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Abstract

Background: Estimating the health effects of ambient air pollutant mixtures is necessary to understand the risk of
real-life air pollution exposures.

Methods: Pediatric Emergency Department (ED) visit records for asthma or wheeze (n = 148,256), bronchitis (n =
84,597), pneumonia (n = 90,063), otitis media (n = 422,268) and upper respiratory tract infection (URI) (n = 744,942)
were obtained from Georgia hospitals during 2002–2008. Spatially-contiguous daily concentrations of 11 ambient
air pollutants were estimated from CMAQ model simulations that were fused with ground-based measurements.
Using a case-crossover study design, odds ratios for 3-day moving average air pollutant concentrations were
estimated using conditional logistic regression, matching on ZIP code, day-of-week, month, and year.

Results: In multipollutant models, the association of highest magnitude observed for the asthma/wheeze outcome
was with “oxidant gases” (O3, NO2, and SO2); the joint effect estimate for an IQR increase of this mixture was OR: 1.068
(95% CI: 1.040, 1.097). The group of “secondary pollutants” (O3 and the PM2.5 components SO4

2−, NO3−, and NH4+) was
strongly associated with bronchitis (OR: 1.090, 95% CI: 1.050, 1.132), pneumonia (OR: 1.085, 95% CI: 1.047, 1.125), and
otitis media (OR: 1.059, 95% CI: 1.042, 1.077). ED visits for URI were strongly associated with “oxidant gases,”
“secondary pollutants,” and the “criteria pollutants” (O3, NO2, CO, SO2, and PM2.5).

Conclusions: Short-term exposures to air pollution mixtures were associated with ED visits for several different
pediatric respiratory diseases.
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Background
Associations between ambient air pollution concentrations
and human health responses have been reported in nu-
merous epidemiological and experimental studies [1–3].
Children are a vulnerable subpopulation due to their de-
veloping physiology and frequent outdoor activities [4, 5].
Associations between single air pollutant concentrations
and pediatric health outcomes have been reported in sev-
eral previous studies; however, children are exposed to a
mixture of air pollutants, and given that the composition
and correlation of air pollutants varies in time and space,

there is no single pollutant that can act as a universal indi-
cator of a specific air pollution mixture [6].
In recent years, the field has seen growth in the num-

ber of methodological approaches used to estimate the
joint health effects of multiple air pollutants [7, 8]. A
recent review of studies that implemented multipollutant
exposure metrics to estimate health effects of ambient air
pollution reported that although multipollutant exposure
metrics were limited by the lack of ‘gold standard’, these
approaches have been useful for characterizing multipollu-
tant exposures [9]. Various methodologies have been
advanced to develop multipollutant exposure indexes/
metrics to assess multipollutant health effects. For
example, Stieb et al. [10] and Szyszkowicz [11] developed
air quality health indexes based on combinations of air
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pollutants’ short-term health associations. Coull et al. [12]
applied Bayesian kernel machine regression that included
a hierarchical variable selection function to estimate
complex multipollutant health effects and identify import-
ant mixture components. Pearce et al. [13] used self-
organizing maps to categorize multipollutant day types
based on ten air pollutant concentrations and estimated
the associations between multipollutant exposure and
pediatric asthma ED visits. These studies avoided the test-
ing of complex interactions between air pollutants in
epidemiological models, which are limited by statistical
power. However, the clustering processes do not make use
of information regarding the source and distribution of air
pollutants. Winquist et al. [14], Suh et al. [15], and others
have grouped air pollutants by their sources and proper-
ties to estimate the joint health effects of pollutant combi-
nations using multipollutant models.
High-resolution spatiotemporal estimates of air pollu-

tant concentrations are needed to characterize air pollu-
tant mixtures over time and space. Ground-based air
quality monitoring networks provide the most accurate
measurements but have limited spatial coverage, and
some stations do not measure pollutants continuously.
Different air pollutants are measured at different loca-
tions, with varying frequency, and with various instru-
ments. These differences can result in measurement
errors that vary across pollutants and these errors can
bias health risk estimates [16]. In contrast, chemical
transport models provide air pollutant concentration
simulations at fine-scale resolution with complete cover-
age in space and time but may introduce uncertainty
and bias due to limitations in source data as well as
chemical and physical mechanisms. In response to the
demand for high-quality air pollution estimates, statis-
tical approaches have been developed to combine the
ground measurements and model simulations. A novel
data fusion method presented by Friberg et al. [17]
blended the ground measurements of twelve air pollut-
ants with simulations from the Community Multi-Scale
Air Quality (CMAQ) model in the U.S. state of Georgia
and provided daily air pollutant concentration estimates
at 12 km resolution from 2002 to 2008. In this study, we
used these high resolution air pollution data to estimate
associations between ambient air pollution mixtures and
pediatric emergency department (ED) visits in Georgia.

