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Abstract

Background: Polychlorinated dioxins and –furans (PCDD/Fs) and polychlorinated-biphenyls (PCBs) are
environmental toxicants that have been proven to influence thyroid metabolism both in animal studies and in
human beings. In recent years polybrominated diphenyl ethers (PBDEs) also have been found to have a negative
influence on thyroid hormone metabolism. The lower brominated flame retardants are now banned in the EU,
however higher brominated decabromo-diphenyl ether (DBDE) and the brominated flame retardant
hexabromocyclododecane (HBCD) are not yet banned. They too can negatively influence thyroid hormone
metabolism. An additional brominated flame retardant that is still in use is tetrabromobisphenol-A (TBBPA), which
has also been shown to influence thyroid hormone metabolism.
Influences of brominated flame retardants, PCDD/F’s and dioxin like-PCBs (dl-PCB’s) on thyroid hormone metabolism in
adolescence in the Netherlands will be presented in this study and determined if there are reasons for concern to
human health for these toxins. In the period 1987-1991, a cohort of mother-baby pairs was formed in order to detect
abnormalities in relation to dioxin levels in the perinatal period. The study demonstrated that PCDD/Fs were found
around the time of birth, suggesting a modulation of the setpoint of thyroid hormone metabolism with a higher 3,3’,
5,5’tetrathyroxine (T4) levels and an increased thyroid stimulating hormone (TSH). While the same serum thyroid
hormone tests (- TSH and T4) were again normal by 2 years of age and were still normal at 8-12 years, adolescence is a
period with extra stress on thyroid hormone metabolism. Therefore we measured serum levels of TSH, T4, 3,3’,5-
triiodothyronine (T3), free T4 (FT4), antibodies and thyroxine-binding globulin (TBG) in our adolescent cohort.

Methods: Vena puncture was performed to obtain samples for the measurement of thyroid hormone metabolism
related parameters and the current serum dioxin (PCDD/Fs), PCB and PBDE levels.

Results: The current levels of T3 were positively correlated to BDE-99. A positive trend with FT4 and BDE-99 was
also seen, while a positive correlation with T3 and dl-PCB was also seen. No correlation with TBG was seen for any
of the contaminants. Neither the prenatal nor the current PCDD/F levels showed a relationship with the thyroid
parameters in this relatively small group.

Conclusion: Once again the thyroid hormone metabolism (an increase in T3) seems to have been influenced by
current background levels of common environmental contaminants: dl-PCBs and BDE-99. T3 is a product of target
organs and abnormalities might indicate effects on hormone transporters and could cause pathology. While the
influence on T3 levels may have been compensated, because the adolescents functioned normal at the time of
the study period, it is questionable if this compensation is enough for all organs depending on thyroid hormones.
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Background
Polychlorinated biphenyls (PCBs) and dioxins (PCDDs/Fs),
especially TCDD (2,3,7,8-tetrachloro-dibenzo-p-dioxin)
are well known developmental endocrine disruptors.
PCDDs/Fs and planar (dioxin-like, dl-) PCBs are often
grouped together as ‘dioxins’ or ‘dioxin-like compounds’,
because of their common mode of (toxic) action, via the
Ah-receptor.
PCDDs and PCDFs are unwanted by-products of the

production of chlorinated phenols, metallurgic processes,
bleaching of paper pulp and the incineration of waste
[1-3]. PCBs have been produced world-wide from the
1930s and were mainly used as dielectric fluids in electri-
cal transformers and capacitors, as heat exchange or
hydraulic fluids [4].
The polybrominated diphenylethers (PBDEs) have

