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Abstract 

Human health risk assessment currently uses the reference dose or reference concentration (RfD, RfC) approach to 
describe the level of exposure to chemical hazards without appreciable risk for non‑cancer health effects in peo‑
ple. However, this “bright line” approach assumes that there is minimal risk below the RfD/RfC with some undefined 
level of increased risk at exposures above the RfD/RfC and has limited utility for decision‑making. Rather than this 
dichotomous approach, non‑cancer risk assessment can benefit from incorporating probabilistic methods to estimate 
the amount of risk across a wide range of exposures and define a risk‑specific dose. We identify and review exist‑
ing approaches for conducting probabilistic non‑cancer risk assessments. Using perchloroethylene (PCE), a priority 
chemical for the U.S. Environmental Protection Agency under the Toxic Substances Control Act, we calculate risk‑
specific doses for the effects on cognitive deficits using probabilistic risk assessment approaches. Our probabilistic 
risk assessment shows that chronic exposure to 0.004 ppm PCE is associated with approximately 1‑in‑1,000 risk for 
a 5% reduced performance on the Wechsler Memory Scale Visual Reproduction subtest with 95% confidence. This 
exposure level associated with a 1‑in‑1000 risk for non‑cancer neurocognitive deficits is lower than the current RfC 
for PCE of 0.0059 ppm, which is based on standard point of departure and uncertainty factor approaches for the 
same neurotoxic effects in occupationally exposed adults. We found that the population‑level risk of cognitive deficit 
(indicating central nervous system dysfunction) is estimated to be greater than the cancer risk level of 1‑in‑100,000 
at a similar chronic exposure level. The extension of toxicological endpoints to more clinically relevant endpoints, 
along with consideration of magnitude and severity of effect, will help in the selection of acceptable risk targets for 
non‑cancer effects. We find that probabilistic approaches can 1) provide greater context to existing RfDs and RfCs by 
describing the probability of effect across a range of exposure levels including the RfD/RfC in a diverse population for 
a given magnitude of effect and confidence level, 2) relate effects of chemical exposures to clinical disease risk so that 
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the resulting risk assessments can better inform decision‑makers and benefit‑cost analysis, and 3) better reflect the 
underlying biology and uncertainties of population risks.

Keywords: Human health risk assessment, Probabilistic risk assessment, Non‑cancer risk, Uncertainty, Population risk, 
Probabilistic, Perchlorethylene, Dose‑response analysis, Reference values

Introduction
Through agency guidance and risk assessment practice 
the U.S. Environmental Protection Agency (EPA) has 
used two different methods to assess toxic substances 
that are carcinogenic and non-carcinogenic for many 
years [1, 2]. The application of distinct approaches stems 
from different theories of chemical action and the associ-
ated dose-response models.

For most carcinogenic substances, dose-response data 
from animal bioassays and human epidemiological stud-
ies are used to relate exposure and cancer risk. Risk is 
typically assumed to decrease linearly from the point of 
departure (POD) for agents whose mechanism is com-
patible with non-threshold dose modeling such as muta-
genic carcinogens, as well as for carcinogenic agents 
whose mechanism has not been delineated. The bio-
logical basis for this assumption stems in part from the 
additional cancer risk due to environmental exposures 
above background levels. The non-threshold linearized 
model facilitates quantification of population-level risk 
at any dose level and selection of defined risk levels for 
regulatory purposes. Typically, EPA defines negligible or 
de minimis risk for carcinogens as 1-in-1,000,000 excess 
cancer cases over background levels attributable to a 
particular chemical exposure while the acceptable level 
of cumulative risk for multiple carcinogens at impacted 
waste sites can range up to 1-in-10,000 [1]. This proba-
bilistic expression of cancer risk facilitates the calculation 
of excess cancer cases and is informative for economic 
benefits analysis by quantifying reductions in health risk 
associated with reductions in exposure.

In contrast, the theoretical underpinning of risk assess-
ment for most non-carcinogenic health endpoints rests 
on the assumption that physiological defense systems 
and repair mechanisms overcome the effects of low-dose 
exposure, creating a dose threshold below which effects 
are not expected to occur and above which the risks 
begin to increase. This has been operationalized by EPA 
through the use of reference values – the reference dose 
(RfD) for oral exposures and the reference concentration 
(RfC) for inhalation exposures. These reference values are 
defined as the exposure level that is “likely to be without 
an appreciable risk of deleterious effects” [2]. The RfD or 
RfC is ideally derived from benchmark dose (BMD) mod-
eling of animal bioassay data where the POD is the lower 
confidence limit on the BMD (BMDL) associated with a 

designated benchmark response that is often set at a 10% 
effect level. Use of a BMDL as the POD is preferred to 
use of a no-observed-adverse-effect-level (NOAEL) or 
lowest-observed-adverse-effect-level (LOAEL), which 
may be used when the data are not sufficient to calcu-
late a BMDL [3]. This preference is due in part to the 
fact that NOAEL and LOAEL values are dependent on 
the study investigator’s selection of tested doses as well 
as the sample size and resulting statistical power. Addi-
tionally, the NOAEL or LOAEL does not account for 
variability and uncertainty in the experimental results. 
Rather than extrapolating linearly below the POD as is 
done with cancer risk, non-cancer PODs are divided by 
a series of “uncertainty factors” to derive the RfD or RfC. 
Multiple uncertainty factors of 1, 3, or 10 may be applied 
to account for differences between animals and humans, 
human variability, database insufficiency, and dosing 
duration. The National Academy of Sciences (NAS) notes 
that the use of the term “uncertainty” is not intended to 
imply that utilization of an uncertainty factor accurately 
addresses each of these potential contributors to uncer-
tainty in the final estimate [4]. The resulting reference 
value represents an oral dose or air concentration that is 
assumed, as a risk assessment default, to present no risk 
to human health from daily exposure, including for mem-
bers of sensitive subgroups such as pregnant women, 
developing fetuses/neonates, children/adolescents, low-
wealth communities, and those burdened by additional 
occupational and/or environmental exposures and pre-
existing health conditions. Exposures above the refer-
ence value are assumed to present an elevated but still 
unquantified risk to human health.