Methods
Data
Health data
Individual-level ED visits for children aged 0–18 years
were obtained from the Georgia Hospital Association
from January 1, 2002-December 31, 2008. International
Classification of Diseases, 9th revision (ICD-9) codes
were used to define health outcomes. Case definitions

were based on primary ICD-9 codes for asthma or
wheeze (ICD-9 codes 493 and 786.07), bronchitis (490
and 466.0), pneumonia (480–486), otitis media (381 and
382), and URI (460–465 and 477). We excluded children
younger than age 2 years from the asthma or wheeze
group because of challenges in diagnosing asthma in
young children [18]. The date of the ED visit and the ZIP
code (n = 742) of the patient’s residence were included in
the dataset.

Air pollutant concentration estimates
Daily air pollutant concentrations at 12-km spatial reso-
lution in Georgia during 2002–2008 were estimated from
CMAQ model simulations and ground-based measure-
ments using the approach developed by Friberg et al. [17].
Air pollutants of interest were 1-h maximum carbon
monoxide (CO), nitrogen dioxide (NO2), and sulfur diox-
ide (SO2); 8-h maximum ozone (O3); and 24-h average
particulate matter with an aerodynamic diameter of
10 μm or less (PM10), particulate matter with an aero-
dynamic diameter of 2.5 μm or less (PM2.5), and PM2.5

components sulfate (SO4
2−), nitrate (NO3

−), ammonium
(NH4

+), elemental carbon (EC), and organic carbon (OC).
This approach fused CMAQ predictions and ground-
based measurements of air pollutant concentrations based
on their temporal and spatial trends to provide non-
missing air pollutant concentration estimates over the
study region. Friberg et al. reported that the accuracy,
defined as the percentage of spatio-temporal variance in
ground-measured pollutant concentrations that was
captured by the fusion pollutant concentration estimates
in the comprehensive ten-fold cross-validation, for each
pollutant was CO (53%), NO2 (69%), SO2 (14%), O3 (88%),
PM10 (59%), PM2.5 (76%), and PM2.5 components SO4

2−

(81%), NO3
− (57%), NH4

+ (72%), EC (53%), and OC (54%)
[17]. SO2 concentrations had the most error due to the
limited number of SO2 monitors and because of the
challenges of modeling coal combustion SO2 plume
ground-level impacts in CMAQ. Small negative pollutant
concentration estimates were allowed, even though they
lack physical meaning, because these negative values
represent low air pollution in the overall distribution. Each
ZIP code was assigned air pollution estimates based on
the 12-km air quality model centroids that fell in the ZIP
code area. An unweighted average of pollutant concentra-
tions was calculated when a ZIP code contained more
than one centroid. If no air quality model centroid was in
the ZIP code then the centroid closest to the ZIP code
was used to assign air pollutant concentrations.
Daily temperature and humidity data at 1/8° (approxi-

mately 12.5 km) spatial resolution were obtained from
the North American Land Data Assimilation System [19,
20]. The meteorological data were aggregated to the ZIP
code level using the same approach described above.
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Epidemiological models
Single-pollutant conditional logistic regression models,
matched by ZIP code, day-of-week, month, and year,
were fit using SAS (SAS version 9.4; SAS Institute Inc.,
Cary, NC) to estimate associations between 3-day mov-
ing average ambient air pollutant concentrations (lags 0-
1-2) and daily ED visits. Using a time-stratified case-
crossover model, each ED visit was matched with
control days on the same day-of-week and in the same
month and year. The case-crossover method controls by
design for all subject characteristics that do not vary
within the month-long reference time windows [21].
Time-varying covariates included in the model were
cubic polynomials for 3-day moving average temperature
and 3-day moving average humidity; an indicator for
warm season (May-October) vs cool season (November-
April), holiday, and lag holiday (indicating whether one
of the previous 2 days was a holiday); and product terms
between the warm season indicator and the cubic poly-
nomials for temperature, humidity, and day-of-season.
Cubic polynomials for day of warm (or cool) season
(1,…,184) were also included in the model to control for
within-month trends of ED visits due to children activ-
ities e.g., back to school [4, 22]. Concentration-response
was assumed to be linear on the logit scale, and odds
ratios (OR) are presented for one interquartile range
(IQR) increase in 3-day moving average ambient air
pollution concentrations.
For the multipollutant models, we implemented a

