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Abstract

Background: CYP19 and PPARy are two genes expressed in the placental trophoblast that are important to
placental function and are disrupted by phthalate exposure in other cell types. Measurement of the mRNA of
these two genes in human placental tissue by quantitative real-time polymerase chain reaction (QPCR) offers a
source of potential biomarkers for use in epidemiologic research. We report on methodologic challenges to be
considered in study design.

Methods: We anonymously collected 10 full-term placentas and, for each, sampled placental villi at 12 sites in
the chorionic plate representing the inner (closer to the cord insertion site) and outer regions. Each sample was
analyzed for the expression of two candidate genes, aromatase (CYP19) and peroxisome proliferator activated
receptor protein gamma (PPARY) and three potential internal controls: cyclophilin (CYC), 18S rRNA (18S), and
total RNA. Between and within placenta variability was estimated using variance component analysis. Associations
of expression levels with sampling characteristics were estimated using mixed effects models.

Results: We identified large within-placenta variability in both transcripts (>90% of total variance) that was
minimized to <20% of total variance by using 18S as an internal control and by modelling the means by inner and
outer regions. 185 rRNA was the most appropriate internal control based on within and between placenta
variability estimates and low correlations of 18S mRNA with target gene mRNA. Gene expression did not differ
significantly by delivery method. We observed decreases in the expression of both transcripts over the 25 minute
period after delivery (CYPI9 p-value for trend = 0.009 and PPARy (p-value for trend = 0.002). Using histologic
methods, we confirmed that our samples were comprised predominantly of villous tissue of the fetal placenta with
minimal contamination of maternally derived cell types.

Conclusion: qPCR-derived biomarkers of placental CYP19 and PPARy gene expression show high within-
placental variability. Sampling scheme, selection of an appropriate internal control and the timing of sample
collection relative to delivery can be optimized to minimize within-placenta and other sources of underlying, non-
etiologic variability.
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Background

The placenta is readily available yet underutilized in epi-
demiology as a biological marker of the effects of in utero
exposures on the fetal/placental unit. As an endocrine
organ, which plays a critical role in all aspects of preg-
nancy maintenance and fetal development, the placenta
can provide insight into mechanisms by which specific
exposures and risk factors are associated with outcomes
measured at delivery. Outcomes which are placentally-
mediated include the timing of labor [1], preeclampsia
[2,3] intrauterine growth restriction [4,5], and possibly
endocrine [6,7] and neurologic diseases [8] which
develop later in life. In the present study, we explored the
utility of placental gene expression measured by real-time
quantitative polymerase chain reaction (qPCR) as a novel
biomarker for use in environmental epidemiology,
including in our research on prenatal exposures to com-
mon endocrine disrupting chemicals called phthalates.

Phthalates have been shown to be reproductive and devel-
opmental toxicants in animal models with some prelimi-
nary evidence of effects in humans [9,10]. Urinary
phthalate metabolites can be characterized as low dose
chronic exposures in >90% of pregnant women [11-13].
We chose to study the placenta as a potential target of
phthalate toxicity during pregnancy. The placenta is a
transient endocrine organ which assumes a wide range of
functions to facilitate maternal-fetal interactions [14]. It
supplants the ovary in the production, metabolism and
regulation of steroid and other hormones necessary for
pregnancy maintenance and fetal development [15]. The
placenta, through autocrine and paracrine signaling,
helps to maintain uterine quiescence until late pregnancy
when a tightly regulated signaling cascade between the
placenta, the fetus, and the uterus is initiated to stimulate
uterine contractions [16]. Placental transporters can both
block and facilitate xenobiotic entry into the fetal com-
partment [17].

The placenta is an extremely heterogeneous tissue and
consists of several distinct cell populations. The main pla-
centa cell type is the trophoblast which is fetal in origin
and carries out most of the functions listed above. The
maternal side of the placenta or basal plate emanates from
the uterine wall and consists of trophoblastic and
endometrium-derived cells. The fetal component or the
placental villous is composed of a mixture of cell types
including trophoblasts, the trophoblastic basement mem-
brane, stroma (mesenchymal cells, macrophages, fibrob-
lasts, and matrix components) and fetal vessels [18]. In
the application of biomarkers of transcription, it is of crit-
ical importance to identify tissue type and cell type of
interest and design methods to maximize the presence of
these cells in any given biopsy. We were interested in tar-
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geting villous tissue and specifically gene targets expressed
in the syncytiotrophoblast.

