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Abstract 

Background While prenatal exposure to alkylphenols (APs) has been demonstrated to be associated with neurode-
velopmental impairments in animals, the evidence from epidemiological studies remains limited and inconclusive. 
This study aimed to explore the link between AP exposure during pregnancy and the intelligence quotient (IQ) of pre-
school children.

Methods A total of 221 mother-child pairs from the Guangxi Zhuang Birth Cohort were recruited. Nonylphenol 
(NP), 4-tert-octylphenol (4-T-OP), 4-n-nonylphenol (4-N-NP), and 4-n-octylphenol were measured in maternal serum 
in early pregnancy. Childhood IQ was evaluated by the Fourth Edition of Wechsler Preschool and Primary Scale 
of the Intelligence at 3 to 6 years of age. The impact of APs on childhood IQ were evaluated by generalized linear 
models (GLMs), restricted cubic spline (RCS), and Bayesian kernel machine regression (BKMR).

Results In GLMs, prenatal exposure to NP and the second tertile of 4-T-OP exhibited an inverse association with full-
scale IQ (FSIQ) (β = -2.38; 95% CI: -4.59, -0.16) and working memory index (WMI) (β = -5.24; 95% CI: -9.58, -0.89), 
respectively. Prenatal exposure to the third tertile of 4-N-NP showed a positive association with the fluid reasoning 
index (β = 4.95; 95% CI: 1.14, 8.77) in total children, as well as in girls when stratified by sex. A U-shaped relationship 
between maternal 4-T-OP and WMI was noted in total children and girls by RCS (all P nonlinear < 0.05). The com-
bined effect primarily driven by NP, of maternal AP mixtures at concentrations above the 50th percentile exhibited 
an inverse trend on FSIQ in total children and girls in BKMR.

Conclusions Prenatal exposure to various APs affects IQ in preschool children, and there may be nonmonotonic 
and sex-specific effects. Further investigation across the population is required to elucidate the potential neurotoxic 
effects of APs.
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Background
 Alkylphenols (APs) are a significant class of endocrine-
disrupting chemicals (EDCs), which are byproducts of 
the biodegradation of AP polyethoxylates and exhibit 
estrogenic activity; the two most common types of APs 
are nonylphenol (NP) and octylphenol (OP) [1]. Due to 
their widespread and substantial presence in household 
detergents, plastic products, cosmetics, and personal 
care items [2], individuals primarily encounter these 
pollutants through various pathways, including dietary 
ingestion, skin absorption, and inhalation. Consequently, 
these pollutants pose a significant threat to health [3].

APs are widely distributed and exhibit environmen-
tal stability. They have been detected in biological sam-
ples of mothers, including urine, blood, and breast milk 
[4–7], which leads to exposure in fetuses and infants, 
with uncertain outcomes. Furthermore, their capacity to 
traverse the placenta and blood‒brain barrier has gener-
ated growing interest in exploring the potential effects of 
exposure to APs on offspring [6, 8, 9]. In summary, the 
fetal stage represents a critical developmental period 
during which exposure to EDCs could potentially have 
adverse effects on offspring neurodevelopment, leading 
to long-term consequences [10].

Research has indicated that prenatal exposure to APs 
may disrupt the thyroid hormone system, trigger an 
imbalance in oxidative stress, induce inflammation and 
cellular apoptosis [11, 12], interfere with neuronal DNA 
replication [13], result in neurotransmitter disorders [14] 
and impair synaptic plasticity [15]. These effects collec-
tively contribute to potential abnormalities in fetal neu-
rodevelopment. Furthermore, APs are recognized for 
their estrogenic properties [1], and maternal exposure to 
APs during pregnancy could potentially disrupt typical 
neurodevelopment in offspring by exerting neurotoxic 
effects through anti-androgenic activity [16, 17].

Cognitive function constitutes a crucial element of 
neurodevelopment. Animal studies have demonstrated 
a positive association between prenatal exposure to NP 
and impaired neurodevelopment, as well as learning and 
memory deficits in offspring [8, 9, 14, 15, 18, 19]. Nev-
ertheless, there is a dearth of epidemiological studies 
investigating the connection between AP exposure dur-
ing pregnancy and cognitive outcomes among children. 
Two prospective birth cohort studies conducted in Tai-
wan and Spain have investigated the potential connection 
between prenatal exposure to APs and cognitive func-
tion in children [10, 20]. However, neither studies have 
found statistical significance relationship when adjusted 
for confounders. Furthermore, no study has explored 
the potential association between prenatal exposure 
to 4-n-nonylphenol (4-N-NP) and 4-n-octylphenol 
(4-N-OP), which are isomers of NP and OP, and the 

neurocognitive development of children. Thus, the asso-
ciation between prenatal or perinatal exposure to APs 
and cognitive function remains to be firmly established 
due to the insufficient evidence available from population 
studies.

