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Abstract
The eruption of genetic research presents a tremendous opportunity to epidemiologists to
improve our ability to identify causes of ill health. Epidemiologists have enthusiastically embraced
the new tools of genomics and proteomics to investigate gene-environment interactions. We argue
that neither the full import nor limitations of such studies can be appreciated without clarifying
underlying theoretical models of interaction, etiologic fraction, and the fundamental concept of
causality. We therefore explore different models of causality in the epidemiology of disease arising
out of genes, environments, and the interplay between environments and genes. We begin from
Rothman's "pie" model of necessary and sufficient causes, and then discuss newer approaches,
which provide additional insights into multifactorial causal processes. These include directed acyclic
graphs and structural equation models. Caution is urged in the application of two essential and
closely related concepts found in many studies: interaction (effect modification) and the etiologic
or attributable fraction. We review these concepts and present four important limitations.

1. Interaction is a fundamental characteristic of any causal process involving a series of probabilistic
steps, and not a second-order phenomenon identified after first accounting for "main effects".

2. Standard methods of assessing interaction do not adequately consider the life course, and the
temporal dynamics through which an individual's sufficient cause is completed. Different individuals
may be at different stages of development along the path to disease, but this is not usually
measurable. Thus, for example, acquired susceptibility in children can be an important source of
variation.

3. A distinction must be made between individual-based and population-level models. Most
epidemiologic discussions of causality fail to make this distinction.

4. At the population level, there is additional uncertainty in quantifying interaction and assigning
etiologic fractions to different necessary causes because of ignorance about the components of the
sufficient cause.
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Background
In setting health policy priorities, it is crucial to know how
large a burden of disease should be attributed to each par-
ticular preventable cause. For example, the occupational
burden of cancer has been the subject of detailed studies
[1,2]. Unfortunately, there are substantial uncertainties in
nearly all the data that are used in making these estimates.
The key data components are: 1. – a list of all of the
known or suspected carcinogens in the workplace; 2. – the
prevalence of exposures to these agents; and 3. – informa-
tion on the magnitudes of the risks of different types of
disease from the various exposures (exposure response
curves). Major gaps exist in what we know about all three
of these, and so considerable humility is called for when
assigning a figure to the occupational cancer burden and
other types of environmental diseases. Additional uncer-
tainties of a more fundamental nature also play a role:
how to factor into such estimates the possibility (or
indeed strong likelihood) that multiple risk factors inter-
act in ways that we do not understand, thereby preventing
a simple summing of the etiological contributions of dif-
ferent causes. The challenge is not limited to cancer stud-
ies: the problem of identifying and quantifying multiple
component causes of disease is one of the most basic lim-
itations in modern epidemiology.

Concepts of "causality" in medicine: from Koch to 
Rothman
In a rather simplified way, causation involves the relation-
ship between at least two entities, an agent and a disease.
Historically, at least two distinct eras of medical causality
can be distinguished. The first era corresponds to the
'microbiological' revolution (i.e., the triumph of a linear
monocausal (Aristotelian) concept of cause). After the
work of Pasteur and Koch, the agent of a disease came to
be conceived of as a single necessary cause (e.g. Mycobac-
terium for tuberculosis). The concept of necessary cause
means that the disease does not develop in the absence of
exposure to the agent. Such a view implies: a) that the
cause is, at least potentially, definable unequivocally and
is easily identifiable, and b) that the disease can be also
defined unequivocally (i.e., it is not a complex and varia-
ble constellation of symptoms). Clearly there are some
conditions in which the relationship between a (neces-
sary) cause and the corresponding disease is indeed evi-
dent: for example, smallpox is a clear-cut disease entity,
easy to define and diagnose, due to a single necessary virus
(no smallpox develops in the absence of the specific virus)
and clear proof of the causal link has come from the dis-
appearance of smallpox after large scale vaccination.

Cases such as smallpox are, however, an exception. More
frequently, in the "Pasteur-Koch" paradigm, we find a
clearly defined agent (usually a bacterium, parasite or
virus), which is used as the "unifying element" of a constel-

lation of symptoms (i.e., the disease, say, streptococcal
throat infection, itself is largely defined and recognized on
the basis of the agent). Although, the popularity of the
"Pasteur-Koch" approach to causality has not decreased,
and the concept of a necessary cause of disease is still dis-
cussed as a universal paradigm in medicine.

