C could be included. The pooled relative risk
(RR = for a decrease from the 10th to the 1st percentile,
t shown). Symbol Size according to Quartiles of Population Size and
mperature (green-cold to red-warm) [4].



Table 2 Distribution of Daily mean Temperature, Influenza Hospital Admission Counts and Number of Cardiac Deaths
in the Years 1992 to 2000 in the 48 US Cities included in the Study

City, State Cardiac Disease Mortality (N) Influenza Hospital Admissions (N) Mean Daily Temperature (°C)

Min Mean Max Min Mean Max Min Mean Max

Albuquerque, 0 5.2 14 0 0.06 5 −9.5 14.2 32.7

Atlanta, GA 7 24.5 51 0 0.20 16 −10.7 16.9 32.1

Austin, TX 0 5.1 16 0 0.07 8 −4.0 20.4 35.2

Baltimore, MD 7 23.4 53 0 0.16 8 −17.6 13.1 32.7

Birmingham, A 1 11.6 27 0 0.19 8 −12.0 17.1 32.4

Boston, MA 0 33.2 63 0 0.55 16 −16.4 10.7 31.7

Boulder, CO 0 1.4 7 0 0.12 5 −22.4 10.0 29.4

Broward, FL 8 24.0 46 0 0.12 4 8.1 24.8 30.9

Canton, OH 0 6.2 19 0 0.16 8 −25.9 9.8 28.1

Charlotte, NC 0 7.0 20 0 0.13 7 −9.9 16.1 32.0

Chicago, IL 0 62.6 348 0 0.75 41 −26.5 10.1 32.9

Cincinatti, O 0 13.5 35 0 0.13 6 −23.5 12.1 31.4

Cleveland, OH 0 25.1 52 0 0.26 10 −23.8 10.4 29.7

Colorado Spri 0 3.2 10 0 0.12 5 −22.5 9.4 27.7

Columbus, OH 0 13.8 29 0 0.09 6 −24.3 11.7 31.6

Dallas, TX 5 18.8 38 0 0.21 16 −7.6 19.0 36.3

Denver, CO 0 6.6 17 0 0.12 5 −22.4 10.0 29.7

Detroit, MI 0 29.1 55 0 0.25 17 −24.1 10.1 30.6

Greensboro, N 0 4.8 15 0 0.11 8 −13.2 14.5 30.7

Honolulu, HI 0 9.0 26 0 0.07 3 18.0 25.0 29.1

Houston, TX 0 28.1 54 0 0.26 13 −1.2 20.5 32.7

Jersey City, 0 7.5 22 0 0.25 19 −16.3 12.9 34.2

Kansas City, 2 13.1 32 0 0.19 12 −20.8 12.3 32.2

Los Angeles, 63 103.9 206 0 0.78 30 8.3 17.2 27.5

Miami, FL 13 33.0 59 0 0.11 5 8.1 24.8 30.9

Milwaukee, WI 3 12.9 32 0 0.28 19 −26.7 9.1 33.1

Nashville,TN 0 9.2 23 0 0.17 13 −15.3 15.4 32.1

New Haven, CT 0 13.0 32 0 0.29 15 −18.2 10.2 30.9

New Orleans, 0 7.3 20 0 0.11 5 −3.3 20.6 31.3

New York City 0 142.1 261 0 0.32 18 −16.1 13.0 34.1

Oklahoma City 2 11.0 25 0 0.13 9 −14.6 15.6 34.5

Orlando, FL 0 9.3 26 0 0.18 10 2.8 22.0 31.5

Philadelphia, 0 24.7 54 0 0.22 10 −17.7 13.3 33.0

Phoenix, AZ 10 26.4 55 0 0.25 10 5.1 23.6 41.0

Pittsburgh, P 0 25.6 50 0 0.36 12 −24.4 10.9 30.0

Provo, UT 0 1.8 8 0 0.10 4 −13.6 11.8 31.9

Sacramento, C 2 13.5 31 0 0.14 9 −0.7 15.9 33.5

Salt Lake Cit 0 5.9 16 0 0.10 4 −13.6 11.8 31.9

San Diego, CA 0 28.9 60 0 0.26 13 9.6 17.4 28.2

San Francisco 0 11.6 28 0 0.22 9 3.0 14.0 28.4

Seattle, WA 4 14.9 31 0 0.18 9 −6.6 11.3 27.6

Spokane WA 0 5.0 14 0 0.13 7 −23.1 8.8 30.7
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Table 2 Distribution of Daily mean Temperature, Influenza Hospital Admission Counts and Number of Cardiac Deaths
in the Years 1992 to 2000 in the 48 US Cities included in the Study (Continued)