grouping and modeling strategy described by Winquist et
al. [14]. We selected four combinations of air pollutants
based on pollutant properties or sources and a fifth com-
bination comprised of criteria air pollutants (except for
lead) set by the US National Ambient Air Quality Stan-
dards. These five combinations include “oxidant gases”
(O3, NO2, and SO2), “secondary pollutants” (O3, SO4

2−,
NO3

−, and NH4
+), “traffic pollutants” (CO, NO2, EC, and

OC), “coal combustion pollutants” (SO2 and SO4
2−), and

“criteria pollutants” (O3, CO, NO2, SO2, and PM2.5). We
modified the previous groupings [14] by including organic
carbon in the “traffic pollutants” combination because
some OC comes from motor vehicle emissions and be-
cause OC concentrations were well-correlated with EC
concentrations in our data (r = 0.71). All multipollutant
models included the same set of covariates as the single-
pollutant models as well as the 3-day moving average
concentrations of each pollutant within the specified com-
bination. The joint effect estimates for IQR increases in
the 3-day moving average concentrations of all pollutants
within the combination were estimated from the multipol-
lutant models. We also fit multipollutant models with
first-order multiplicative interaction terms between the
pollutants, and we estimated the joint effects for IQR
increases in the 3-day moving average concentrations of

all pollutants within the given combination (comparing
concentrations at the 75th percentile with those at the 25th

percentile). To evaluate model misspecification (including
unmeasured and residual confounding) for the multipollu-
tant joint effects models that contained interaction terms,
we estimated joint associations for the combination pol-
lutants 1 day after the ED visit admit date (while retaining
the lag 0–2 pollutant concentrations as predictors) [23].
In sensitivity analyses, to test the impact of errors in

air pollutant concentration estimates, we re-fit the single
pollutant models after using the PM2.5/PM10 ratio to
filter improbable PM10 concentration estimates that arise
due to the relative sparseness of the PM10 monitoring net-
work. Specifically, we dropped PM10 concentrations when
the PM2.5/PM10 ratio was >1.2 or < 0.1, leading to 0.6%
missing data.

Results
Analyses included 148,256 pediatric ED visits for asthma
or wheeze, 90,063 ED visits for pneumonia, 84,597 ED
visits for bronchitis, 422,268 ED visits for otitis media,
and 744,942 ED visits for URI in Georgia from 2002 to
2008. Descriptive statistics of the 3-day moving average
pollutant concentrations and meteorological parameters
for the 742 ZIP code areas in Georgia are presented in
Table 1. Spearman correlation coefficients between the
3-day moving average pollutant concentrations at the
ZIP code level are presented in Table 2. Air pollutants
from the same sources or having similar atmospheric
processes were correlated. For example, Spearman
correlation coefficients between the traffic pollutants
(CO, NO2, EC, OC) ranged between 0.32 and 0.87, and
we observed moderate correlations between secondary
pollutant concentrations, e.g., O3 and SO4