Existing, previously-validated methods for identifying
toxic or pathologic responses in the human placenta
include measuring the residues of the compound of inter-
est in placental tissues [19-21]; documenting changes in
morphology and histology as is done in routine patholog-
ical exams [22-24]; and looking at associations between
the exposure and clinical cases of preeclampsia, placenta
abruption and other clinical outcomes relevant to placen-
tal function [25-27]. DNA adducts have been measured in
placental tissue and were associated with environmental
exposures but not with enzyme activity, suggesting that
they may not be good biomarkers of biochemical effects
[17].

We were interested in identifying a biomarker that could
be measured reliably and accurately in the placenta in an
epidemiologic setting that was related to phthalate expo-
sure and potentially relevant to effects at the molecular
and clinical levels. Messenger RNA was chosen given the
feasibility in measuring it in a large number of placentas
and its clear physiologic relevance. qPCR was chosen over
global gene expression microarrays, another commonly
used method in studies using human placental tissue [28-
32], for two reasons. We had identified our gene targets
based on apriori evidence from the toxicologic literature.
Secondly, qPCR was more cost-effective given that our
ultimate goal was to analyze a large enough number of
samples (N>150) to be able to detect associations with
common, low dose environmental exposures.

This validation study was undertaken to quantify underly-
ing variability for two gene targets that will be used in our
epidemiologic research: CYP19 (aromatase) and PPARY
(peroxisome proliferator receptor protein gamma).
CYP19 codes for the enzyme aromatase that is responsible
for the conversion of androstenedione to estradiol in the
placenta. Estradiol is essential for fetal development and
parturition signaling [15]. CYP19 may also be important
in the metabolism of xenobiotic compounds [33,34].
PPARy is a transcription factor that has been shown to
play an essential role in placental development and func-
tion through the regulation of genes involved in trophob-
last differentiation, angiogenesis, fatty acid transport, and
inflammation [35]. PPARy null mice die during embryo-
genesis due to gross placental malformation and cardiac
defects in the mouse [36]. The expression of both CYP19
and PPARy were altered in response to phthalate exposure
in rodent models [37-42]. Within the chorionic villi,
PPARy and CYP19 expression are expressed primarily by
trophoblasts. In term placentas, PPARy is localized to a
large degree to the syncytiotrophoblast [43,44]
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The purpose to the study was four-fold: (1) to evaluate
variability in gene expression by placenta, by quadrant
and by inner and outer regions of the chorionic plate; (2)
to determine which of three potential internal controls
was most appropriate; (3) to evaluate the effects of sam-
pling characteristics on mRNA levels such as delivery
method and time elapsed from delivery to sample collec-
tion; and (4), given the extremely heterogeneous nature of
placental tissue, to assess the cell type composition in our
tissue biopsies using histologic methods. Due to the fact
that this study was conducted on discarded tissue and
exempt from human subject protection, we were not able
to collect subject-specific information other than time of
delivery and delivery method.

Methods

Placental Samples: Ten full-term, discarded placentas
were collected in the labor and delivery room at Morgan
Stanley Children's Hospital of New York Presbyterian.
Placentas were collected anonymously and thus IRB
(Institutional Review Board) exemption was granted by
Harvard School of Public Health (HSPH) IRB and the
Columbia Medical Center IRB. The placentas included
Caesarian deliveries (C-section) (n = 3), vaginal normal
deliveries (n = 3), vaginal induced deliveries (n = 3), and
one vaginal augmented delivery (n = 1). Twelve tissue
samples were collected per placenta according to the
scheme in Figure 1a. A placental sampling device was used
to orientate the fetal side of each placenta in relation to
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the umbilical cord (Figure 1b). The S1-S4 samples were
categorized as 'inner' or from the area closest to the umbil-
ical cord insertion. The Q1-Q8 samples were categorized
as 'outer'. Care was taken by visual examination and dis-
section to minimize contamination from fetal mem-
branes or maternal decidua and to maximize the amount
of villous tissue in the sample. Each biopsy was taken
approximately 1 - 1.5 cm below the fetal membrane to
avoid membrane contamination as well as decidua con-
tamination. The general dimension of each biopsy was 1-
2 cubic centimeters and less than 1 gram in weight. Each
sample was preserved in RNALater (Ambion, Austin, TX
USA) to stabilize the RNA and stored at 4°C. Within 30
days, samples were transferred to -80°C. Samples were
collected between 3 and 25 minutes after delivery (<= 10
minutes, n = 3; 11 — 20 minutes, n = 3; 21 — 25 minutes,
n = 4). Samples were collected over one month in June -
July 2005.