The second era in the history of causation in medicine
arises out of the study of chronic diseases like cancer or
cardiovascular disease. In these cases, the concept of a
"necessary" condition is rarely, if ever, meaningful. No
"necessary" cause of cancer is known (with the possible
exception of human papilloma virus and cervical cancer);
rather, in such cases, the idea of a "causal web" has been
introduced and widely applied [3]. The causal web reflects
the fact that a concurrence of different "exposures" or con-
ditions is required to induce disease, none of which is in
itself necessary. For example, lung cancer can be induced
by a causal web, including tobacco smoking and individ-
ual predisposition from CYP1A1 and other high-risk gen-
otypes [4]. Another causal web may be represented by
asbestos exposure and low consumption of raw fruits and
vegetables in the occurrence of mesothelioma. The idea of
the web implies that while the disease is usually well-
defined from a clinical point of view (e.g. lung cancer or
mesothelioma), the etiologic perspective is more com-
plex: not all lung cancer cases can be linked to the same
exposures, but may instead share partially overlapping
constellations of causes.

The main causal model used by epidemiologists today is
Rothman's "pies" [5]. The idea is that a sufficient causal
complex (a pie) is represented by the combination of sev-
eral component causes (slices of the pie). A set of compo-
nent causes occurring together may complete the "pie",
creating a sufficient cause and thus initiating the disease
process. Rothman's model has been useful on several
accounts. For example, suppose three factors (A, B and C)
make a sufficient cause of disease X. Then, one can see that
A will appear to be a stronger or weaker cause depending
on how common the other "slices" B and C are. A will
have a large impact on disease occurrence in a population
in which B and C are common, but no effect at all (though
being a sufficient cause), where B or C is absent. If it were
true that the sufficient cause A+B+C were the only pathway
to disease X, then it would follow that blocking or elimi-
nating any of these three factors would prevent the dis-
ease. Thus, A and B and C would be necessary component
causes. But if A, for example, also contributed to a suffi-
cient cause with factors D, E and F, then blocking B would
not prevent disease X. This more complex view (many pies
to which factors contribute) is supported by the epidemi-
ologic evidence for most chronic diseases. There are only
few examples of necessary component causes for cancer or
heart disease.
Page 2 of 10
(page number not for citation purposes)



Environmental Health: A Global Access Science Source 2006, 5:21 http://www.ehjournal.net/content/5/1/21
The above considerations concern our understanding of
disease causality at the individual level. The model looks
different if we shift from the individual to the population.
Here, the idea of single "necessary" components makes
sense. If we consider the current epidemic of lung cancer,
for example, there is no doubt that it is attributable to the
diffusion of the habit of tobacco smoking. For, although
we cannot attribute any single case of lung cancer to that
individual's smoking habits, there is no doubt that, on a
population level, the epidemic would not have occurred
without cigarette smoking. Notice that this assertion is not
contradicted by the fact that lung cancer also occurs
among non-smokers. Indeed, the evidence for cigarette
smoking as a (population level) cause of lung cancer is
quite strong: the risk of cancer in those who stop smoking
decreases considerably, in comparison with continuing
smokers, and, after a few years, approaches the risk of
non-smokers [6]. It should be clear then, that we have to
apply different criteria of causation when considering the
causes of disease at the individual or population level. We
can say that for chronic diseases, the model of causal com-
plexes in which there are necessary components is valid at
the population level.

Another difficulty with Rothman's pies is that they do not
tackle the temporal sequence at all. We therefore have to
consider other models.

Intermediate variables
At least three modern causality models deserve considera-
tion: graphical models (as e.g. in Pearl's approach) [7],
counterfactual models [8] and structural equation models
[9]. These models are worth mentioning, because they
have added some layers of complexity to the discussion
on causality and have also contributed to solving some
outstanding issues, including a more sophisticated
approach to confounding and identification of intermedi-
ate variables.