2− (r = 0.61)
and O3 and NH4

+ (r = 0.53).
Associations between 3-day moving average air pollu-

tant concentrations and the five health outcomes from
single pollutant models are shown in Table 3. Estimated
ORs were above the null for nearly all of the single-
pollutant models, though some were not statistically sig-
nificant. However, given the strong correlation of certain
pollutants with one another, it is likely that several of these
associations are confounded by correlated pollutants.
The joint effect estimates from multipollutant models

with and without interactions are shown in Fig. 1 (point
estimates and 95% confidence intervals are provided in
Additional file 1). Broadly, including first-order interactions
between the pollutants tended to improve model fit, with
more than half of the p-values for the likelihood ratio test
for the interaction terms less than 0.05 (Additional file 1);
adding interactions often increased the joint effect esti-
mates (Fig. 1). For example, the OR estimate for the associ-
ation between “oxidant gases” and asthma or wheeze and
the OR estimate for the association between “secondary
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pollutants” and otitis media more than doubled after
adding first order interactions in the models. Other OR
estimates, conversely, changed little when interactions were
added to the multipollutant models. In most cases the joint
effects (even with interactions) were smaller than the expo-
nentiated sum of the regression coefficients from the single
pollutant models (Additional file 2).
The “secondary pollutants” had the highest magnitude

OR estimates with pediatric ED visits for all health out-
comes, except for asthma or wheeze, for which the OR
estimate of the highest magnitude was for “oxidant gases.”
The highest magnitude OR for “traffic pollutants” and
“criteria pollutants” was with ED visits for URI, whereas
the highest magnitude OR for “coal combustion pollut-
ants” was with ED visits for asthma or wheeze. With few
exceptions, associations of future pollutant concentrations
with current ED visits were close to the null (Fig. 1) and

therefore did not indicate residual confounding or gross
model misspecification. Exceptions were the negative joint
effects of future oxidant pollutants and future criteria
pollutants for asthma or wheeze, and the positive joint
effects of future secondary pollutants and future coal
combustion pollutants for URI.
In sensitivity analyses, compared with OR estimates

from single pollutant models using all the air pollu-
tant concentration estimates, OR estimates from
models after filtering extreme PM10 concentrations
based on the PM2.5/PM10 ratio remained roughly the
same. Estimated ORs were above the null for asthma
or wheeze (OR: 1.038, 95% CI (1.026, 1.050)), pneu-
monia (OR: 1.023, 95% CI (1.007, 1.039)), bronchitis
(OR: 1.033, 95% CI (1.016, 1.050)), otitis media (OR:
1.010, 95% CI (1.003, 1.018)), and URI (OR: 1.030,
95% CI (1.024, 1.035)).

Table 2 Spearman correlation coefficients for 3-day moving average ambient air pollutant concentrations in Georgia, 2002- 2008a

CO NO2 O3 SO2 PM10 PM2.5 EC OC NH4
+ NO3

−

CO 1

NO2 0.87 1

O3 −0.15 −0.12 1

SO2 0.56 0.59 −0.03 1

PM10 0.05 0.03 0.68 0.03 1

PM2.5 0.26 0.22 0.61 0.21 0.88 1

EC 0.81 0.76 0.01 0.53 0.31 0.45 1

OC 0.45 0.32 0.35 0.32 0.62 0.69 0.71 1

NH4
+ 0.17 0.17 0.53 0.16 0.74 0.87 0.28 0.40 1

NO3
− 0.42 0.36 −0.39 0.45 −0.21 −0.03 0.39 0.27 −0.05 1

SO4
2− 0.05 0.05 0.61 0.06 0.77 0.85 0.15 0.33 0.93 −0.28

aThe 3-day moving average ambient air pollutant concentrations were calculated for 742 ZIP code areas in Georgia during 2002–2008 (n = 1897294)

Table 1 Three-day moving averagea ambient air pollutant concentrations, temperature, and humidity