RNA Analysis: Total RNA was isolated from approxi-
mately 300 mg of tissue using the RNeasy-Midi Kit (Qia-
gen, Valencia, CA). Genomic DNA contamination in the
sample was minimized with a DNase digestion step. Total
RNA was measured by determining absorbance at 260 nm
using an Ultrospec 2100 Pro UV/Visible Spectrophotom-
eter (GE Healthcare, Piscataway, NJ USA). RNA purity was
assessed by the A, /A, g, ratio (mean = 1.8, SD = 0.13, n
=119). We also ran the isolated RNA samples on analyti-
cal agarose gels. If the gel showed clear bands for 28S and
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Figure |

Placental sampling scheme and device. a) Samples S| — S4 represent the "inner" region and samples Q| — Q8 represent
the "outer" region and b) Placenta is pictured looking down at the fetal side and the chorionic membrane. Sampling was carried

out just below this membrane.
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18S, the samples were used for reverse transcription (RT).
If not, we re-isolated the total RNA isolation from the
same sample. Approximately 3 pg total RNA were used in
a RT reaction to synthesize cDNA using the First Strand
SuperScript from Invitrogen (Carlsbad, CA USA). Finally,
qPCR was used to quantitate differences in mRNA levels
in each sample for individual genes. Cyclophilin (CYC)
and 18S ribosomal RNA (18S) were included as house-
keeping genes to serve as internal controls for quantity
and quality of cDNA going into the RT reaction. CYC was
chosen based on a previous study that evaluated 3 house-
keeping genes for use in human placental tissue analysis
and found no difference between them [45]. 18S was later
chosen as the consensus housekeeping gene based on the
more recent placenta literature [30,32,46,47]. Total RNA
(ng total RNA/sample) was also evaluated as a potential
internal control [48,49]. All samples were analyzed for
PPARy, CYP19, CYC and 18S mRNA using the ABI Prism
7500 Sequence Detection System (Applied Biosystems,
Foster City, CA USA). Cycling conditions were the same
for all four transcripts: 95.0 C for 5:00 minutes for activa-
tion of the enzyme, 95.0 C for 30 seconds for denatura-
tion and 60.0 C for 1:00 minute for annealing/extension
for 40 cycles, followed by a dissociation step. Forward and
reverse primers (Sigma, St. Louis, MO USA) were either
designed by Primer 3 [50] or selected for each gene to
maximize specificity and efficiency in the reaction: CYP19
(249 base pairs (BP)) (forward) 5'-ATACCAGGTCCT-
GGCTACTG-3' and CYP19 (reverse) 5'-TCTCATGCATAC-
CGATGCACTG-3'[51]; PPARy (225 BP) (forward) 5'-
GCTGTGCAGGAGATCACAGA-3' and PPARy (reverse) 5'-
GGGCTCCATAAAGTCACCAA-3'; CYC (116 BP) (for-
ward) 5'-CCCACCGTGTTCITCGACAT-3' and CYC
(reverse) 5'-CCAGTGCTCAGAGCACGAAA-3'[52]; and
18S (forward) 5'-CGGCTACCACATCCAAGGAA-3' and
18S (187 BP) (reverse) 5'-GCTGGAATTACCGCGGCT-3'
[53]. Each reaction used 2 pl cDNA, forward and reverse
primers at optimized concentrations, and SYBR Green
PCR Core Reagents kit for a total reaction volume of 25 pl.