Theoretical and empirical evidence demonstrating 
quantifiable non-cancer risk both above and below ref-
erence values indicates that a “bright line” approach is 
not a reliable assumption [4]. This is because people are 
exposed to multiple chemicals simultaneously that may 
exert similar adverse health effects, have differing sus-
ceptibilities, and have existing health conditions that will 
influence the risk and severity of the outcome at exposure 
levels below the “bright line.” Thus, a probabilistic expres-
sion of non-cancer risk better represents true population 
risks and can be used in economic analyses and to inform 
risk management decisions.

This conclusion is supported by empirical data on 
environmental stressors such as particulate matter and 
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lead—summarized in the 2009 NAS report Science and 
Decisions—which have dose-response curves that are 
linear or supra-linear down to lower exposure levels 
encountered by human populations [4]. The NAS rec-
ommended probabilistic approaches, especially where 
the chemical in question produces non-cancer effects 
that are likely to be compounded by exposure to other 
chemicals that exert similar health effects or to other 
non-chemical stressors, such as background aging, devel-
opmental, and disease processes.

The additional variability in response caused by such 
compounding factors may produce a wide range of indi-
vidual thresholds across a diverse population and there is 
an increasing need to recognize those populations most 
impacted. In practice, this spread of individual thresh-
olds results in a low-dose linear response across the 
population, since at low dose, some individuals may still 
be responsive and experience an effect that would only 
occur at a higher dose in other individuals [5]. By not 
recognizing the varying susceptibilities based on back-
ground exposures or biology, such as the vulnerability of 
children’s developing systems, the threshold/bright line 
approach underestimates both the response and the vari-
ability in responses (this point is discussed further in the 
companion paper on human variability by Varshavsky 
et  al. in this issue). Estimation of variability in human 
response to a chemical exposure, which may be informed 
by multiple lines of evidence, including clinical, epidemi-
ological, in vitro, and in vivo studies, is fundamental to 
conducting probabilistic dose–response assessments.

An example of the use of multiple epidemiological 
studies to develop a probabilistic estimate of low-dose 
non-cancer risk has been demonstrated for the neurode-
velopmental effects of methylmercury [6]. Probabilistic 
non-cancer risk can be assessed in the absence of robust 
epidemiological data by replacing the default uncer-
tainty factors with distributions that capture uncertainty 
and variability in human responses and other extrapola-
tions [7–11]. These approaches provide a framework for 
probabilistic risk assessment that harmonize cancer and 
non-cancer risk assessment methods and is consistent 
with the NAS recommendation to redefine the RfD/RfC 
as a risk-specific dose, which is interpreted as the dose 
associated with a defined probability for a defined effect 
magnitude at a defined confidence level [4, 9]. Failure to 
quantify the probability of non-cancer risk at different 
exposure levels hinders risk-risk and risk-benefit com-
parisons and devalues the importance of non-cancer 
endpoints in economic analyses [4].

The objectives of this manuscript are to review the 
available methods for expressing non-cancer risk as 
a probability rather than simply a "bright line" refer-
ence dose and then to apply these concepts to assess the 

probability of non-cancer risk for a prioritized case study 
compound. The next section presents a summary of the 
methods identified, which is then followed by a case 
study of perchloroethylene (PCE), a chemical recently 
evaluated by EPA’s Toxic Substances Control Act (TSCA) 
program.

Three approaches to calculate risk‑specific doses
Three approaches have been proposed to quantify non-
cancer risk at different exposure levels and are summa-
rized in Table 1: 1) replacing default uncertainty factors 
with distributions to capture the main extrapolations, 
uncertainties, and sources of variability in non-cancer 
risk assessment; 2) evaluating chemical-related increases 
in disease risk due to a shift in the underlying clini-
cal vulnerability distributions; and 3) fitting continuous 
risk functions that extend linear or other models from 
the observed range to low doses. The first approach 
improves upon the application of default uncertainty 
factors by applying uncertainty and variability distribu-
tions. Several authors have proposed methods to incor-
porate uncertainty distributions rather than fixed values 
into traditional RfDs with different modeling approaches 
and empirical detail [7, 9, 12–14]. An initial proposal 
was to use generic, lognormal uncertainty distributions 
based on the typically fixed uncertainty factor of 10 as 
a  95th percentile upper bound estimate and 3, or  100.5 
, as the median of the generic distribution [12]. This 
approach was further developed by using data on human 
and animal variability to inform uncertainty distribu-
tions for subchronic to chronic, animal to human, and 
intra-human extrapolations [7, 9, 13]. The inter-species 
variability was informed by the distribution of human 
to animal response ratios for 61 anti-cancer drugs while 
the uncertainty in the subchronic to chronic extrapola-
tion was characterized by the distribution of subchronic 
to chronic animal NOAELs for 61 industrial chemicals 
[7]. The human variability distribution relied primar-
ily on data from clinical trials to characterize variability 
in pharmacokinetic and pharmacodynamic responses, 
mostly among healthy adult trial participants with a 
small dataset including children under age 6. Reference 
value derivation then follows the familiar steps of identi-
fying a POD and applying adjustment factor distributions 
rather than fixed factors where multiple sources of uncer-
tainty are combined using either Monte Carlo analysis 
[7, 9, 12] or an approximate non-probabilistic analysis 
[9]. Approximate probabilistic analysis was made widely 
accessible with the APROBA Excel tool published by the 
World Health Organization’s International Programme 
on Chemical Safety (WHO/IPCS) [15].