One of the main challenges to correctly identifying causal
sequences involving potential intermediate variables (like
biomarkers) is to assess whether the "intermediate" varia-
ble belongs to the causal pathway between exposure and
disease, or whether it lies on a separate pathway, corre-
lated in some way with exposure or disease. Explanations
for the biomarker's association can include confounding,
since the epidemiologist's view of the process is always a
population perspective. For example, certain mutations
may constitute genuine intermediate markers in causal
pathways between certain chemicals and cancers, whereas
other mutations are a consequence of a different chain of
events, like genomic instability that arises in cancer cells
(i.e., an effect of the disease, not a cause). As an example
of probable confounding, it has been shown that C-Reac-
tive Protein (CRP) levels change with changing levels of

other markers of inflammation and with levels of expo-
sure to environmental risk factors for heart disease [10]. It
is not clear whether CRP itself lies within the causal path-
way or is only a confounded marker for other changes.
The distinction is of critical importance in epidemiology:
if the biomarker is a confounder, then its effect should be
controlled to produce less biased estimates of associations
in the causal web. If, however, the biomarker is on the
causal pathway, then controlling for it will introduce bias,
of potentially substantial magnitude.

Very often intermediate events are both causal events and
confounders, thereby complicating resolution of causality
webs. For example, the development of respiratory disease
(measured for example by a change in forced expiratory
volume in the first second (FEV1)) is an independent pre-
dictor of both mortality and subsequent weight loss, and
is influenced by prior weight gain [11].

One statistical approach to disentangling confounding
uses structural equation models based on the logic of
counterfactuals [8]. The basic idea is that the exposure
leading to changes in the intermediate marker could be
theoretically randomized to create the counterfactual
instance, in which those with the marker and those with-
out have exactly the same levels of exposure. This
approach would enable us to distinguish a genuine inter-
mediate marker (e.g. CRP) from one that is confounded
by exposure. Typically, this solution is only a "thought
experiment," because most exposures cannot be rand-
omized, except for certain preventive or therapeutic inter-
ventions. In the absence of real randomization, the
approach involves creating a system of equations which,
under certain assumptions, can estimate the counterfac-
tual set of outcomes that each subject would have experi-
enced if (s)he had experienced exposures other than the
one actually received.

A similar approach founded on counterfactuals uses
graphical methods [7]. According to Pearl [7], a causal
graph "is a directed acyclic graph (DAG) in which the ver-
tices (nodes) of the graph represent variables and the
directed edges (arrows) represent direct causal effects"
(Figure 1 is an example). The main objective of DAGs is to
separate the language of statistical association from the
language of causality, by making the latter explicit in a
graphical form. As expressed by Pearl [7], the statistical
language does not permit us to distinguish between statis-
tical dependence, quantified by conditional probabilities,
from causal dependence, "for which we have no expres-
sion in standard probability calculus". The first to apply
this approach was the geneticist, Sewall Wright, who
noticed that equations are symmetrical objects (i.e., they
can be rewritten in order to exchange the dependent and
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the independent variables); therefore, Wright comple-
mented equations with a "path diagram" [7].

The notation of DAGs has the merit of making causal
assumptions explicit. Through the separation of different
pathways in the graphical structure, it is possible to simu-
late an experiment (even in the absence of randomiza-
tion) and, thus, separate causality from confounding. The
effect is defined as "the capacity to transmit changes
among variables." As Figure 1 shows, if we separate Z from
X, we can evaluate whether X is a genuine causal factor or
if it is confounded by Z. The joint distribution associated
with the modified model describes the post-intervention
distribution of variables (i.e., the controlled or experi-
mental distribution): if X represents a treatment variable,
Y a response variable, and Z some covariate that affects the
amount of treatment received, the post-intervention dis-
tribution assesses treatment efficacy by comparing aspects
of the distribution at different levels of X.

Once the paths are clarified and separated, one can write
a series of equations which describe them, and use these
equations to estimate the relevant associations. These
equations will be valid under two assumptions: (a) the
graph is acyclic and (b) all the error terms are jointly inde-
pendent. Unfortunately, both assumptions are frequently
violated in epidemiological research: (a) very often feed-
back, (for example, circularity) is encountered (e.g. in the
example of obesity, which causes cardiovascular disease,
which in turn leads to weight loss), and (b) errors are not
independent. But when conditions (a) and (b) are met,
we can predict post-intervention distributions from pre-
intervention distributions, even in the absence of real
intervention (i.e., of a randomized trial).