Pollutant Mean (SD) Range IQRb 25th percentiles 75th percentiles

1-hr max CO (ppm) 0.36 (0.26) 0.06–4.47 0.22 0.20 0.42

1-hr max NO2 (ppb) 9.22 (9.62) 0.07–73.88 9.33 2.70 12.03

8-hr max O3 (ppb) 42.1 (12.6) 5.4–106.1 18.5 32.4 50.9

1-hr max SO2 (ppb) 6.12 (5.18) −0.06–112.80 5.60 2.52 8.12

24-hr avg. PM10 (μg/m3) 22.5 (8.9) 5.5–198.1 11.5 16.0 27.6

24-hr avg. PM2.5 (μg/m3) 13.2 (5.7) 2.4–86.4 6.9 9.2 16.1

24-hr avg. EC (μg/m3) 0.66 (0.46) 0.03–7.79 0.48 0.35 0.83

24-hr avg. OC (μg/m3) 2.52 (1.25) 0.26–39.87 1.45 1.65 3.09

24-hr avg. NH4
+ (μg/m3) 1.17 (0.64) 0.10–5.84 0.73 0.72 1.45

24-hr avg. NO3
–(μg/m3) 0.51 (0.45) 0.02–5.70 0.51 0.19 0.70

24-hr avg. SO4
2− (μg/m3) 3.95 (2.30) 0.46–22.55 2.72 2.28 5.00

Relative humidity (%) 60.2 (10.7) 21.4–93.2 14.8 52.8 67.6

Temperature (°C) 294.6 (8.2) 266.4–313.3 13.6 288.1 301.7
aThe 3-day moving average was calculated for 742 ZIP code areas in Georgia during 2002–2008 (n = 1897294)
bIQR was calculated as the difference between the 25th and 75th percentile of the 3-day moving average
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Discussion
In this study, we analyzed pediatric ED visits from 2002
to 2008 in relation to multiple ambient air pollutants
throughout the state of Georgia. By using ambient air
pollutant concentration data from CMAQ model simu-
lations that were fused with ground measurements, the
data gap of ground air pollution measurements was filled,
and this allowed us to extend our study region to cover all
of Georgia and analyze a large number of ED visits to sup-
port multipollutant epidemiological models. The estimated
joint effects from multipollutant models indicated that the

oxidant gases (O3, NO2, and SO2), the secondary pollutants
(O3 and PM2.5 components SO4

2−, NO3
−, NH4

+), and the cri-
teria pollutants (O3, CO, NO2, SO2, and PM2.5) were sig-
nificantly associated with increased risk for all five health
outcomes. The traffic pollutants (CO, NO2, EC, and OC)
and the coal combustion pollutants (SO2 and SO4

2−)
showed weak to moderate adverse health associations.
Comparisons between point estimates from single

pollutant models and multipollutant models suggested
that the point estimates from single pollutant models
were affected by correlated air pollutants and may be

Table 3 Adjusted odds ratios and 95% confidence intervals from single-pollutant modelsa

Asthma or Wheeze Pneumonia Bronchitis Otitis Media URI

Pollutant OR 95% CI OR 95% CI OR 95% CI OR 95% CI OR 95% CI

CO 1.008 (1.002, 1.015) 1.015 (1.005, 1.025) 1.037 (1.024, 1.052) 1.012 (1.008, 1.017) 1.016 (1.012, 1.019)

NO2 1.006 (0.995, 1.018) 1.006 (0.991, 1.021) 1.024 (1.005, 1.044) 1.016 (1.009, 1.023) 1.023 (1.017, 1.028)

O3 1.025 (1.007, 1.042) 1.040 (1.015, 1.064) 1.027 (1.001, 1.055) 1.021 (1.010, 1.032) 1.036 (1.028, 1.044)

SO2 1.008 (1.000, 1.015) 1.006 (0.996, 1.016) 1.001 (0.989, 1.014) 1.003 (0.998, 1.008) 1.005 (1.001, 1.009)

PM10 1.037 (1.025, 1.050) 1.025 (1.009, 1.041) 1.037 (1.020, 1.054) 1.011 (1.004, 1.019) 1.030 (1.025, 1.036)

PM2.5 1.031 (1.021, 1.041) 1.021 (1.008, 1.035) 1.032 (1.018, 1.047) 1.011 (1.005, 1.017) 1.025 1.021, 1.030

EC 1.014 (1.007, 1.022) 1.016 (1.005, 1.027) 1.042 (1.028, 1.056) 1.012 (1.007, 1.017) 1.024 (1.021, 1.028)

OC 1.017 (1.008, 1.026) 1.018 (1.007, 1.029) 1.028 (1.016, 1.040) 1.012 (1.007, 1.017) 1.022 (1.018, 1.026)

NH4
+ 1.019 (1.010, 1.027) 1.013 (1.001, 1.026) 1.017 (1.003, 1.031) 1.006 (1.000, 1.011) 1.016 (1.012, 1.020)

NO3
− 1.017 (1.006, 1.029) 1.008 (0.995, 1.021) 1.027 (1.012, 1.041) 0.996 (0.990, 1.003) 1.012 (1.007, 1.017)