WHO/IPCS further developed the distributional 
approach by redefining reference values as a target 
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human dose associated with a specified magnitude of 
effect at the individual level and incidence of the effect at 
that level in a target population [9, 10]. Chiu et al., 2018 
developed an automated workflow applying the IPCS 
methodology to generate more than 1,500 probabilistic 
reference doses for more than 600 unique chemicals with 
different endpoints, demonstrating the accessibility and 
benefit of probabilistic analysis [10]. Their analysis found 
that most RfDs fall into the 1-in-1000 to 1-in-100 risk 
range (95% confidence) but with considerable variability. 
Some RfDs are associated with < 1-in-10,000 risk, while 
at the other extreme are RfDs that represent a probabilis-
tic risk of up to 62%. The authors describe the wide range 
of endpoint severity associated with these different RfDs, 
suggesting that analysis of the acceptability of an existing 
RfD needs to consider both the probability of effect and 
its severity. Their methodology showed that it is possible 
to estimate the risk level posed by EPA-derived RfDs by 
incorporating distributions that represent the range of 
uncertainty in risk extrapolations from animal studies 
and a range of variability inherent in human responses.

A second approach characterizes the interaction of 
toxic chemicals with background disease processes by 
quantifying the effect of an exposure on a human func-
tional or clinical risk biomarker. In this approach, envi-
ronmentally-relevant doses of these agents incrementally 
shift the baseline clinical vulnerability distribution 
(CVD) of a disease biomarker towards the disease end-
point, thus increasing the risk of impairment/disease as 
more individuals are in the “with disease” tail of the dis-
tribution compared to the distribution without the toxic 
exposure. The size of the shift is determined by human 
dose-response data for the clinical risk biomarker. This 
approach has been demonstrated by Ginsberg, 2012, 
and Ginsberg et  al., 2014 [4, 8, 16], which used data on 
human responses to cadmium’s effects on the kidney and 
mercury’s effects on the cardiovascular system in combi-
nation with the underlying population vulnerability dis-
tributions of biomarkers for developing chronic diseases 
in these biological systems. For cadmium, the risk bio-
marker was decline in glomerular filtration rate (GFR), 
an indicator of declining kidney function in advancing 
age and risk for chronic kidney disease. For mercury, the 
risk biomarker was decline in paraoxonase-1 (PON1), a 
serum antioxidant associated with high-density lipo-
protein levels which are predictive of the risk for acute 
cardiac events. Epidemiological dose-response data for 
cadmium effects on GFR and mercury effects on PON1 
were used to shift the underlying distribution of these 
biomarkers to estimate the incremental probability of 
disease per unit of toxicant exposure.

These publications demonstrated that risk assess-
ments can be informed by the intersection of toxic effect 

and disease process when a chemical perturbs a clinical 
biomarker with a well-characterized, continuous distri-
bution in the population with a cut point to define dis-
eased and healthy categories. This approach directly 
incorporates interindividual variability by representing 
the distribution of a clinical disease biomarker at the 
population level. Thus, heightened sensitivity over dif-
ferent life stages, due to background clinical disease, 
genetic and sociodemographic factors are to some extent 
captured in the baseline population distribution. How-
ever, because of the need to identify a shared biomarker 
between a disease process and toxic chemical endpoint, 
employing the CVD approach depends on the presence 
of a rich database and may become more applicable with 
a better understanding of predictors of disease interac-
tions with environmental toxicants. Additional relevant 
questions are: 1) whether all vulnerable populations are 
captured in the defined baseline distribution of the dis-
ease biomarker, 2) if the stressor itself (e.g., exposure to 
cadmium in the above example) is already accounted 
for in the background clinical vulnerability distribution 
and whether it may be possible to account for that in the 
baseline distribution; and 3) whether a single disease risk 
biomarker is sufficient to use as a chemical risk indica-
tor when disease risk may best be captured by a panel of 
biomarkers.

The third approach uses dose-response models from 
human epidemiological data and animal bioassays to 
extrapolate to lower, environmentally relevant doses so 
that risk assessors can quantify risk at specific doses. 
Axelrad et  al., 2007 used a Bayesian hierarchical model 
to combine data from three epidemiological studies 
assessing the effects of maternal mercury body burden 
on childhood intelligence quotient (IQ) scores [6]. The 
output of their analysis yielded a continuous slope of 0.18 
IQ point decrease for each part per million increase in 
maternal hair mercury, which was assumed to continue 
linearly through the range of exposures that are of regula-
tory interest. The derived slope between maternal mer-
cury body burden and childhood IQ provided a means 
to calculate the IQ decrement at various mercury doses 
above and below the RfD, enabling the calculation of 
benefits of reduced mercury exposure on this endpoint. 
This method relies on epidemiological datasets with 
detailed exposure data. Continuous dose-response mod-
eling can also be performed with animal toxicity data 
as proposed by Castorina & Woodruff, 2003 [17]. Their 
approach relies on existing BMD modeling and extrapo-
lates risk to low doses from a POD benchmark response 
(10%) derived from animal studies. Their analysis devel-
oped probabilities of non-cancer effect for 23 chemi-
cals with existing RfDs or RfCs. This approach has the 
advantage of relying on existing, commonly employed 

 2023, 21(Suppl 1):129



Page 6 of 13Nielsen et al. Environmental Health 

benchmark dose methodology. Both approaches can be 
easily adapted to calculate either a risk-specific dose or 
the risk associated with the RfD/RfC, and they each can 
be adapted to calculate the risk at any environmentally-
relevant exposure level.