been widely used over the last few decades as flame
retardants in various materials such as electronic equip-
ment, plastics, foams (e.g. used in car seats and furni-
ture), carpet liners and textiles. Humans are exposed to
PBDEs mainly by ingestion (from food and milk) and by
inhalation of indoor air and dust. Currently, these com-
pounds are frequently detected in humans all over the
world [5,6]. The penta- and octa brominated dipheny-
lethers are banned in the European Union, but are still
present in the environment. Furthermore, three others,
also blamed for interfering with thyroid hormone meta-
bolism are still in use, decabromo diphenyl ether
(DBDE), hexabromocyclododecane (HBCD), and tetra-
bromobisphenol A (TBBPA). The first two were exten-
sively addressed in the HENVINET project. This FP6
EU HENVINET project aimed at synthesizing scientific
information available on a number of topics of high
relevance to researchers and policy makers in the field
of environment and health (E.C. grant: HENVINET
037019). The third one TBBPA is currently found in
human beings and can traverse the placenta as it has
been found in babies born by caesarean section in hos-
pitals. [7] TBBPA has a half life of 2 days and is
excreted as a glucuronide or a sulphate in the faeces via
the bile. In animal studies effects are detected on the
apical part of the cochlea and an increase in pituitary
weight was observed [8,9]. The specific thyroid hormone
nuclear receptor TR- ß2, only present in the cochlea,
pituitary gland and hypothalamus might play a role.
Considering the findings in babies born in hospital the
margin of exposure is very low and current use of
TBBPA is therefore a matter of concern for human
health, especially in the perinatal period. Thyroid hor-
mone is essential for normal body metabolism, growth,
and development including reproduction, maturation
and ageing. Fluctuations in thyroid hormone levels are
able to alter outcomes in children [10,11].

Large amounts of these compounds have been released
into the environment through the processes previously
stated. Organisms, and ultimately humans, are exposed via
ingestion (food, drinking water), via inhalation, and via
dermal contact. Ingestion is the main source (90%) of
exposure, primarily through meat and meat products (23-
27%), dairy products (17-27%) and fish (16-26%) [12]. Due
to the accumulating properties of these compounds, each
step higher in the food chain increases the concentration
of dioxins in an organism (bioaccumulation). Once
ingested, dioxins and PCBs are primarily stored in the
liver followed by the adipose tissue. After ingestion dioxins
and PCBs are detectable for a long period. The mean half-
life of dioxins and PCBs in the human body is assumed to
be 7 to 9 years [13].
Dioxins, PCBs and PBDE’s are also able to cross the pla-

centa[14] . In addition, they are excreted in breast milk
and thereby cause significant exposure to nursing offspring
[15]. Adolescents, undergoing hormonal changes during
puberty, are probably also at greater risk of susceptibility,
and therefore at higher risk, with regards to environmental
exposure health effects [16].
Background concentrations, concentrations that aver-

age individuals in Europe and the US are daily exposed
to, have been related to various negative health effects.
Studies have shown negative effects on lung function
[17,18], and haematological and immunological distur-
bances [19-21]. In addition, an increase in behavioural
problems was seen, and prolonged evoked responses
measured with EEG (electro-encephalography) and MEG
(magneto-encephalography), and possible indications of
subtle neurological abnormalities were found in children
[22-25].
Previous studies of the current cohort showed a higher

T4/TBG ratio that became significantly higher at 7 days
and 11 weeks after birth, together with an increase in
TSH. This finding was interpreted as an hypothyroidal
state of the hypothalamic cells involved in thyroid hor-
mone metabolism caused by dioxins [26].
In this study thyroid hormone parameters were investi-

gated in relation to prenatal and early postnatal PCDD/F
exposure and current exposure of PCDD/F and dl-PCBs
and the lower brominated PBDE’s during adolescence.