Specificity and Quantitation: Each sample was run in
duplicate. The duplicate values not falling within 50% of
their mean were rerun. Specificity of the PCR product was
evaluated using the melting curve generated at the end of
amplification and by running a 2% agarose gel to visual-
ize the PCR product. Absolute quantitation of mRNA con-
centration in the original sample was achieved using a
standard curve generated for each batch [54]. Each stand-
ard curve included 2 non-template controls and 8 serial
dilutions covering the range of 1000 molecules/ul — 1 x
107 molecules/pl. The standards for each gene were pre-
pared as described previously [55]. The R for the standard
curve was between 0.98-1.00. The plate was rerun if it fell
below 0.95. Ct (threshold cycle) values were use to evalu-
ate batch effects. These are the raw data generated by the
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qPCR and which are used in combination with the stand-
ard curve and the internal control to calculate the number
of mRNA molecules in each sample. The number of target
gene mRNA molecules for each sample was divided by the
number of CYC or 18S molecules or pg total RNA for that
same sample and expressed as a unitless ratio.

Histologic confirmation: Histologic confirmation of cell
type composition was done by using a subset of 5 repre-
sentative placentas selected from the full set of 10 placen-
tas used for qPCR. From each placenta, a piece of tissue
was cut from an inner sample (closer to umbilical inser-
tion point) and an outer sample (closer to outer margin of
the chorionic plate), treated with RNA-Later and stored
long-term at -80 degrees Celsius. Later they were rinsed
and fixed in formalin. They were then paraffin embedded,
cut and stained with hematoxylin and eosin and exam-
ined by a placental pathologist.

Statistical analysis: Gene expression values were trans-
formed to more closely approximate a normal distribu-
tion; for CYP19/CYC and CYP19/total RNA, we were able
to approximate normality with a square root transforma-
tion and for all others we used a natural log transforma-
tion. One CYP19 value for placenta ID 2 and sample Q7
was extremely low (<2 molecules mRNA/sample). We
concluded that the original mRNA concentration was
below detection and excluded it from the analysis. Two
tissue samples were missing completely and three samples
were missing 18S values, reducing sample size from N
(placentas) = 10 and n (tissues samples) = 120 to N = 10
and n = 115. The distributions of the untransformed val-
ues were summarized using means per placenta. Spear-
man correlation coefficients were used to evaluate
correlations between genes within samples. Mixed effects
models were used to estimate differences in gene expres-
sion by delivery method and time elapsed since delivery,
and regional (inner versus outer placenta) differences. The
correlation structure assumed equal variance between any
2 of the 12 samples. Variance component analysis was
used to estimate between-placenta versus within-placenta
variance. Statistical significance was set at p-value equal to
or less than 0.05. SAS 9.1 (SAS Institute, Cary, NC USA)
software was used to conduct all analyses.

Results and discussion

Histologic confirmation of cell type

The histologic analysis of RNA-Later treated sample con-
firmed that the samples were composed of placental vil-
lous tissue, with normal architecture and branching of the
villi (Figure 2). There were no pathological changes, such
as infarcts, hematomas, thrombi or inflammation in any
of the 5 placentas evaluated. The syncytiotrophoblast was
present in the expected proportion to the remainder of the
cell types. Samples did not contain chorionic membrane.
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Figure 2
Histologic confirmation of cell type composition done with H&E stained cross-sections of RNA-Later treated
placental biopsies. a) inner region of a vaginally-delivered placenta and b) outer region of a vaginally-delivered placenta.

Decidual cells made up approximately 5% of the total = The median mRNA concentrations were highest for 18S
nuclei based on what was viewed on the slide. We did not (1.5 x 10° mRNA molecules/sample), then CYP19 (9.8 x
see any obvious differences in the histology or cell type  105), CYC (4.4 x 10%) and lowest for PPARY (1.0 x 10%).
composition between the inner and outer samples, or by = The coefficients of variation for the batch Ct values were
quadrant. all less than 10% (3% for PPARy and CYC, 6% for CYP19,
and 9% for 188S).

Distribution of total RNA and gene expression values

Each tissue biopsy yielded on average 113 pg total RNA/  Between vs. within placenta variability

sample (standard deviation (SD) = 108, n = 119). The = Within-placenta variability was greater than between-pla-
mean starting weight of the samples was 191 mg (SD 57).  centa variability for the 10 placentas when we used all 12
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Figure 3