Perchloroethylene (PCE) case study
We have developed a case study to illustrate the utility 
of probabilistic analyses of non-cancer risk. This analysis 
focuses on perchloroethylene (PCE), an industrial sol-
vent historically used in a variety of industries such as dry 
cleaning and metal degreasing. People are exposed to PCE 
through inhalation, dermal contact, and ingestion of con-
taminated air, water, and soil. Chronic exposure to PCE 
is associated with adverse neurological effects, elevated 
cancer risk, and adverse reproductive and developmental 
outcomes [18]. PCE was selected for this analysis because 
it is one of the first 10 chemicals selected for risk evalu-
ation under the 2016 TSCA amendments (https:// www. 
epa. gov/ asses sing- and- manag ing- chemi cals- under- tsca/ 
chemi cals- under going- risk- evalu ation- under- tsca [19];), 
and it affects a number of endpoints that lend themselves 
to probabilistic analysis. The EPA IRIS assessment of PCE 
[18] utilized the traditional RfD/RfC approach while the 
EPA TSCA risk evaluation utilized a margin of exposure 
(MOE) approach, comparing the POD with predicted 
exposure levels [20], but neither applied probabilistic 
methods to assess the range of risks possible from PCE 
exposure. Thus, this case study explores the potential for 
incorporating probabilistic methods into the PCE RfC as 
a means to evaluate its level of protection and inform cur-
rent risk assessment efforts involving this chemical.

Methods for PCE case study
Selection of endpoint
The critical endpoint supporting EPA’s RfC for PCE is 
neurotoxicity [18]. Neurotoxicity is a well-supported 

effect of PCE exposure; clinical patients with diagnosed 
probable solvent encephalopathy show deficits in several 
domains, including visual memory, and occupationally 
exposed cohorts have subclinical decrements in visual 
memory [21]. Further, different neurobehavioral tests 
that measure visual memory find decrements in response 
to PCE exposure with varying sensitivity [21]. A study by 
Echeverria et al., 1995, in which the authors assessed the 
effect of low, medium, or high PCE exposure on neurobe-
havioral function among 65 male and female dry cleaning 
workers in the Detroit area [21], was a critical study sup-
porting EPA’s derivation of the RfC for PCE. Echeverria 
et  al., 1995 found a dose-response relationship between 
PCE exposure and decrements in visual memory func-
tion by comparing moderate and highly exposed dry 
cleaning workers against a low exposure group. Further, 
there is a suggestion of an effect in the low exposure 
group as compared to age-adjusted normed performance 
on the Wechsler Memory Scale Visual Reproductions 
subtest (WMS-VR) [21]. In the medium exposure group 
(23.2 ppm) there was a 6% reduction (central estimate) 
in mean WMS-VR performance relative to performance 
in the low exposure group (11.2 ppm) (Table 2). Chronic 
PCE exposure of 40.8 ppm was associated with a 14% 
reduction (central estimate) in mean performance on the 
WMS-VR compared with mean performance in the low 
exposure group (Table  2). For the probabilistic analysis, 
we started from the exposure of 23.2 ppm, which was the 
LOAEL identified as one of the critical effects supporting 
EPA’s PCE RfC derivation [18]. As there is no unexposed 
control group, we compared the increased PCE exposure 
in the medium exposure group to the lowest exposure 
group (23.2-11.2 = 12 ppm). The 12 ppm difference in 
exposure, which was observed in an occupational cohort, 
was adjusted to a continuous exposure of 4.3 ppm, using 
the same duration adjustment as in EPA’s PCE RfC deri-
vation [18]. The point of departure for the probabilistic 

Table 2 Participants, exposure levels, and WMS‑VR subtest performance in dry cleaning workers with varying PCE  exposure1,2

a PCE concentration in medium and high exposure groups minus low dose exposure group were multiplied by (5/7 days * 10/20  m3/day) to adjust from occupational 
to continuous exposure per EPA, 2012.
b Percent change in mean WMS-VR score with respect to low exposure group

PCE= perchloroethylene; ppm = parts per million; WMS-VR = Wechsler Memory Scale Visual Reproductions Subtest
1 Echeverria et al., 1995
2 EPA, 2012

Low Exposure Medium Exposure High Exposure

Number of Participants 24 18 23

8‑hour Time‑Weighted Average PCE Concentration 11.2 ppm 23.2 ppm 40.8 ppm

Adjusted continuous PCE exposure relative to low exposure groupa NA 4.3 ppm 10.7 ppm

Mean (and 95% UCL) Reduction in WMS‑VR score versus mean score in 
low exposure group b

NA 6% (11%) 14% (19%)
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analysis is 4.3 ppm, which is the continuous exposure-
adjusted difference between the medium and low expo-
sure groups.

Approximate probabilistic analysis
This case study uses variability distributions and an 
approximate probabilistic analysis to determine a risk-
specific RfC for PCE and demonstrate the utility of these 
methods using a human dataset. We employ an assump-
tion of linearity to extrapolate to a POD at the 5% effect 
level, which is within the range of observation in Ech-
everria et  al.,1995. Using the 5% effect level as a POD, 
we follow the WHO/IPCS methodology to perform an 
approximate probabilistic analysis to examine risk at 
lower effect levels. We did not develop a continuous risk 
function or perform more robust dose response mod-
eling due to limitations in the dataset. Prior studies have 
attempted to perform meta-analysis for the effect of PCE 
on neurobehavioral performance. Benignus et  al., 2009 
examined three human epidemiological studies with 
occupational and residential cohorts with different meas-
ures of neurocognitive function [22]. Included in their 
analysis was Echeverria et al. 1995, the PCE worker study 
highlighted in the current case study as well as in USEPA’s 
RfC determination (USEPA, 2012). Data from these three 
studies were converted to common scales but no attempt 
was made to combine similar variables into a single anal-
ysis [22]. Upon further analysis of this neurotoxicity end-
point (e.g., aging and clinical disease-related decrements 
using normed population distributions), it may be possi-
ble to develop a clinical vulnerability assessment.