Interactions
"Interactions" have frequently appeared in the literature
of chronic disease epidemiology, but many of these

papers address statistical issues, such as the type (additive
or multiplicative) of the joint effect of variables, providing
very little insight into the underlying (biologic) mecha-
nisms that could justify the choice of a model. Pathophys-
iologic mechanisms of important chronic diseases are
usually complex and, for the most part, poorly under-
stood, but one general principle seems to apply: the inter-
action among the component causes occurs dynamically
over time. The development of disease involves an essen-
tial temporal sequence of initiation and subsequent
stages, and this fact has rarely been appreciated in epide-
miologic considerations of interaction [12]. Exposure
effects may be very different, when the exposure acts upon
a population whose members are not at the same stages
along a causal pathway, and those stages may not be
known to the researcher. The outcome will appear as het-
erogeneity (potentially quite severe) in susceptibility,
when viewed statically at a single point in time as when
epidemiologists determine the momentary incidence and
compare the exposure histories of study subjects.

Accordingly, there are two fundamental types of method-
ological inadequacy in current epidemiologic investiga-
tions of interaction. One derives from simple ignorance of
the underlying biological processes. The second, typically
addressed by epidemiologists, has to do with measure-
ment problems: imprecision of variables, misclassifica-
tion, and the lack of power of most studies focused on the
investigation of interaction [13-15]. We believe that the
first is likely to be much more important, although it has
received less attention. This issue may be best illustrated
by gene-environment interactions.

A taxonomy of gene-environment interactions
Quite possibly, genetic component causes play a role of
any disease, even those (like lung cancer) that also have
important environmental causes. As an example of the
opposite situation, homozygotes for the phenylketonuria

An example of DAGFigure 1
An example of DAG. From reference 7. The letters indicate "nodes" in the graph and stand for variables in the causal model. 
Arrows ("edges") represent relationships. Unobserved exogenous variables are connected by dashed arrows.
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(PKU) mutation have a deficiency in the enzyme required
to convert phenylalanine to tyrosine. If untreated, they
will accumulate phenylalanine in the blood and develop
mental retardation, but careful dietary restriction can keep
phenylalanine concentrations low and thereby prevent
retardation. Thus, it is particularly important to under-
stand how genetic and environmental factors may con-
tribute to the same sufficient causes, or more generally,
how they interact.

An effective taxonomy to describe gene-environment
interactions (irrespective of their being additive or multi-
plicative) has been provided by Ottman [16] (Figure 2).
Based on concrete biologic knowledge, the genotype G in
Ottman's Model A produces or increases the expression of
a risk factor or effect (E) that can also be produced or pre-
vented) nongenetically, as in the case of PKU. In Model B,
G exacerbates the outcome of E. For example, xeroderma
pigmentosum is an autosomal recessive disorder in which
exposure to ultraviolet (UV) light causes a high incidence
of skin cancers, due to a defect of DNA repair. However,
skin cancer is also associated with UV exposure in people
without this disease. In Model C, E exacerbates the effect
of G, but there is no effect in persons with the low-risk
genotype. For example, an autosomal dominant disorder,
porphyria variegata, is characterized by severe skin prob-
lems. Exposure to barbiturates strongly exacerbates the
symptoms and can lead to death. In Model D, both G and
E are required to obtain the effect. Deficiency of glucose-
6-phosphate dehydrogenase is an X-linked recessive disor-
der: individuals are asymptomatic, unless they eat fava
beans, in which case they develop severe hemolytic ane-
mia. Fava beans do not produce any symptoms in normal
individuals. Finally in Model E, G and E both have sepa-
rate effects, but when they occur together, the outcome is
more severe. For example, the risk of chronic obstructive
lung disease is increased in smokers without alpha-1-anti-
trypsin deficiency and in non-smokers with the defi-
ciency, but risk is greatly increased in smokers with this
enzyme deficiency. We suspect that most gene-environ-
ment interactions relevant to environmental exposures
and common chronic diseases belong to category E.

Limitations of statistical models
In the epidemiology of chronic disease, different external
exposures may show their effects in an additive or a mul-
tiplicative manner (i.e., the joint effect of two or more
exposures, or of a genetic factor and an environmental
one is the sum of their separate effects or their product, or
something else) [13]. Resolution of this issue has been
difficult, partly because of a lack of high quality data from
sufficiently large studies, and partly because of the diffi-
culty in identifying underlying biologic phenomena from
statistical models. Thus, the pathogenesis as the biologic
aspect (i.e., how different component causes combine)

occurs within individuals, while the statistical models
evaluate population data. There is still much to learn
about how to make inferences across these two levels of
observation.