Raw data shows high within-placenta variation in gene expression that is highest when cyclophilin is used as an
internal control compared to 18S. a) CYPI9 mRNA adjusted for CYC mRNA b). CYP19 mRNA adjusted for 18S mRNA.
The vertical lines and black dots represent values for individual biopsies within a placenta. The gray lines connect the median
values per placenta.
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samples per placenta, ranging from 54 to 99% of the total
variation (Table 1 and Figure 3). The ratio of between to
within placenta variability also varied with different inter-
nal controls as seen in the comparison of Figures 3a vs. 3b
and Figures 4a vs. 4b. Adjustment for CYC as an internal
control produced the most extreme estimates in the ratio
(>90% within-placenta variation of total variance). When
we modelled the means by the 4 quadrants, the within-
placenta variability decreased to 50% or less of the total
variability when values were adjusted for 18S and total
RNA (Table 1). The means in CYP19 values by inner and
outer region of the chorionic plate (black and gray dots)
were closely aligned when we adjusted for 18S (<20%
within-placenta variability) (Table 1, Figure 4b) and less
closely aligned when we adjusted for cyclophilin (57%
within-placenta variability) (Table 1, Figure 4a).

Spatial variability

Samples taken from the inner region (area closer to the
cord insertion point as depicted in Figure 1a) had higher
PPARy expression than samples taken further from the
cord insertion point; although not statistically significant.
There was no difference by region in CYP19 expression
(Table 2). We did not include quadrant in the mixed
effects models as they were intended to provide structure
to the sampling scheme. The quadrants do not hold ana-
tomic or physiologic significance.

Tissue heterogeneity as well as differences in perfusion
and the degree of hypoxia are major sources of within-pla-
centa variability [31,45,46]. Wyatt et al. did a detailed
analysis of concordance between histologic parameters

21
20
1.9
1.8
17
1.6
1.5
1.4
1.3
1.2

mean CYP19/cyclophilin (log)
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and gene expression using 6 placentas sampled at 9 sites
including the chorionic (fetal side) and basal (maternal
side) plates and the inner (medial) and outer (lateral)
regions on both sides [46]. They observed evidence of
higher expression of hypoxia-related placental transcripts
in the areas with histology characteristic of lower per-
fusion, i.e. small villi, increased amounts of fibrin depos-
its, and common syncytial knots. They concluded that
perfusion was highest in the maternal-side inner samples
and the lowest in the fetal-side outer samples. Consistent
with differences by degree of hypoxia, we also saw a non-
significant trend towards higher expression of the
hypoxia-related transcript PPARy in the inner region.
PPARYy is a regulator of the response to hypoxia in the tro-
phoblast [56]. Our measure of the expression of the gene
for the receptor gene could be directly or inversely corre-
lated with increased hypoxia-induced ligand-receptor
interaction depending on the types of feedback mecha-
nisms involved.

Normalization strategies: cyclophilin vs. 18S rRNA vs. total
RNA

Using unadjusted values, CYP19 was weakly but signifi-
cantly correlated with the internal controls: CYC (r =
0.34), 18S (r=0.30), and total RNA (r = 0.19). PPARy was
strongly correlated with CYC (r = 0.53), not correlated
with 18S (r = 0.05, p = 0.64), and weakly correlated with
total RNA (r=0.18 p = 0.05).

The CYP19 - PPARy correlation was significant regardless
of internal control and strongest with 18S adjustment (r =
0.85), also strong with total RNA adjustment (r = 0.64),

-

mean CYP19/18s rRNA (log)
4 o

11

Placenta ID

A Region of Placenta * Quter Inner

-2

Placenta ID

B Region of Placenta + QOuter Inner

Figure 4

The means by inner and outer region show less within-placenta variation. a) mean CYP19 mRNA adjusted for CYC
mRNA b) mean CYPI9 mRNA adjusted for 185 mRNA. Black points represent the outer region and gray represents the inner

region.
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Table I: Variance component analysis.

a) Cyclophilin  b) 18S rRNA c) total RNA

PPARy CYPI9 PPARy CYPI9 PPARy CYPI9

By sample number (n = 12/placenta)

Between 1% 8% 36% 46% 26% 37%

Within 99% 92% 64% 54% 74% 63%

By quadrant (n = 4/placenta)

Between 9% 14% 53% 67% 50% 66%

Within 91% 86% 47% 33% 50% 34%

By region (n = 2/placenta)

Between 0% 43% 81% 84% 49% 77%

Within 100% 57% 19% 16% 51% 23%

Results vary when the target mRNA is adjusted by a) CYC; b) 18S
rRNA; and c) total RNA.

and weakest with CYC adjustment (r = 0.25). There was
no overlap in the 95% confidence intervals for these three
correlation coefficients, suggesting that there are signifi-
cant differences in the point estimate depending on which
internal control is used. PPARy is a potential regulator of
CYP19 transcription in the trophoblast given its known
relationship in the granulosa cell [57] and therefore we
would expect their expression values to be correlated. If
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we used CYC as an internal control, we would have erro-
neously concluded that CYP19 and PPARy expression
were not correlated based on the considerably lower r-
value than when we used 18S.