We derived a risk-specific RfC for PCE using the 
approximate rather than the full probabilistic methods 
outlined in WHO/IPCS [9] and Chiu et  al., 2018 [10] 
for continuous endpoints. This approach replaces tra-
ditional, fixed uncertainty factors with probability dis-
tributions for each factor. The uncertainty distributions 
rely on historical data as described above [7, 9] with the 
assumption that these data follow a lognormal distri-
bution. The median  (50th percentile or P50) and spread 
(defined as the ratio of the  95th percentile to the  50th per-
centile or P95/P50) for each distribution are combined 
probabilistically, with the resulting reference value repre-
senting the lower one-tailed 95% confidence bound. The 
output of the approximate probabilistic analysis is the 
 HDM I, which is the human dose identified with a certain 
magnitude of effect (generally 5% magnitude selected as 
default) in a certain incidence of the population (gener-
ally 1% incidence chosen). The  HDM

I is a point estimate 
within the distribution of target doses for a specified 
magnitude of effect and population-level incidence of 
effect. Under the approximate probabilistic methods, the 
median  HDM

I is calculated as follows:

Where:
POD = Point of Departure derived from the empirical 

dose-response data
AF = the median value for each adjustment factor 

reflecting variability or uncertainty.
A composite spread or uncertainty for the median 

 HDM
I is derived by combining across the relevant AFs 

and is calculated as follows, where SAF is the spread 
(P95/P50) associated with the median value for each 
adjustment factor:

The 95% confidence limit on the  HDM
I is then calcu-

lated as the quotient of the median  HDM
I and composite 

spread factor:

We performed two analyses. First, we used 4.3 ppm as 
the POD in an approximate probabilistic analysis follow-
ing the WHO/IPCS methodology. As noted in Table  2, 
the POD is the difference in exposure between the low 
and medium exposure groups in Echeverria et  al., 1995 
adjusted from occupational to continuous exposure [18, 
21]. We note that use of a BMDL as the POD is preferred 
when sufficient dose-response information is available, 
but benchmark dose modeling was not performed with 
the Echeverria et  al., 1995 dataset because it lacked a 
control group [18]. Because the PCE POD is a LOAEL, 
two initial adjustments were made to first account for 
differences between LOAELs and NOAELs and then to 
adjust the NOAEL to the BMD for a magnitude of 5% 
effect level [10]. Chiu et  al., 2018 extended the WHO/
IPCS approach to incorporate reference values based 
on LOAELs by retaining the LOAEL-to-NOAEL uncer-
tainty factor of 1, 3, or 10 as applied in the original RfD 
(non-probabilistic) derivation as the best estimate of the 
median value for this uncertainty factor (10 in this case). 
A P95/P50 factor of 3 was applied to cover the distribu-
tion of LOAEL-to-NOAEL ratios. To estimate the BMD 
from a NOAEL a median factor of 1/3 was applied with 
a spread (P95/P50) of 4.7, which are the WHO/IPCS rec-
ommended factors for the default 5% effect level [9]. No 
adjustments were necessary for interspecies differences 
or dosing duration as the POD comes from a chronic 
exposure study in humans. The median and spread of the 
intrahuman variability distribution, considering both tox-
icokinetics and toxicodynamics, are taken directly from 
WHO/IPCS, 2017, Table 4.5, lognormal distributions for 
the 1% and 0.1% target risks.

HDM
I
=

POD

AF∗1 AF∗2 AFn

Composite SAF = 10[(log (SAF1))̂2+log (SAF2)̂2+(logSAFn̂)2]̂1∕2

HDM
I95%CL Median HDM

I

Composite SAF
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In a second analysis, we leveraged the Echeverria et al., 
1995 dataset to determine the 5% effect level rather than 
adjusting the LOAEL to a NOAEL and then to a BMD. To 
do so, we used the difference in mean WMS-VR score in 
the moderate exposure group compared with the mean 
WMS-VR score in the low exposure group, which is a 6% 
reduction in score (central estimate). We used the PCE 
exposure associated with this 6% reduction in the WMS-
VR score of 4.3 ppm and extrapolated linearly to a 5% 
effect level corresponding to a PCE exposure of 3.6 ppm. 
We performed the same linear extrapolation comparing 
the mean WMS-VR score in the high exposure group 
versus low exposure and found the 5% effect level in this 
extrapolation also corresponded to a PCE exposure of 3.6 
ppm indicating no evidence of non-linearity in the dose-
response relationship. We characterized the uncertainty 
in the POD as the P95/P50. To do so, we divided the 
exposure at the 5% effect level for the P50 (3.6 ppm) by 
the exposure at the 5% effect level for the P05 (1.9 ppm) 
[9]. We then applied the intrahuman variability distribu-
tion factor as described above to this 3.6ppm exposure 
estimate at the 5% effect level. The output of this analysis 
is the upper confidence limit on the 5% effect level for a 
1-in-100 and 1-in-1000 incidence. The dataset support-
ing the conclusions of this article is available as an Addi-
tional file 1.

PCE Case study results
Table  3 shows the median and spread for each uncer-
tainty distribution and the calculations to derive the 
probabilistic RfC for PCE using the approximate WHO/
IPCS, 2017 and Chiu et al. 2018 methodology including 

LOAEL to NOAEL and NOAEL to BMD adjustments. 
We present the 95% lower confidence limit on the  HDM

I 
for an incidence of 1% to conform with WHO/IPCS, 2017 
and Chiu et al., 2018 as well as 0.1% (1-in-1000 risk) to be 
responsive to targets discussed in Hattis et al., 2002 and 
NAS, 2009. The output is the PCE dose associated with a 
5% reduced performance on the WMS-VR subtest occur-
ring at a 1-in-100 and 1-in-1000 incidence level using 
the workflow methodology shown in WHO/IPCS, 2017 
Figure 3.5 [9]. Figure 1 shows the predicted incidence of 
a 5% reduced performance on the WMS-VR subtest as 
a function of PCE exposure. Daily exposure to PCE at 
0.01 ppm with 95% confidence has a predicted incidence 
for a 5% reduced performance on the WMS-VR test of 
1-in-100. At a chronic exposure of 0.004 ppm with 95% 
confidence, the predicted incidence for a 5% reduced 
performance on the WMS-VR subtest is 1-in-1000. This 
dose is slightly below the USEPA RfC of 0.0059 ppm, sug-
gesting that the RfC is associated with a risk of between 
1-in-1000 and 1-in-100 for a 5% reduced performance on 
the WMS-VR subtest.