Methods
Study population
This study is part of a longitudinal cohort study of 14-19
year old children, studied during their neonatal (n=60),
[27] toddler (n=60) [28] and pre-pubertal period (n=41)
[22]. All 33 children (18 girls and 15 boys) participating
in the current follow-up were born in the Amsterdam/
Zaandam region. Twenty-five of the children are still inha-
bitants of the region. PCDD/F exposure was determined in
the perinatal period in breast milk. Of the total cohort of
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41 subjects who participated in the pre-pubertal study, one
subject was excluded from the current follow-up because
of a Ewing sarcoma and one was partly excluded because
of an extra Y-chromosome (XYY). Five subjects declined
to participate in the new follow-up, three could not be
traced. One of the children, who did not participate in the
pre-pubertal follow-up, consented to the current follow
up. Of the 33 examined adolescents 2 refused to undergo
vena puncture and 2 refused a repeated puncture after
blood clotting in the first needle.
The study was approved by the institutional medical

ethics committee. All participants of the study and their
parents signed an informed consent.

Laboratory analyses
Perinatal PCDD/F levels and current serum levels of
PCDD/Fs, dl-PCBs and PBDEs were measured in an
uncontaminated laboratory dedicated to low-level dioxin
sample treatment, at the Environmental Chemistry Section
of IBED/ESS of the University of Amsterdam. Concentra-
tions of the 19 most toxic PCDD/F congeners (seven
PCDDs and twelve PCDFs) and the concentration of 3 dl-
PCBs (77, 126, 169) and 8 PBDEs (28, 47, 85, 99, 100, 153,
154 and 183) were determined. The concentration of
PCDD/F and dl-PCB congeners are expressed in toxic
equivalents (TEQ) ng/kg=pg/g fat.
An activated carbon column (Carbosphere) was used

for group separation of the chemicals. The PCDD/F and
dl-PCB fraction was isolated and a clean-up was per-
formed using a column of AgNO3 on silica gel and a col-
umn of activated Al2O3 on silica gel. The PBDE fraction
was purified using activated Al2O3 on silica gel and an
activated alumina column. After concentrating the sam-
ple, quantification of dioxins and dl-PCBs was done
using hr-GC/hr-MS. PBDEs were determined by hr-GC/
lr-MS. As an internal standard, a mixture of 13C-labelled
PCDD/Fs, dl-PCBs and PBDEs was used. More detailed
information about the analysis have been published else-
where [6].
PCDD/F concentrations were previously determined in

the mothers’ milk 3-4 weeks after birth, which is indicative
of the prenatal exposure. The cumulative total postnatal/
lactational exposure was calculated as the measured

PCDD/F concentration in breast milk multiplied by the
total breast milk intake. [29] Results see table 1.

Statistical analyses
For statistical analyses the non-parametric Spearman’s
correlation coefficient was calculated using SPSS- 14.0.
The level of significance was 5% (P=0.05) for the analysis
with the predicted variables. For the congener specific
analysis the level of significance was 5/8% (P=0.0063), to
correct for the number of analyses.
As outcome variables we used serum T3, T4, FT4,

TSH and TBG. The prenatal, lactational and current
serum PCDD/Fs and the current serum dl-PCBs and
∑PBDE levels were the predicted variables using the
Spearman’s correlation coefficient. A congener specific
analysis of the PBDEs was performed.

Results
PCDDs/Fs
No correlations were found between prenatal dioxin
exposure and T3 (P=0.14), T4 (P=0.16), FT4 (P=0.81)
TBG (P=0.25) or TSH (P=0.78). Neither was a correla-
tion seen with the lactational exposure. Means and
ranges are given in table 2.

Dl-PCBs
A significant relationship was found between T3 and dl-
PCBs (P=0.047, see figure 1). No relation was found
with T4, FT4, TBG or TSH.

PBDEs
Congener specific analysis revealed a positive correlation
between BDE 99 and T3 (P=0.003, Figure 2), and with
FT4 (P=0.048). For the ∑PBDEs no significant relation-
ship was seen.
No association was found with T4, TBG or TSH

levels.

Discussion
In the current study a positive relation was seen
between dl-PCBs and T3, and a positive relation with
T3 and BDE 99 (see Figure 1 and 2). No relationship
was seen with TBG.