The biostatistical models for evaluating interaction – usu-
ally multivariate regression models – are based on the
analysis of variance. This most obvious case is the ordi-
nary least squares multiple regression model, while the
same is true as well for the epidemiologist's preferred
tools – the logistic, Poisson, and Cox regression models.
These all estimate parameters by quantifying (or partition-
ing) the amount of the variation in risk that should be
attributed to one or another independent covariate. In
structure, these models are generally linear – thus, implic-
itly assuming that the "main effects" of two or more envi-
ronmental exposures, or of several genetic and
environmental factors, will combine additively in affect-
ing disease. Variances are computed, and the role of the
two main effects (or their interaction) is apportioned
accordingly.

Lewontin argues that the analysis of the variance
approach is often misleading [17]. There is no theoretical
justification for the presumption of a linear explanation
(this is done for the sake of simplicity, but is not generally
based on any formal biologic assumptions). In an essay
entitled "The Analysis of Variance and the Analysis of
Causes", Lewontin cites experimental data to argue that
mutations often cause a change in what is called the
"norm of reaction", or the ability of the organism to react
to different environmental conditions. The way in which
the mutant strain will react, say, to different temperatures,
is not consistent or predictable across the range of varying
environmental conditions. A non-linear model may
therefore be needed to describe the interaction between a
change in genotype and a change in environmental condi-
tions. Thus, analysis of variance will correctly correspond
to an "analysis of causes" (i.e., quantifying the relative
importance of the main effects of genes, environment and
their interactions) only when: (a) environmental expo-
sure-response relationships are linear for individuals with
each of the different genetic polymorphisms, and (b) the
study includes a sufficiently broad range of exposures to
provide statistical power to detect an interaction.

Considering Ottman's five models of interactions, the first
of these two conditions will only hold for models D and
E. Thus, in the absence of detailed knowledge of biologi-
cal mechanisms of disease and the roles of environmental
exposures and gene polymorphisms, it will generally be
inadvisable to use standard statistical models to appor-
tion variance in evaluating gene-environment interac-
tions.
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Attributable fractions
Predictions of the amount of disease that would be pre-
vented if a certain factor were blocked or eliminated from
the causal web are often called attributable fractions [18].
Greenland and Robins (1988) have shown that the quan-
tity that is typically estimated by epidemiologists (which
they call the excess fraction) is different from (and in most
cases less than) the etiologic fraction or that proportion of
the disease burden that is causally related to the exposure
[19]. The standard methods will generally not estimate
the proportion of cases which are etiologically related to
an exposure; generally, they will underestimate this quan-
tity by an unknown amount. There are several limitations
of the standard methods, but the most important is that
the usual formulas cannot account for the possibility that
an exposure may move forward in time the onset of a case
that would have occurred eventually in the absence of
exposure.

As an appropriate example, suppose we are interested in
estimating the contribution of a workplace allergen to the
rate of asthma in an occupationally exposed cohort. With-
out strong biologic assumptions, it is not possible to say
whether there were new cases of asthma in the study
period that would have occurred in the absence of the
exposure, but whose time of onset was advanced by the
exposure. To include this kind of "etiologic case" (as
Greenland and Robins call it) in the total burden of the
exposure seems appropriate, although that would require
strong biologic assumptions. Again in this case, the inter-

pretation of attributable fractions must be cautious given
the limited understanding that epidemiologists (and sci-
ence in general) have of how to study the temporal
dynamics of causal processes.

Main effects
Epidemiologists tend to focus primarily on the "main
effects" of single exposures, when analyzing the role of the
environment in causing disease [20]. By "main effect," we
mean the fact that the contrast of interest is between those
exposed to a single environmental agent and those unex-
posed, irrespective of other exposures or genetic varia-
tions. Interactions are considered to be something
secondary, if not an interference, to the direct and (uni-
causal) association of interest.

The "main effects first" strategy may appear parsimonious,
but it is inconsistent with what we know about the mech-
anisms of carcinogenesis and other chronic diseases, and
also with common-sense reasoning about causality. In
carcinogenesis, for example, it is well-established that the
pathway to a tumor includes several stages, and that some
exposures can lead to cancer by "completing" the causal
chain already initiated by previous exposures. This
implies a lack of independence between "earlier" and
"later" causes that would seem to conflict with an
approach which views interactions as of secondary impor-
tance. In general, we are probably constantly affected by
"incomplete" causal chains, which can be precipitated by
timely causal events.

Ottman's taxonomy of gene-environment interactions (G = genotype, E = environment)Figure 2
Ottman's taxonomy of gene-environment interactions (G = genotype, E = environment).