While Table  3 uses the workflow developed by 
Chiu et  al., 2018 for extrapolating from a LOAEL to 
BMD associated with a 5% effect level, an alternative 
approach is to use the dose-response data from Ech-
everria et  al., 1995 more directly. The LOAEL of 4.3 
ppm is associated with a 6% decrease in WMS-VR score 
(Table 2). Projecting linearly down to a 5% effect level 
yields a POD of 3.6 ppm which is the starting point for 
the approximate probabilistic calculation in Table  4. 
Chronic exposure to 0.08 ppm PCE is predicted with 
95% confidence to have a 1-in-100 incidence of a 5% 

Table 3 PCE risk‑specific dose calculation using WHO/IPCS workflow. The POD is 4.3ppm (Echeverria et al., 1995)

a P50=50th percentile of distribution; P95=95th percentile of distribution
b LOAEL-to-NOAEL extrapolation factor used by USEPA (IRIS, 2012)
c WHO/IPCS, 2017 Table 4.1 extrapolation from NOAEL for BMR of 5% magnitude
d WHO/IPCS, 2017 Table 4.5
e WHO/IPCS, 2017 Fig. 3.5c Approximate probabilistic analysis

POD Point of Departure, BMD Benchmark Dose, HD Human Dose, IPCS International Programme on Chemical Safety, LOAEL Lowest Observed Adverse Effect Level, 
NOAEL No Observed Adverse Effect Level, PCE Perchloroethylene, ppm Parts per Million, WHO World Health Organization

Factor Median (P50)a Spread (P95/P50)a

LOAEL‑to‑NOAELb 10 3

NOAEL‑to‑BMDc 1/3 4.7

Human Variability d I=1%: 9.7
I=0.1%: 20.42

I=1%: 4.3
I=0.1%: 6.99

HD.05
1% (I=1%)e 4.3/(10*0.33*9.7) = 0.13 ppm 10[(log3)2+(log4.7)2+(log4.3)2]1/2= 10.98

HD.05
1% (I=1%)e

(1‑in‑100, 95% conf )
0.13/ 10.98 = 0.01 ppm

HD.05
0.1% (I=0.1%)e 4.3/(10*0.33*20.42)= 0.06 ppm 10[(log3)2 + (log4.7) 2 + (log6.99) 2]1/2= 15.14

HD.05
0.1% (I‑0.1%)e

(1‑in‑1000, 95% conf )
0.06/15.14 = 0.004ppm
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reduction in WMS-VR test. The 1-in-1000 risk for a 
5% reduced performance on the WMS-VR test is 0.02 
ppm with 95% confidence with this methodology. This 
approach suggests that the USEPA RfC of 0.0059 ppm 
is associated with less than 1-in-1000 risk for this a 5% 
reduction in visual memory performance.

We compared the output from the probabilistic 
assessment of PCE risk with current RfC and can-
cer risk estimates for PCE (Table  5). The WHO/IPCS 
probabilistic approach predicts that the current RfC 
would be associated with a 0.3 to 1.5 per 1000 risk for 
impaired visual memory function and thus can be said 
to approximate a 1-in-1000 risk level for a 5% magni-
tude of effect with 95% confidence. When comparing 
this probability for non-cancer effect to the cancer risk 
level at the RfC based upon EPA IRIS’s PCE unit risk 
factor (1.8E-03 per ppm), Table  5 shows the cancer 
risk level is considerably lower, 0.01 per 1000 or 1-in-
100,000. This suggests that the non-cancer risk for neu-
rologic deficit is approximately 100 fold greater than 
the cancer risk [18]. Importantly, consideration must be 
given to qualitative factors (differing severity of effect) 

Fig. 1 Incidence of a 5% reduction in visual memory performance as a function of PCE exposure concentration. Figure generated using the 
WHO/IPCS online web application APROBAweb (https:// wchiu. shiny apps. io/ APROB Aweb/). PCE: perchloroethylene, POD: Point of Departure, RfC: 
Reference Concentration, I: Incidence

Table 4 PCE risk‑specific dose calculations using WHO/IPCS 
2017 workflow. The POD is 3.6 ppm (Echeverria et al., 1995)

P05 =  5th percentile of distribution; P50=50th percentile of distribution; 
P95=95th percentile of distribution
a Assumes P05 = P50/[P95/P50]; 3.6/1.9 = 1.89
b WHO/IPCS, 2017 Table 4.5
c WHO/IPCS, 2017 Fig. 3.5c Approximate probabilistic analysis

Factor Median (P50)a Spread (P95/P50)a

Point of Departure 3.6 ppm 1.89a

Human  Variabilityb I=1%: 9.7
I=0.1%: 20.42

I=1%: 4.3
I=0.1%: 6.99

HD.05
1% (I=1%)c 3.6/(9.7) = 0.37 ppm 10[(log1.89)2 + (log4.3)2]1/2= 

4.88
HD.05

1% (I=1%)c

(1‑in‑100, 95% conf )
0.37/4.88= 0.08 ppm

HD.05
0.1% (I=0.1%)c 3.6/(20.42)= 0.18 ppm 10[(log1.89)2 + (log6.99)2]1/2= 

7.70
HD.05

0.1% (I‑0.1%)c

(1‑in‑1000, 95% conf )
0.18/7.70 = 0.02 ppm

Table 5 Comparison of probabilistic approaches to estimating pce neurotoxic risk and comparison to cancer risk

a  EPA RfC of 0.04 mg/m3 converted to ppm (1ppm = 6.78 mg/m3)

PCE Exposure Exposure Basis 95% CL Risk Risk Description

0.004‑0.02 ppm Dose for 1/1000
95% LCL, IPCS/Chiu

1 per 1000 HD.05
0.1% (see Table 3 

and 4 for definition 
and derivation)

0.0059  ppma USEPA 2012b RfC 0.3 to 1.5 per 1000 Probabilistic risk at 
level of the RfC based 
upon IPCS/Chiu et al. 
2018

0.0059  ppma USEPA 2012b RfC 1 per 100,000 Cancer risk
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when comparing across these risk levels for different 
health effects.