Indeed, in real-world scenarios, humans often encoun-
ter simultaneous exposure to multiple APs. Prior inves-
tigations have focused on assessing the impacts of 
individual AP exposure [7, 10, 21]. However, consider-
ing the potential synergistic interactions, the combined 
effects of exposure to chemical mixtures might lead to 
heightened toxicity [22]. In light of this background, we 
hypothesize that prenatal exposure to APs is associated 
with childhood cognitive function. The objective of the 
present investigation was to investigate the potential 
links between individual and combined effects of mater-
nal exposure to four APs [NP, 4-N-NP, 4-tert-octylphenol 
(4-T-OP), and 4-N-OP] during early pregnancy and the 
IQ of children aged 3 to 6 years, utilizing data from the 
Guangxi Zhuang Birth Cohort (GZBC) in China.

Methods
Study design
This research was conducted using a subset of mother-
child pairs from the Guangxi Zhuang Birth Cohort 
(GZBC), a prospective population-based study initiated 
in June 2015, to examine the effects of prenatal envi-
ronmental exposures on the health outcomes of both 
mothers and children [23]. Briefly, at baseline, pregnant 
women who were ≤ 13 gestational weeks, non-assisted 
reproduction, Zhuang nationality, residents of the study 
area, and barrier-free communication were included 
during their initial prenatal care appointment. Mater-
nal blood samples were obtained for laboratory analysis 
upon completion of a self-administered questionnaire by 
eligible pregnant women. Children of the eligible preg-
nant women were followed up from 2016. The present 
study focused on 221 mother-child pairs with complete 
maternal serum AP measurement information, single-
ton pregnancy, without birth defects, children aged 3 to 
6 years with IQ scores, and complete covariate informa-
tion. This research adhered to the principles outlined in 
the Declaration of Helsinki and received approval from 
the Ethics and Research Committees of Guangxi Medi-
cal University (No.20140305-001). Participants provided 
written informed consent before being included in the 
study.

Serum AP exposure measurements
Fasting venous blood samples of pregnant women were 
collected and kept at 4 °C. They were then centrifuged 
at 3500 rpm for 10 min, after which serum samples were 
extracted and stored at -80 °C until further processing. 
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The procedures for measuring APs have been detailed 
in previous descriptions [24]. Ultra-performance liquid 
chromatography-tandem mass spectrometry (UPLCMS, 
Waters, USA) was used for the quantification analysis of 
NP, 4-N-NP, 4-T-OP, and 4-N-OP. To prevent contami-
nation from laboratory materials and APs, plastic prod-
ucts were excluded from the sample preparation process. 
Glass tubes were meticulously cleaned with methanol 
and ultra-pure water before utilization. Detailed qual-
ity control measures were performed as previously 
described [24]. Table 2 provides the detection rate, limit 
of detection (LOD), geometric mean, and percentiles (%) 
of each AP. We assigned sample concentrations below the 
LOD a value as LOD divided by the square root of 2.

Childhood IQ assessment
 The Wechsler Intelligence Scales are widely used psy-
chological tests to assess individual’s intellectual abili-
ties [25–27]. It compares an individual’s raw score to the 
average score of a standardized reference group of the 
same age and gender during the standardization process 
to ultimately calculate a standardized IQ score [25–27]. 
In the present study, childhood IQ was evaluated by the 
Chinese version of the Wechsler Preschool and Primary 
Scale of Intelligence, Fourth Edition (WPPSI-IV CN), 
which possesses well-documented psychometric prop-
erties and is widely utilized for evaluating IQ of children 
aged 2 years 6 months to 6 years [28, 29]. This scale was 
translated and culturally adapted to conform to Chinese 
norms, demonstrating an equivalence to the original 
scales [30]. It comprises five primary subscales that yield 
standardized scores: the verbal comprehension index 
(VCI), visual spatial index (VSI), fluid reasoning index 
(FRI), working memory index (WMI), and processing 
speed index (PSI). The full-scale intelligence quotient 
(FSIQ) was calculated based on the five domain sub-
scales [25]. All examiners underwent training supervised 
by clinical psychologists possessing testing qualifica-
tions. The assessments took place in dedicated, private, 
and tranquil rooms within the project hospitals. The raw 
data were submitted to a researcher who was blinded to 
the specifics for entry into the system(King-May, Zhuhai, 
China) and for calculating the IQ scores of each child. 
The IQ scores were presented as standardized scores, 
with an average value of 100 and a standard deviation 
(SD) normalized to 15 [25].