SO4
2− 1.022 (1.012, 1.032) 1.021 (1.006, 1.036) 1.014 (0.998, 1.030) 1.010 (1.004, 1.017) 1.018 (1.013, 1.023)

a ORs were for interquartile range increases in 3-day moving average ambient air pollutant concentrations (units present in Table 1) and emergency department
visits among children, Georgia, 2002–2008

Fig. 1 Joint effects of pollutant combinations estimated from multipollutant models. OR estimates comparing air pollutant concentrations at the
75th percentile with the 25th percentile for each air pollutant combination from multipollutant models without interaction (triangle), each air
pollutant combination from multipollutant models with interactions (circle), and from multipollutant models (no interaction model) including
future (tomorrow’s) air pollutant combinations when controlling the 3-day moving average (lag 0-1-2) of current air pollution (cross) were shown
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biased due to confounding by co-pollutants. OR esti-
mates of oxidant gases and health outcomes changed
slightly between single pollutant models and multipollu-
tant models (Additional file 2), possibly due to the rela-
tively weak correlation among these pollutants (O3,
NO2, and SO2). On the contrary, OR estimates of traffic
pollutants (CO, NO2, EC, and OC) that are strongly
correlated changed obviously between single pollutant
models and multipollutant models (Additional file 2),
indicating confounding. We note that the change in OR
estimates when adding more pollutants in the models
may also result from the differential measurement errors
across pollutants. Thus, direct comparisons of effect
estimates of specific pollutants from the multipollutant
model and the single pollutant model may be misleading.
Previous studies reported that in multipollutant models,
the exposure-outcome relationships became weaker rela-
tive to those in single pollutant models [14, 24, 25]. In a
study of air pollution and hospital admissions for respira-
tory diseases in Italy, Fusco et al. [24] found that the health
associations of NO2 and O3 with respiratory conditions,
acute respiratory infections, and asthma in children in
multipollutant models were decreased relative to those in
single pollutant models. Jalaludin et al. [25] reported that
the health effects estimated for individual air pollutants
decreased in two-pollutant models in their study of air
pollution and pediatric ED visits for asthma in Australia.
Consistent with these previous studies, we found that the
exponentiated sum of regression coefficients from single
pollutant models was larger than the corresponding joint
effects from multipollutant models (Additional file 2) for
most pollutant combinations and outcomes.
We observed increases in several estimated joint effects

after adding first order multiplicative interactions between
air pollutants, perhaps suggesting complex mechanisms of
air pollution mixture exposure associated health re-
sponses. Synergism between pollutants has been reported
by both laboratory studies as well as epidemiological stud-
ies [26]. A limitation of adding pollutant cross-product
terms to multipollutant models is there is often limited
statistical power to detect interaction effects. However, the
7-year fusion pollutant concentration estimates for the en-
tire state of Georgia enabled us to analyze a large number
of health events and assess multipollutant models with in-
teractions. Some previous studies have also reported
evidence for nonlinearities in air pollution health effects.
Parametric nonlinear models [14] as well as nonparamet-
ric nonlinear models, e.g., generalized additive models
[27], have been used to assess health effects of air pollu-
tion. We did not investigate non-linearity of dose-
response in our study.
Several previous studies have associated health effects

with air pollutant sources and properties. For example,
previous studies reported that PM2.5 from distinct

sources was associated with differential risk in daily
mortality [28] and ED visits for cardiovascular and re-
spiratory disease [29, 30]. In our study, we grouped air
pollutants, including various PM2.5 components, in com-
binations based on their atmospheric processes and
sources. We noticed considerable heterogeneity in joint
effect estimates for each health outcome across pollutant
mixtures: the secondary pollutants showed the strongest
associations with all five health outcomes, while the coal
combustion pollutants and the traffic pollutants showed
weaker health associations. The relatively weak health
effect estimates of the coal combustion pollutants may
be related to the considerable measurement error in SO2

concentration estimates in our study region.
Otitis media has been observed to be associated with