Discussion
We show that probabilistic methods can be used to cal-
culate the risk of non-cancer health effects across a range 
of exposures and how this approach provides more infor-
mation than what is obtained through the traditional 
RfC/RfD approach. Quantifying health risk above, at, and 
below reference values is essential to contextualize popu-
lation health impacts for non-cancer effects, incorporate 
uncertainty and variability consistently and transpar-
ently, and allow more thorough assessment of risks and 
benefits for environmental policy-making. Echeverria 
et  al., 1995 demonstrated that chronic PCE exposure is 
associated with a mean 6-14% reduction in performance 
on neurobehavioral tests that measure visual memory, 
indicating the potential for more subtle effects at expo-
sures below the chronic levels observed in dry cleaning 
workers [21]. Our analysis finds that chronic PCE expo-
sure at the current RfC is associated with approximately 
a 1-in-1000 risk of a 5% deficit on visual memory tests, 
with 95% confidence. This probabilistic expression of risk 
leaves open the question of its acceptability, which is ulti-
mately a risk management decision. Determining accept-
able risk levels can be informed by the clinical relevance 
of the affected endpoint and whether a 5% effect level for 
this endpoint severity is the appropriate target for risk-
specific dose calculation. Additional considerations can 
include underlying sensitivities and vulnerabilities across 
the exposed population and the potential for cumulative 
effects across chemicals or aging/disease processes.

Visual memory is an endpoint that may be amenable 
to additional distributional analyses of risk, including a 
CVD assessment. Echeverria et al., 1995 observed signifi-
cant reductions in performance on the Wechsler Mem-
ory Scale Visual Reproductions test with chronic PCE 
exposure. Visual memory declines with age [23], and the 
effect of PCE on visual memory in young adult workers 
could be contextualized against the declines that occur 
in the normal aging process by comparing the functional 
declines in young adult workers with PCE exposure to 
declines that occur with age. Findings of effects on this 
subtest, even in the subclinical range, suggest that PCE 
exposure has affected brain or neural function (likely in 
limbic structures) at a measurable level. As dysfunction 
in this domain increases, measurable functional deficits 
and potential safety issues may occur.

Visual memory dysfunction can occur in some neuro-
degenerative diseases such as Parkinson’s, microvascular/
multi-infarct, and multiple sclerosis that may have sol-
vent exposure as an etiological component [24–26]. Such 
a relationship has been suggested for multiple sclerosis 

[27]. As outlined above, the CVD approach could relate 
the PCE neurotoxic endpoint to such clinical endpoints 
or age-related declines in neurological function based on 
linking probabilistic analysis to shifts in underlying popu-
lation distributions of this endpoint.

Another valuable expansion of the present analy-
sis is to combine exposure estimates with probabilistic 
risk assessment to further explore risk under different 
exposure scenarios. USEPA’s 2020 PCE risk evaluation 
provided measured and modeled PCE exposure concen-
trations for numerous industries, impacted residential 
areas, and through use of consumer products [20]. A 
wide range of occupational average daily exposure con-
centrations were noted from 0.001-30 ppm for the central 
tendency exposure levels with high end exposures rang-
ing from 0.04-52 ppm. These exposure estimates could be 
used in a probabilistic risk assessment to further explore 
industries and residential exposures that have the high-
est PCE risk and opportunities to lessen the public health 
burden of solvent-associated adverse health effects.

The POD for this analysis comes from decrements in 
visual memory function observed in adult dry cleaning 
workers with chronic PCE exposure. However, a wide 
range of neurotoxic effects from PCE exposure was found 
across multiple domains, including delayed processing of 
visual and auditory information, increased reaction time 
in performing these tests, decreased visual acuity, and 
impaired motor and visuo-spatial function [18]. While 
the majority of studies assessed by EPA included healthy 
adult populations, similar decrements in visual acuity 
were identified in children living in buildings that housed 
dry cleaners with known PCE use. EPA did not rely on 
studies that included children due to methodological 
concerns with the study design. While this case study 
focuses on the adult data that form the basis of EPA’s RfC, 
a substantial body of evidence has accumulated show-
ing long-term neurotoxic effects following early life and 
in utero PCE exposure, including associations with illicit 
drug use, bipolar disorder, and post-traumatic stress dis-
order [28]. This same research group has documented 
reproductive and developmental effects, including 
delayed time-to-pregnancy, increased risks of placental 
abruption, stillbirths stemming from placental dysfunc-
tion, and certain birth defects [29]. Thus, probabilistic 
evaluations of risk due to PCE exposure should be con-
ducted for reproductive, developmental and additional 
neurotoxic outcomes, including those associated with in 
utero and early life exposures.

This probabilistic risk assessment for PCE demon-
strates the feasibility of calculating risk-specific doses 
that distinguish between uncertainty (for example in 
extrapolating from LOAEL to NOAEL to BMD) and 
interindividual variability in response to toxic substance 
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exposure. Further refining these approaches will expand 
the scientific rigor and utility of probabilistic risk evalua-
tions. An important limitation with the current methods 
is the limited variability in the underlying distributions 
applied in the probabilistic analysis. Each distribution 
applied to capture risk specific doses in this analysis 
comes with specific uncertainties and important con-
siderations. The POD in this analysis is based on human 
epidemiological data. However, some of the adjustment 
factor distributions applied to this POD are based on 
data from animal toxicity studies. For example the default 
NOAEL to BMD distribution is based on a dataset of 
more than 395 oral chronic and subchronic animal toxic-
ity studies with NOAEL-to-BMD ratios consistent across 
diverse endpoints [9]. This dataset from the US National 
Toxicology Program includes a single strain for each of 
the test species (mouse and rat) and limited variability 
in the age of experimental animals. Applying this distri-
bution in the current analysis assumes that the relation-
ship between the NOAEL and BMD is similar between 
animal toxicology studies and epidemiology studies for 
this adjustment factor. However, variability in human 
studies could be larger for multiple reasons including 
greater variability in age, health status, and presence of 
coexposures.