Model A: the effect of G is to produce or increase expression of a risk factor (E) than can also be

produced nongenetically (e.g. PKU) 

Model B: G exacerbates the effect of E (e.g. UV and skin cancer) 

Model C: E exacerbates the effect of G but there is no effect in persons with the low-

risk genotype (e.g. porphyria variegata) 

Model D: both G and E are required to obtain the effect (e.g. G6PD deficiency) 

Model E: G and E both have a separate effect, but when they occur together the effect 

is much higher (e.g. alpha-1-antitrypsin and COPD) 
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Mr. Smith's house on fire
Here is a common-sense example, which may help to
illustrate why interactions cannot be secondary phenom-
ena in any causal process consisting of a chain of steps. Let
us suppose that Mr Smith is quite absent-minded, so he
often leaves the gas oven in his kitchen on. Let us also sup-
pose that his house is equipped with a fire alarm and, if
this is working, let us say for the sake of simplicity that fire
fighters will always arrive and extinguish any fire. If, how-
ever, the gas is alight and the alarm is not functioning, the
probability of a fire is 1 (100%).

There are several scenarios that we can imagine. To start,
we establish some a priori probabilities of certain events
occurring in an interval of time (for example. one day):

A. the probability that Mr Smith leaves the gas alight is
50%, or p(A) = 0.5

B. the probability that the alarm system does not work is
1%, or p(B) = 0.01

C. the probability that a fire develops for reasons other
than those considered here (the "background risk") is 1/
1,000, or p(not A and not B) = p(C) = 0.001

With these assumptions, we can easily calculate the risk of
fire under various scenarios:

1. The scenario of ignorance
If Mr Smith does not remember whether he left the gas on,
and he does not know if the alarm works, then the proba-
bility of a fire occurring through the causal chain involv-
ing these two factors is:

p(A and B) - p(not A and not B) = (0.5 × 0.01)-0.001 =
0.005-0.001 = 0.004.

This figure is analogous to an attributable risk, as it
expresses the probability of the event occurring through
some specific mechanism or causal chain. The relative risk
of a fire occurring through this chain, compared to the risk
of fire through some other causal chain (C, the "back-
ground risk") is 0.005/0.001 = 5.

2. A scenario of partial knowledge
If Mr Smith knows that he left the gas on, but he does not
know if the alarm works, then the probability of a fire is:

p(B given A) - p(non-A and non-B) = 0.01 - 0.001 = 0.009.

The relative risk for this causal chain compared to the
background risk is 0.01/0.001 = 10.

3. The scenario of perfect knowledge
If Mr Smith knows both that he left the gas on AND that
the alarm does not work, then the probability of a fire is
1, the probability that the fire arises as a consequence of
this particular causal chain is 1 - 0.001, and the relative
risk is 1/0.001 = 1000.

In all of these simple calculations, we assume the inde-
pendence of A and B (i.e., absent-mindedness has nothing
to do with malfunctioning of the alarm). Although this
example is overly simplistic, it is relevant to the problem
of attributing cancers to particular causes. We know that
cancer requires several stages to develop, and we can
imagine that some of the exposures that lead to cancer are
common (around 50%, like cigarette smoke) and others
rare (like some genetic traits). However, what really
counts is their combination, and in particular the fact that
some exposures can "complete an incomplete causal
chain". What makes this insight particularly important for
the problem of attributing causes of a disease is that while
we are confident that multiple factors act through causal
chains such as these, we are almost always quite ignorant
about what components make up these chains, whether
they must act in a particular temporal order, and so on.

Returning to the house fire example, notice the impact of
knowledge on the relative risk. In the scenario of igno-
rance, in which we did not know whether the gas had
been left on nor whether the alarm would function, we
obtained a relative risk of 5 by comparing this causal
chain to the background risk. If we had partial knowledge
– for example, we knew that the gas was on, but not
whether the alarm would function – the relative risk
increased to 10. Finally, if we also knew that the alarm was
broken, then we could be certain that a fire would
develop.

The relevance of these arguments to the previous discus-
sion is that they suggest that interaction is not a secondary
property that can be expressed only according to some
mathematical (additive or multiplicative) model, but it is
simply the ability to complete an incomplete causal chain.
The fact that we assumed that absent-mindedness had
nothing to do with whether the alarm would work (statis-
tical independence of the two "risk factors") did not
diminish the fundamental reality of the interaction
between these two causal factors. In simplest terms, leav-
ing the gas on and the fire alarm failing were independent
phenomena, and yet they clearly interacted to cause a
house fire.