St. Louis, MO 7 23.2 44 0 0.54 41 −19.9 13.8 33.7

Tampa, FL 3 12.1 27 0 0.16 7 3.0 22.5 31.2

Terra Haute, 0 2.1 9 0 0.18 7 −20.7 11.7 30.7

Tulsa, OK 1 8.2 22 0 0.12 6 −15.7 15.8 34.7

Washington, D 0 11.0 26 0 0.13 7 −16.6 14.3 33.8

Youngstown, O 0 6.2 19 0 0.18 8 −25.2 9.5 28.9
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calculated to reflect region specific relative temperature
decreases, was 2.7% (95%CI: 1.8, 3.6%) for model 1 and
3.1% (95%CI: 2.2, 4.0%) for model 2, with I2 statistics of
35% and 39% respectively.
Figure 3 Comparison of exposure response functions, partial autocor
observed/predicted versus time for models 1 and 2 and Detroit data.
The pooled relative risk for an increase in air
temperature from 20 to 25°C was 2.6% (95% confidence
interval (CI): 1.9, 3.4%) in the base and 2.4% (95% CI:
1.7, 3.1%) in the alternative model, with I2 statistics of
relation functions, residuals versus linear predictor, and



Figure 4 Box Plots of the 48 City-Specific Paired Differences
between Generalized Cross-Validation Scores of Model 1 and
Model 2 (Left Panel), and of the Sum of Partial Autocorrelation
Function (PACF) of the Residuals (lag 1 to 30) (Right Panel) of
Model 1 and Model 2.
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60% and 67%. The pooled RR for an increase from the
90th to the 99th percentile was 2.7% (95%CI: 1.9, 3.6%)
for the base and 3.0% (95%CI: 2.4, 3.6%) for the alterna-
tive model, with I2 statistics of 56% and 55%. Hence con-
trol for influenza epidemics did not diminish the effect
of temperature, and heterogeneity of the temperature
effects was greater for the effects of heat than the effects
of cold.
Sensitivity analyses that added influenza admissions to

model 1 (model 1’) resulted in GCV scores similar to
model 1, some overfit of the data and no change in shape
of temperature mortality functions. Model 2’, which elimi-
nated the influenza term from model 2, clearly underfit
the data.
Table 3 Pooled results of estimated temperature cardiac mor

Model Cha

0 to −5°C 10th to the 1st percen

RR (95% CI) RR (95% CI)

1 1.015 (1.012, 1.019) 1.027 (1.018, 1.036)

2 1.016 (1.011, 1.021) 1.031 (1.022, 1.040)
When we characterized epidemics based on the per-
centiles or allowed for different effects of each epidemic
the model fit was not improved over model 2 and the
exposure response functions for temperature were not
altered substantially. Furthermore, including hospital
admissions for influenza this way, more degrees of free-
dom were needed than in our approach. Therefore we
concluded that including a smooth function of the count
of admissions allows adequate control for influenza
epidemics.
When we compared our final models with models that

used longer lagged averages (2-day mean of lag 0, 1
combined with 3 day mean of lag 2–5 or lag 0 combined
with the mean of lag 1 to 25) there was no improvement
of the model fit. The exposure response functions for
the mean of lag 0 and 1 did not differ greatly from the
result for the same day average. The summary estimate
for a decrease from 0 to −5°C of the average of lag 0 and
1 temperature was marginally higher, but using that
metric the conclusions of this investigation would not be
altered. It is important to note that a moving average of
25 days of temperature may reflect seasonality more
than the temperature effect.

Seasonal variation explained by influenza epidemics
When comparing the model 2’ that did not include
influenza admissions and model 2 that did include
this term, on average about 18% of the peak to trough
swing were explained by influenza with a range from 4%
to 34%.
The estimate of influenza related cardiac deaths in

each city over the study period added up to 69,714 over
the cities, 2.3% of all cardiac deaths observed.

Discussion
In the present large multi-city study in the US we
showed that the association of cardiac mortality with
ambient temperature can be more parsimoniously fit by
including influenza data into the time series analyses.
Such models better capture Winter peaks in cardiac
deaths, have better GCV scores, and, unlike the more
traditional spline models, do not induce negative serial
correlation. We found that a regular seasonal pattern
remained that could be fit by trigonometric functions.
Some remaining temporal patterns needed to be captured
tality association, by model (random effects model)

nge in temperature

tile 20 to 25°C 90th to 99th percentile

RR (95% CI) RR (95% CI)

1.026 (1.019, 1.034) 1.027 (1.019, 1.036)