Table 1 Dioxin, dl-PCB and PBDE exposure

Mean Range Standard deviation 95% confidence interval

Prenatal dioxin (PCDD/F) exposure ITEQ (pg/g lipid in breastmilk), n=32 32.6 9.05-88.8 64.3 25.9-38.5

Lactational dioxin (PCDD/F) exposure ITEQ (absolute quantity in ng), n=32 66.5 4.34-279 64.3 43.3-89.6

Current serum dioxin (PCDD/F) WHO-TEQ (pg/g lipid in serum), n=27 2.2 0.4-6.1 1.6 1.6-2.8

Current serum dl-PCBs WHO-TEQ (pg/g lipid) 2.2 0.04-7.8 2.0 1.4-3.0

Current serum PBDE (ng/g lipid) n=17* 10.5 4.9-22.1 4.6 8.2-12.9

Means, ranges, standard deviation and 95% confidence interval of the exposure to Dioxins, PCBs and PBDE’s.

*Current serum PBDE levels is calculated with exclusion of the outlier (73.6 ng/g lipids)
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In an earlier study of our cohort an increase in T4
and T4/TBG ratio was seen in children with higher
dioxin levels in their breastmilk in the first and eleventh
week postpartum [26]. The children now in their adoles-
cence have normal serum TSH and T4 values.
TSH levels were significantly increased in relation to

prenatal exposure at eleven weeks postpartum. None of
these TSH-levels were above the WHO cut-off point of
5 mU/L, now also proposed to use as a biomarker for

dioxin toxicity. However we have found effects on brain
development in our cohort at the age of 8-12 years of
age, while no baby had a TSH above 5 mU/L in their
postnatal period [30] . Based on these outcomes it
would seem a major error for governmental bodies to
use a cut-off point of 5 mU/L as a biomarker for dioxin
toxicity.
T3 is a product of the target organs. It looks as if the

damage done by the two pollutants dl-PCBs and BDE 99

Table 2 Thyroid hormone metabolism parameters

Measured objective n=29 Mean Range Standard deviation 95% confidence interval

Free thyroxin (FT4) pmol/L 14.7 11.8-20.8 2.5 13.7-15.6

Triiodothyronin (T3) nmol/L 2.6 2.1-3.5 0.4 2.5-2.7

Thyroxin (T4) nmol/L 108.6 75.0-165.0 22.2 100.1-117.1

Thyroxin-binding globulin (TBG) mg/L 361.4 220-650 96.7 324.6-398.6

Thyroid stimulating hormone (TSH) mU/L 1.75 0.42-4.5 0.98 1.38-2.12

Thyroid hormone metabolism parameters, means, ranges, standard deviation and 95% confidence interval.

Reference intervals: FT4: 9-22 rmol/L, T4: 70-140nmol/L, T3: 1.2-3.0 nmol/L, TBG: 7-17 mg/L, TSH: 0.5-5.7 mU/L.

Figure 1 Serum dl-PCBs and T3 levels (P=0.047) in the individuals at the age of 14-18 years Serum dl-PCBs and T3 levels (P=0.047) in the
individuals at the age of 14-18 years
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resulting in higher T3 levels takes place in the peripheral
target organs perhaps by negatively influencing transporter
proteins. It is widely known and accepted that human
beings have effective compensation mechanisms. For
instance the brain is capable of keeping T3 levels constant
over a wide range (30-200 % of normal) of T4 levels by
adapting the different deiodinases. However it is possible
that with environmental pollutants transporter proteins
are negatively influenced like for example the monocar-
boxylate transporter 8 (MCT 8), a protein necessary for
the transport of T4 and T3 over the membrane into the
cell in the hypothalamus, and when this transporter pro-
tein is lower or absent severe mental problems can arise as
is seen in the Allan-Herndon-Dudley syndrome, a genetic
MCT 8 deficiency, that is characterized by severe mental
retardation and an increase in T3 but normal T4 and TSH
[31]. In other words, a normal functioning pituitary gland
and thyroid gland producing enough T4, does not exclude
other organs having insufficient hormones due to hor-
mone transporter problems.
Numerous studies have provided evidence that polyha-