air pollution exposures in previous studies. One study
reported that long-term exposure of PM2.5, EC, and
NO2 was associated with increased incidence of otitis
media [31]. Another reported that in Canada, increases
in daily CO, O3, and NO2 concentrations were associ-
ated with elevated ED visits for otitis media year-round,
and increases in daily PM10 concentrations were associ-
ated with elevated ED visits for otitis media in warm
months [32]. No significant associations between otitis
media ED visits and SO2 or PM2.5 were reported in that
study, with OR estimates close to null [32]. In our study,
we observed positive associations with CO, NO2, O3,
PM2.5 and EC for otitis media in single pollutant models,
whereas SO2 showed a very weak association (OR: 1.003,
95% CI (0.998, 1.008)). We also observed associations
between all multipollutant combinations and ED visits
for otitis media, with the secondary pollutants showing
the strongest association (OR:1.059, 95% CI (1.042,
1.077)) and the coal combustion pollutants showing the
weakest association (OR: 1.012, 95% CI (1.004, 1.020)).
The large number of ED visits analyzed in our study

made it possible to precisely estimate joint health effects
from multipollutant models. However, the fusion pollu-
tant concentration estimates have prediction errors that
varied across pollutants in space and time and these
errors were not propagated into the epidemiologic
models. According to the Friberg et al. evaluation ana-
lysis, during the study period (2002–2008), 88% of the
variance in ozone concentrations was captured by the
fused data, but only 14% of the variance in SO2 concen-
trations was captured [17]. This variability in prediction
error is due to differences in pollutant sources and
atmospheric processes. For example, the ability of the
CMAQ model to simulate spatiotemporal variance of
SO2 and PM10 is limited due to impact of SO2 plumes
and biogenic PM10 sources [17]. In addition, different air
pollutants are measured at different locations and with
variable frequency, e.g., total PM2.5 concentrations were
measured at more stations than were PM2.5 components,
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and ozone is measured mostly in summer. Most of the
monitors for the PM2.5 components operate only once
every 3 days. Some rural areas, like southern Georgia,
are not covered by the ground-based air monitoring
network. Thus, the ground measurements available to
calibrate CMAQ simulations varied across pollutants
and regions. The differential measurement errors across
pollutants may contribute to variability in health effect
estimates when multiple pollutants are included in the
same model. These pollutant measurement error issues
may also be responsible for the low health effect esti-
mates obtained for SO2 and coal combustion pollutants.
One limitation of our study is misclassification of dis-

ease. We used primary ICD-9 codes to classify ED visits;
however, diagnostic and coding practices can differ
across hospitals, and misclassification of pediatric condi-
tions is likely [33]. Nonetheless, disease-specific seasonal
patterns were observed in the data, with ED visits for
URI peaking in winter and ED visits for asthma peaking
in September/October, which is consistent with previous
literature [34]. Another issue is misclassification of ex-
posure related to the use of ZIP codes. The slight modi-
fications of ZIP codes over time, and the potential for
inconsistencies between the home address ZIP code and
where the child was actually residing may lead to mis-
classification of exposure; however, changes in ZIP code
often happen locally (e.g., one ZIP code is split into
two), and children’s activities will often be close to their
home. Thus, for secondary pollutants that are distrib-
uted smoothly across space, the estimated health associ-
ations are unlikely to be significantly affected by this
source of exposure measurement error; however, for pri-
mary pollutants that are spatially more heterogeneous,
the spatial variability of exposure may be an important
source of exposure measurement error, especially when
local point emission sources exist [35, 36].

Conclusions
In this study we used air pollutant concentration data
from CMAQ simulations that were fused with ground
measurements to model acute joint health effects of air
pollutant combinations in a study of pediatric ED visits
throughout Georgia. Our results suggest that air pollu-
tant mixtures are associated with elevated risk of
pediatric ED visits for asthma or wheeze, bronchitis,
pneumonia, otitis media and URI. The joint effects from
multipollutant models, even with interactions, were
mostly smaller than the exponentiated sum of the re-
gression coefficients from the single pollutant models,
reflecting positive confounding in the single pollutant
models; thus, estimating multipollutant joint effects by
summing single pollutant health associations may lead
to positive bias. Joint effects estimated from models that
included first-order multiplicative interactions between

air pollutants were frequently elevated, perhaps suggesting
synergism between pollutants. Our analysis demonstrates
the value of employing model-estimated air pollution
estimates in epidemiological analyses and supports a
multiple pollutant approach for health effects assessment.
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