1.024 (1.017, 1.031) 1.030 (1.024, 1.036)
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by splines but with many fewer degrees of freedom. The
models fit better than when adjusting for seasonality with
a high degrees of freedom spline of time. The use of spline
of time as a covariate in time series models is based on the
belief that long wavelength (e.g. seasona) variations in omit-
ted variables are likely correlated with exposure but shorter
term variations are not. The choice of the cutpoint is not
determinable from the data. While using many degrees of
freedom may seem like a conservative approach, that risks
substantial diminution of power. For example, high degree
of freedom splines routinely fit peaks during summer heat
waves, which removes variations in deaths we want attrib-
utable to temperature. Our finding that using a real covari-
ate (influenza) fits the data better with fewer degrees of
freedom indicates such power loss is not necessary. Indeed,
while model 2 fit the rougher winter part of the mortality
curve better, it used fewer degrees of freedom to fit the
summer trough in mortality, which likely explains the tigh-
ter confidence intervals for the heat effects in model 2.
Model 2 also suggests that much of the irregular seasonal

pattern can be explained by influenza. We also found that
on average 18% (up to 34%) of the regular seasonal pattern
of cardiac deaths was attributable to influenza, confirming
it is an important risk factor for cardiac deaths. The pres-
ence of a remaining regular sinusoidal component after
control for influenza indicates that there is more to the sea-
sonal pattern in cardiac deaths than influenza, and that this
is a more regular phenomenon (that is, similar from year to
year). Length of day, hours of sunshine, vitamin D, and
other variables with more regular seasonal patterns need to
be investigated to parse this pattern further.
While the models that included influenza epidemics

appeared to better control for winter season increase in
mortality it is important to note that the temperature
mortality associations remained, and if anything the esti-
mated effect of cold days increased slightly. Hence fail-
ure to properly control for influenza epidemics does not
explain the observed increase in deaths on cold days.
The associations observed in this study are in line with
previous studies that showed heat [19] and cold effects
of temperature [2].
We estimated that influenza related cardiac deaths over

the study period added up to 69,714 over the cities, 2.3%
of all cardiac deaths observed. Nevertheless the results
suggest that the association of cold temperatures and
mortality is not explained by an increase of epidemics of
respiratory infections or a regular seasonal pattern, since
the shapes of the temperature mortality function were
not materially altered in those models compared to the
‘standard’ model. This is in line with a recent European
multi city study that used indicators for influenza and
showed consistent effects of cold weather on mortality [20].
That study did not compare their results with and without
influenza as a covariate. A study on the association of air
pollution and mortality included similar measures to esti-
mate influenza as confounder [18,21].
Braga et al. [18] modeled each influenza epidemic sep-

arately with polynomials of the length of the episode, to
allow for different strengths of each epidemic. When we
used that approach instead of a smooth function of the
number of admissions, the model fit was not improved
over our final model and the exposure response func-
tions for temperature were not altered substantially.
Furthermore, including hospital admissions for influenza
this way, more degrees of freedom were needed than in
our approach. Therefore we concluded that including a
smooth function of the count of admissions allows ad-
equate control for influenza epidemics.
In sensitivity analyses we used pneumonia admission

counts as a proxy of influenza epidemics as done in previ-
ous studies [18]. This includes pneumonia caused by patho-
gens other than influenza, which may also be causes for
heart disease morbidity and at the same time omits influ-
enza outbreaks that do not produce much life-threatening
illness. We used this as an alternative index to the influenza
admissions because it may be a better and more robust esti-
mate for epidemics in cities without large populations, since
counts of influenza admissions or sentinel physician visits
are generally very low on a local scale. The results were not
affected with this alternative definition.
Cardiac mortality of all ages was used in the analyses

to reflect the overall pattern of occurrence. Influenza
epidemics in the elderly were used as a proxy of periods
of influenza epidemics in the total population assuming
that temporal patterns of influenza in the elderly and
younger people likely overlap.
In this study on the temperature effects on cardiac

mortality we did not adjust for air pollution. The reason
was that there were many cities with sparse air pollution
data (i.e. PM10 and Ozone). Since previous studies have
shown that confounding of the cold effect by air pollu-
tion is not very strong [6,7] we preferred to use a
complete time series over adjustment for it that would
have meant a substantial loss of power.
Conclusions
In conclusion we showed in a multi-city study that the as-
sociation of cardiac mortality with ambient temperature
could be parsimoniously fit by including influenza data
into the time series analyses, while the temperature mor-
tality association was not substantially different from the
‘standard’, less parsimonious model.
Additional files

Additional file 1: Figure S1. Box plots of daily mean temperature in
the 48 cities, 1992 to 2000.
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Additional file 2: Figure S2. Boxplots of daily Cardiac mortality counts
in the 48 cities, 1992 to 2000.

Additional file 3: Figure S3. Boxplots of daily influenza hospital
admission counts in the 48 cities, including adjacent coutnies *,
1992 to 2000.

Additional file 4: Figure S4. City-specific plots of the smoothing
function (solid line) of temperature of model 1, with 95% CI (dashed line).

Additional file 5: Figure S5. City-specific plots of the smoothing
function (solid line) of temperature of model 2, with 95% CI (dashed line).
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