The distributions for human variability based primar-
ily upon small, healthy adult trials of pharmaceuticals 
underrepresent the full range of human toxicokinetic 
(TK) and toxicodynamic (TD) variability across the 
population for environmental chemicals (see additional 
detail in Varshavsky et al. published in this issue). The TK 
human variability distribution relies on variability in area 
under the curve (AUC) values following oral dosing for 
pharmaceutical agents [9] and may differ from AUC vari-
ability following inhalation exposures. Leveraging chem-
ical-specific TK variability data can reduce uncertainty 
in probabilistic risk assessments [9], with limited PCE 
data in male mice [30–33] and humans [34, 35] avail-
able for this purpose. However, replacing default human 
TK variability distributions in the WHO/IPCS method-
ology requires careful consideration of multiple impor-
tant factors including 1) whether the parent compound 
or active metabolite are responsible for the toxic effect; 
2) the limitations in the underlying human TK data for 
PCE represented by the individual studies available and 
complexities of trying to combine across studies; and 3) 
the benefits of the underlying TK dataset supporting the 
default distribution in representing variability across sex, 
wide age ranges, and multiple chemicals. Default distri-
butions may still be used instead of chemical specific data 
if the default distribution better represents variability in 
the exposed general population, as was done in this anal-
ysis. We use the IPCS default TK and TD distributions, 

rather than PCE specific data, as the PCE data include 
less age and sex variability than the default distributions. 
Emerging data streams, new analytic techniques, and fur-
ther methodological considerations for chemical-specific 
variability distributions may provide improved estimates 
of human variability from exposure to environmental 
chemicals in the coming years [11].

The approach we demonstrated for PCE along with 
other probabilistic methods reviewed in this manuscript 
(Table  1 above) can better account for population vari-
ability and provide quantifiable risks at environmentally-
relevant doses. They can also be used to extrapolate 
below the RfD/RfC for non-carcinogens, and as such, 
are consistent with recommendations from Science and 
Decisions that a threshold should not be assumed due 
to the multiple factors in the population that influence 
chemical risks (see additional detail in Varshavsky et al., 
published in this issue). Examples of low-dose linearity 
are increasingly evident in widely exposed populations 
including cardiopulmonary mortality and  PM2.5, mer-
cury and learning ability, arsenic and cardiovascular 
disease, perchlorate and fetal brain development, and 
cadmium and renal function [36–40]. Given that it is not 
clear which agents would have a linearized response on 
the population level, the NAS recommended adopting 
low dose-linearity as a default approach for non-carcino-
genic agents unless there is strong and sufficient data that 
the mechanism of action for a particular agent operates 
through biological pathways and on health endpoints 
that have a low background occurrence, the agent’s effect 
on a particular endpoint is unlikely to contribute to an 
already-existing disease process, and the agent is unlikely 
to share mechanisms and health endpoints with other 
toxic agents [4].

Conclusion
Despite the utility of probabilistic expressions of risk and 
the availability of case studies and online applications 
and tools to facilitate the use of probabilistic approaches 
(i.e. Chiu et al., 2018 [15]), most risk assessors still rely 
on the traditional definition and derivation of RfDs. 
Incorporating probabilistic approaches can be facili-
tated by investing in training for the concepts and tools 
needed to conduct more complicated distributional 
analyses, though approaches such as the approximate 
probabilistic approach employed here do not require 
skills or data beyond those necessary to derive tradi-
tional reference values [41]. Additionally, regulators can 
support the incorporation of probabilistic analyses by 
recommending standardized alternatives to the tradi-
tional RfD approach and by emphasizing the importance 
of quantifying the non-cancer health benefits of risk 
management actions.
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Setting reference values as risk-specific doses requires 
selecting an acceptable level of risk for non-cancer 
health effects. To use risk-specific doses in risk manage-
ment decisions, policymakers must confront decisions 
about acceptable risk within the context of severity 
and clinical relevance of endpoint, size and nature of 
the sensitive subpopulation, and degree of uncertainty. 
Additionally, methods for conducting risk assessments 
of chemical mixtures with common effects that rely on 
the RfD/RfC approach [42] can be adapted to incorpo-
rate probabilistic methods that would improve imple-
mentation because probabilistic RfDs would be more 
comparable to one another than are traditional RfDs.

An important benefit of computing probabilistic refer-
ence values is the ability to incorporate non-cancer risk 
into economic evaluations, which is not possible with the 
current RfD/RfC approach. The calculation of economic 
benefits of regulations requires methods for calculat-
ing incidence of health effects at varying levels of expo-
sure, so that estimated pre-regulation outcomes can be 
compared to anticipated post-regulation outcomes. This 
would allow a more thorough evaluation of the health 
impacts of pollution and improve health-protective deci-
sion-making. However, it may be challenging to translate 
many of the outcomes observed in experimental ani-
mal studies to human-relevant health effects amenable 
to economic valuation [41]. In this regard, an approach 
based on the background distribution of clinical bio-
markers has a distinct advantage over methods that rely 
on changes in a continuous variable (e.g., organ weight 
changes) for which there is no obvious clinical correlate.

Probabilistic methods offer additional detail to capture 
and evaluate health risks associated with chemical expo-
sures. Additional case studies such as the probabilistic 
evaluation of the risk of visual memory decline associ-
ated with PCE exposure demonstrate the utility of quan-
titative risk projections below the non-cancer POD and 
at the traditional reference level to better inform risk 
management decisions and protect public health.
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