We can summarize the epidemiologic lessons from the
absent-minded Mr. Smith, in two points: (a) a pathogenic
process can reach a stage at which even an unlikely expo-
sure (with low prevalence) becomes extremely powerful
Page 7 of 10
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in triggering the final transformation, if the subject has
already undergone most of the required stages of predis-
position; and (b) a priori knowledge of susceptibility can
strongly modify our predictive ability. An important
implication of the latter point is that ignorance of the
genetic components of a necessary cause leads to lower
estimates of the magnitude of the risk from an environ-
mental cause (and vice versa). Epidemiologists are well
aware that poor characterization of an exposure often
leads to underestimation of its risk – our point is that poor
characterization of entirely distinct components of the
same sufficient cause will also lead to underestimation of
a risk or even failure to detect the risk entirely.

Genetic and acquired susceptibility
The epidemiologic search for gene-environment interac-
tions, or (a related concept) genetic susceptibility [21],
has led to some important findings, but there have been
as yet few examples of dramatic differences in genetic sus-
ceptibility to environmental agents. Instead, the number
of reports of modest impacts on environmentally-induced
disease is steadily growing [22]. Acquired susceptibility
has not received the same degree of attention as hereditary
susceptibility, but increasing evidence suggests that, at
least in carcinogenesis, the former (e.g. mutations relevant
to carcinogenesis) is common even at birth and in the first
years of life. Acquired susceptibility adds further complex-
ity to the idea of gene environment interaction, thus mak-
ing it all the more important for epidemiologists to
carefully interpret the causal chains under study.

Before highlighting some recent studies on acquired sus-
ceptibility to cancer, it is important to be clear about the
distinction between two similar-sounding concepts: herit-
ability and genetic causation (or determinism). Heritabil-
ity has to do with similar patterns of observable traits
between parents and offspring, while a characteristic is
"genetically-determined," if it is coded in and caused by
the genes in a normal environment. Two extreme exam-
ples may help to clarify the distinction. The number of fin-
gers on the human hand is completely determined by
genetics – the rare deviations from 5 fingers on each hand
being caused by defects of development (e.g., from thalid-
omide and therefore are not heritable). In contrast, wear-
ing skirts among European populations has a very strong
heritability (it occurs only in women, with the exception
of the odd Scotsman). Skirt wearing is thus closely related
to having two X chromosomes, but it is not genetically
determined (23). Such misconceptions are clearly rele-
vant to the discussion about the heritability versus genetic
determination of cancer. For example, the study of disease
clustering in identical twins does not provide clear evi-
dence with which to infer that cancer (or schizophrenia
for that matter) is due to inherited changes in DNA. Iden-
tical twins often inherit similar environments from their

parents. The same applies to claims that IQ has 60% her-
itability, academic performance 50%, and occupational
status 40%. These figures do not mean that such character-
istics are inherited through genes (DNA) (i.e., that there is
genetic determination, but only that there is a strong asso-
ciation between the characteristic in children and their
parents, or between dizygotic twins as compared to
monozygotic twins, depending on the study design).

Acquired susceptibility to cancer
One approach to studying gene-environment interactions
evaluates cancer risk from exposures to carcinogens in
people who have mutations shown experimentally to play
a role in carcinogenesis in vitro or in an animal model. If
such a mutation is environmentally induced, and if it
increases cancer risk in humans, then this would represent
a type of genetic susceptibility not from a fixed trait, but
rather acquired from an environmental exposure.

Mutations can arise very early in life. A striking recent
observation was the finding of a very high proportion of
healthy newborns with fusion genes TEL-AML1 and AML-
ETO, which are associated with lymphocytic leukaemia
[24]. The frequency of these mutations in healthy new-
borns was about 100 times higher than the expected inci-
dence of lymphocytic leukaemia, thereby possibly
implying that this mutation, detected at birth, may be an
early step in a causal chain leading to the disease. While
the origin of such mutations is not known – but could
reflect in utero exposure to genotoxicants – it is clear that
these mutations alone are insufficient enough to explain
the onset of leukemia, which probably requires further
"hits" to the precursor cells. In agreement with this find-
ing, Finette et al [25] found a high prevalence of hprt
mutations at birth in healthy children.