logenated aromatic hydrocarbons (PHAHs) and their
metabolites affect the thyroid hormone system: 1) They
may interfere directly with the thyroid gland, 2) with
thyroid hormone metabolizing enzymes (uridine-

diphosphate-glucuronyl transferases), iodothyronine
deiodinases, and sulfotransferases which are located in
the liver and the brain, 3) by interfering with the plasma
transport system of the thyroid hormone by competing
with plasma transthyretin (TTR) binding sites in ani-
mals, in humans this TTR is less important and TBG is
the main transporter in plasma [32] and 4) influence
membrane transporter proteins, that are specific for dif-
ferent target organs [33]. PBDEs have structural similari-
ties to T3 and T4, therefore it has been hypothesized
that PBDEs might interfere with the transport and meta-
bolism of T3 and T4 [34]. Another possibility is the up-
regulation of type 1 deiodinase, which is involved in the
deiodination of T4 to T3 and reverse T3 [35].
Doucet [36] published a sharp increase in the content

of PBDE’s in fetal livers of human fetuses after elective
abortions in early to mid-gestation and in the placenta.
Total PBDE’s increased over time from 284 ng/g lipid in
1998 to 1607 ng/g lipid in 2006. Main found significant
higher PBDE-levels in the breastmilk of mothers whose
newborn sons had cryptorchidism [37].
Effects on the thyroid homeostasis in relation to

PBDEs have been seen in animal studies. In a study of
mink ingesting PBDE via their feed, a decrease in T3
was seen [38]. A decrease in T3 and T4 was also seen in

Figure 2 Serum BDE-99 levels and T3 (P=0.003) in the individuals of the cohort at the age of 14-18 years. Serum BDE-99 levels and T3
(P=0.003) in the individuals of the cohort at the age of 14-18 years.
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fetuses of pregnant sheep who were exposed to BDE-47
[39]. PBDEs have been shown to decrease T4 and free
T4 in animals. T3 was also decreased in some studies,
but to a lesser extent than total T4 [40,41] . Animals
don’t have TBG like humans for the transport of T4
and T3 in blood.
In a study on 23 subjects living close to an electronic

waste and 26 control, higher TSH levels were found in
the studied subjects, who had higher PBDE levels in their
serum compared to a control group (382 ng/g lipids ver-
sus 158 ng/g lipids) [42]. In a small study investigating 11
electronic dismantling workers, no significant effects
were mentioned related to TSH, T3 or T4 [43].
No association of BDE-47 or PCB-153 with TSH or

thyroid hormone concentrations were found in 110 men
with high consumption of fish from the Baltic Sea [44].
In a later study of 182 females however, a relationship
between PCB-153 concentrations in plasma and T3
levels was seen [45].
Thus, besides the remodelling effects of tissues by

PBDE’s, as described by Main [37] in the form of cryp-
torchidism during prenatal life, health problems in later
life are also possible and we speculate that these health
problems are caused by effects on peripheral target
organs, maybe through thyroid hormone transporter dis-
ruption. The background levels of the PBDE’s are rather
high in the Netherlands compared to other European
countries but still ten times lower than in the US. An
enhanced effect due to multiple exposures to dl-PCBs as
well might additively worsen the situation.
In conclusion, the thyroid hormone system in Dutch

adolescents is influenced by current levels of dl-PCBs
and PBDEs. Most plausible is a toxic effect in the per-
ipheral target organs, involving the membrane transpor-
ter proteins. A disruption may be compensated, but it is
questionable if this compensation is sufficient for all
organs depending on thyroid hormones. Pathology in
some target organs may be present. Quantification of
this compensation is currently very difficult.
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