Adjustment for an appropriate internal control should in
theory minimize variability due to differences in the qual-
ity and quantity of the RNA that went into the RT reaction.
Several possible internal controls have been proposed for
qPCR including total RNA, ribosomal RNAs, and one or
more reference messenger RNAs [48,49,58]. Reference
mRNAs are the most common approach. Some of the cri-
teria are that they be constitutively expressed in the cell
type of interest, in the tissue of interest and not be affected
by the exposure of interest or experimental conditions.
The internal control should not share regulatory factors
with the gene of interest. It should have low intra-individ-
ual variation and should be expressed at roughly the same
order of magnitude as the target gene [49,59].

Unlike Pidoux et al. (2004) who showed that cyclophilin
was a suitable housekeeping gene in studies of PPARy
expression in the trophoblast, we found that cyclophilin
was not tenable as a housekeeping gene in our conditions.
It showed extremely high within-placenta variability that
we speculate is related to its role in hypoxia therefore
obviating its use as a housekeeping gene. Reports of CYC
expression in other tissues showed that it was upregulated
in response to hypoxia which would make it inappropri-
ate for use in placental studies where hypoxia might be in
the causal pathway between exposure and disease [60].
We also saw that CYC mRNA was correlated with PPARy
mRNA suggesting that they might share one or more reg-

Table 2: Sample collection characteristics as multivariate predictors of gene expression.

CYP19/18S (square root)

PPARY/18S (log)

Mean (SD) by placenta

-0.34 (1.1

-4.70 (1.4)

Characteristic

B coefficient (SE) p-value

Delivery method

Vaginal vs. c-section

0.28 (0.39) p = 0.50

052 (031)p=0.15

Time Elapsed since delivery up to 30 minutes (<= |10 minutes is referent)

I'l =20 minutes

-0.82 (0.39) p = 0.08

-1.24 (0.32) p = 0.008

21 — 30 minutes

-1.99 (0.30) p = 0.0005

-2.12 (0.40) p = 0.002

p-value for trend

0.009

0.002

Regional differences

Inner vs. outer

0.04 (0.15) p = 0.77

0.20 (0.18) p = 0.26
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ulatory factors. Previous reports have shown that PPARy
expression in the placenta is partly regulated by hypoxia
[61,62]

We evaluated total RNA as a potential internal control.
Total RNA is thought to vary minimally by cell and there-
fore be more stable within a tissue type, to be less variable
by method of homogenization, more uniformly meas-
ured across studies, and possibly a more accurate measure
of the quality of the tissue at the time of sampling [49,59].
We found that total RNA did better than CYC in control-
ling for within-placenta variation. However, it is problem-
atic in that it does not take into account differences in
reverse transcription efficiencies by which the synthesized
¢DNA may or may not be directly proportional to the
amount of input total RNA [48,49,59]. To our knowledge,
there are no published placenta studies that have used
total RNA as an internal control.

Ribosomal RNAs such as 18S have been recommended as
reference genes in that they are generated by a polymerase
distinct from those that generate mRNA, they are less
likely to vary by conditions that affect the expression of
mRNA, and they have been shown to be more reliable
than other housekeeping genes in a variety of tissues [59].
18S appears to be the most commonly used reference
gene in placental studies of gene expression
[30,32,46,47]. Additional reference genes (SDHA, TBP
and YWHAZ) have recently been proposed for placenta
studies that are expressed are lower levels than 18S and
should be considered in future studies [58,63].

Effects of sampling characteristics on gene expression
Lastly, we were interested in estimating to what degree
sampling characteristics predicted variability in the target
gene expression. We fit multivariate mixed effects models
that simultaneously adjusted for delivery method, time
elapsed from delivery and region (inner vs. outer) (Table
2). Target mRNA levels are adjusted for 18S. PPARy
expression was higher in vaginal deliveries although not
statistically significant. There was no difference in CYP19
expression by delivery method.