Specific mutations caused by environmental chemicals,
even early in life, may or may not constitute acquired sus-
ceptibility, but they provide evidence that such effects
may be identified in the future. In a series of well-designed
experiments, Somers et al [26] reported increased muta-
tion rates in herring gulls and mice exposed to air pollu-
tion at levels that characterize normal urban
environments. In mice, in fact, mutations were transmit-
ted transgenerationally (i.e. they were attributed to DNA
damage in sperm cells). Somatic mutations in newborns
have been related to air pollutants [27], and mutations in
germ cells have been attributed to air pollution or ciga-
rette smoking [28,29]. In human mother-newborn pairs
exposed to high levels of indoor pollution from coal
smoke [30], DNA adducts and other markers reached lev-
els higher in the newborns than in the mothers, although
tranplacental exposure levels were one-tenth of the mater-
nal exposures. In one experiment, where pregnant rats
were exposed to second-hand tobacco smoke, 8-OH-dG
Page 8 of 10
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adducts (indicating DNA damage) were formed in the
fetal kidney, liver, and brain, with dose-related increases.
The distribution in different organs depended on gesta-
tional stage [31]. In summary, these findings suggest that
mutations can be already present at birth, predisposing to
cancer if further hits occur.

Age effects on risk
Newborns may be particularly susceptible to the effects of
carcinogen exposure. Thus, the U.S. Environmental Pro-
tection Agency analyzed animal cancer bioassay data over
different periods of life [32]. Results indicated a 5- to 60-
fold increased carcinogenic sensitivity in the birth-wean-
ing period per unit dose (defined as mass/body weight0.75

– day) for mutagenic carcinogens and a somewhat smaller
increase – centered about 5-fold – for radiation carcino-
genesis, according to Gray. The authors found a similar
increased sensitivity in the fetal period for direct-acting
nitrosoureas, but no such increase was detected for carcin-
ogens requiring metabolic activation. Radiation experi-
ments indicated that carcinogenic sensitivity is not
constant through the "adult" period, but the dosage deliv-
ered in 12- to 21-month-old animals appears a few-fold
less effective than the comparable dosage delivered in
young adults (90–105 days of age).

The example of age is somewhat different from that of
acquired susceptibility in subgroups, but it is relevant,
because early exposure can be a mechanism by which
highly susceptible groups arise in the population. Again,
by leaving out this consideration from careful analysis, an
epidemiological study may tend to underestimate the true
effect of the exposure.

Discussion
We have explored different approaches to the elucidation
of causality in the epidemiology of disease arising from
genes, environments, and the interplay between both.
Several challenges face epidemiologists as they try to dis-
entangle the contributions of multiple risk factors in
chronic disease. Interaction is a fundamental characteris-
tic of any causal process involving a series of probabilistic
steps, thereby making it very difficult to estimate the indi-
vidual contribution of any single factor in a causal chain.
Routine statistical analyses are of limited help in this
regard, because the standard assumptions are difficult, if
not impossible, to verify. In addition, interaction is not a
second-order phenomenon identified after first account-
ing for "main effects". Standard approaches to assessing
interaction do not adequately consider the life course and
the temporal dynamics through which an individual's suf-
ficient cause is completed. Thus, different individuals may
not be at the same stage of development along the path to
disease, although verification is usually not possible. Fur-
ther, a distinction must be made between individual-

based and population-level models. Most epidemiologic
discussions of causality fail to make this distinction.
Finally, in quantifying interaction and assigning etiologic
fractions to different necessary causes at the population
level, additional uncertainty occurs because of ignorance
about the components of the sufficient cause.

Conclusion
We conclude that it is vitally important for epidemiologic
research to study "interactions" and, in particular,
acquired susceptibility to disease through the use of
appropriate models of causation. While epidemiologists
should continue to search for gene-environment interac-
tions in the causation of chronic diseases, new insight will
happen only slowly. Ignorance about steps in a causal
chain will hamper the identification of component
causes, whether environmental or genetic, in that chain.
We therefore recommend that epidemiologists (a) pay
more attention to those exposures that can induce
acquired susceptibility to disease, (b) consider more thor-
oughly the importance of multiple exposures and their
sequence in the determination of chronic diseases, and (c)
appreciate that interaction is not only a statistical concept,
but is deeply rooted in our models of biological causation.
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