All placentas were sampled within 25 minutes after deliv-
ery. 67% of C-section placentas were collected within 10
minutes of delivery vs. 14% of the vaginally-delivered pla-
centas. Expression levels decreased with time from deliv-
ery to collection which could be due to tissue necrosis,
lost of oxygen supply, changes in temperature, handling
of tissue, etc. We observed significant decreases over 25
minutes in the expression of both transcripts (Table 2).
We observed a trend towards higher PPARy expression in
laboring placentas which is consistent with reports that
PPARy plays a role in the production of uterine contrac-
tions through the regulation of cytokine and prostaglan-
din production [64,65].
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A common practice in clinical and basic research settings
is to restrict to C-section placentas due to tighter control
over the time of sampling relative to the birth of the baby.
In a setting, i.e. prenatal phthalate exposure [66], where
the exposure of interest may have a putative effect on par-
turition signalling, this type of exclusion may introduce
bias and possibly preclude the detection of associations of
interest. For this reason, we propose sampling placentas of
all delivery methods and routinely recording detailed
information on the method and conditions of labor and
delivery to be used in the data analysis. Likewise, we rec-
ommend evaluating the impact of the time elapsed from
delivery to collection on expression values of specific tran-
scripts.

All of the placentas in this study were full-term. However,
because the tissue collection was IRB-exempt we were not
able to collect information on specific gestational age
which has been shown to be associated with placental
gene expression [32]. Other variables that would have
been important in characterizing underlying variability in
these transcripts are sex of the baby given that CYP19
expression is known to be sexually dimorphic [67,68],
and ethnicity of the mother and father to control for know
polymorphisms [69,70]. Lack of control for these varia-
bles could have resulted in bias in the associations that we
report here. Technician and batch effects could also be
important. We did not see evidence of batch effects in this
analysis based on Ct values and one researcher carried all
of the sampling and analysis out over a short period. It
would be informative in a future validation study to cor-
relate CYP19 and PPARy protein levels to mRNA levels in
order to better understand the phenotypic significance of
transcriptional markers. Messenger RNA gives us informa-
tion on effects in gene regulation solely at the level of tran-
scription, which is an important yet singular piece of a
complex process.

Conclusion

In a small study to validate methods for measuring CYP19
and PPARy placental gene expression for application in an
epidemiologic study, we identified methodologic chal-
lenges which we were able to partly resolve for these two
transcripts. The application of placental biomarkers of
transcription in epidemiologic studies will allow for the
testing of a wide range of hypotheses relating to environ-
mental hazards in pregnancy and their potential role in
fetal origins of disease. The primary challenge was devel-
oping a reproducible sampling scheme that can give a rep-
resentative snapshot of gene expression for a given
placenta while not being overpowered by the high within-
placenta variability in these two transcripts. In an epide-
miologic analysis, the statistical ability to identify predic-
tors of gene expression can be greatly diminished as the
ratio of within placenta variance/total variance increases
much over 50%.

Page 8 of 11

(page number not for citation purposes)



Environmental Health 2009, 8:20

Another challenge was the selection of an appropriate
internal control that represents mRNA levels in the cell at
the time of sampling independent of factors regulating the
target mRNA. Thirdly, given that the placenta is a highly
dynamic tissue that reaches its physiologic climax imme-
diately prior to being sampled, characteristics such as
delivery method and time elapsed from delivery can
potentially introduce unwanted variability. As our goal
was to measure gene expression in the fully differentiated
endocrine cell type, the syncytiotrophoblast, we included
an additional step to confirm that this cell type was
present.

Based on the results of this study, we recommend sam-
pling from different regions within the area of interest (i.e.
fetal or maternal side) to capture physiologically relevant
spatial variability. In order to target trophoblast expres-
sion, we devised an efficient design by sampling the inner
and outer regions of the fetal side or chorionic plate. If
more than two samples are collected, mean values for the
inner and outer regions may be modelled as the depend-
ent variable. Methods can be further tailored to reduce the
impact of variability within a placenta when the objective
is to compare gene expression profiles between placentas.
Although, we cannot recommend a universally appropri-
ate internal control for placental studies, 18S seems to
give the least within-placenta variation for CYP19 and
PPARYy.
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