Covariates
Sociodemographic covariates were obtained by face-to-
face interviews via structured self-administered ques-
tionnaire during the first prenatal visit: pre-pregnancy 
weight (kg) and height (cm), maternal education, alco-
hol use, passive smoking, folic acid supplementation, 

parity, household income and diseases history. Detailed 
reproductive and birth outcome information including 
gestational hypertension, gestational diabetes mellitus, 
gestational age, maternal age at delivery, child sex, birth 
weight and birth length was abstracted from the elec-
tronic medical records. Maternal pre-pregnancy body 
mass index (BMI, kg/m2) was computed by dividing 
weight by the square of height. Confounders that were 
only associated with outcomes rather than possible con-
sequences of exposure were identified from prior litera-
ture [28, 31, 32]. These included maternal age at delivery, 
maternal pre-pregnancy BMI, maternal education, pas-
sive smoking, household income, folic acid supplemen-
tation, breastfeeding duration, child sex, and child age at 
assessment.

Statistical analysis
Baseline characteristics of the participants were evalu-
ated using independent samples t-tests, Wilcoxon rank 
sum tests, and chi-square tests. For normally distrib-
uted continuous variables, the mean ± SD are provided, 
while nonnormally distributed variables are expressed 
as the median and interquartile range (IQR). Categorical 
variables are displayed as numbers (frequencies). Spear-
man correlations were used to evaluate the relationships 
between each pairs of APs, and Pearson correlations 
were used to test the internal consistency of WPPSI-IV 
scores. As the AP concentrations in maternal serum were 
skewed distribution, they were all log10 transformed 
to treat as continuous variables and used in all models. 
Covariates, including maternal age at delivery, maternal 
pre-pregnancy BMI, passive smoking, maternal edu-
cation, household income,  folic acid supplementation, 
breastfeeding duration, child age, and child sex (except 
for sex stratification) were adjusted in all models.

Generalized linear models (GLMs) were applied to esti-
mate the relationship between individual maternal AP 
exposure and childhood IQ, shown as a beta coefficient 
(β) and its 95% confidence interval (CI). In these models, 
maternal serum AP concentrations were log10-trans-
formed as continuous variables or tertiled as ordered 
categorical variables. APs concentration were converted 
into categorical variables, and an analysis of linear trends 
for each tertile was conducted by specifying tertiles as 
integer variables (values 1, 2, and 3 corresponding to the 
1st, 2nd, and 3rd tertiles, respectively).  Restricted cubic 
spline (RCS) was used to evaluate the dose‒response 
connection of each AP and childhood IQ. The RCS model 
featured three knots positioned at the 10th, 50th, and 
90th percentiles of the log10-transformed AP concentra-
tions. The reference point (β = 0) was established at the 
50th percentile.
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We also employed the BKMR model, a nonpara-
metric statistical approach, to estimate the individ-
ual effects of each AP, as well as the interactions and 
combined effects of the AP mixture on childhood 
IQ [33, 34]. That is, the exposure-response function 
between each maternal serum APs and childhood IQ 
was assessed when all the other APs were fixed at their 
50th percentiles. Bivariate interactions between each 
pair of APs were explored when all the other three 
APs were fixed at their 50th percentile. The cumula-
tive effects of APs on childhood IQ were evaluated by 
holding all APs at a given quantile compared with their 
50th quartile. The combined effects of AP mixtures 
were performed when four APs were held at their 10th 
to 90th percentiles, as opposed to being held at their 
50th percentile. Posterior inclusion probabilities (PIPs) 
were calculated to outline the comparative significance 
of each AP within the mixture concerning its impact 
on childhood IQ [34]. The BKMR model with 50,000 
iterations was implemented by a Markov chain Monte 
Carlo algorithm.

We conducted two sensitivity analyses. First, as stud-
ies have suggested that sex may be a regulatory factor 
that potentially affects between prenatal environmental 
chemical exposure and neurodevelopment [28, 31, 32], 
subgroup analysis with sex stratification was conducted 
in both single and multi-exposure models to assess 
whether sex could modify the relationship between 
maternal AP exposure and childhood IQ. Second, since 
maternal folic acid supplementation (none, before 
and during pregnancy) may influence the relationship 
between prenatal AP exposure and IQ scores among pre-
school children [35, 36], we ran the GLM again without 
accounting for maternal folic acid supplementation.

Statistical analyses were performed using R (version 
4.1.2). BKMR and RCS models were executed using the 
bkmr and rms packages in R, respectively. Two-sided 
P < 0.05 was deemed statistically significant.

Results
Profile of the enrolled participants
The characteristics of the mother-child pairs are presented 
in Table 1. The average of maternal age at delivery and pre-
pregnancy BMI were 29.31 ± 5.41 years and 20.54 ± 2.97 
kg/m2, respectively. 39.8% of mothers were passive 
smokers during pregnancy, and nearly 60.7% of mothers 
had received a high school education or above. Among 
the mothers, 48.4% were primiparity and 48.0% were 
folic acid supplementation during pregnancy. Approxi-
mately 77.4% of families reported an annual household 
income < 150,000 yuan per year. Out of the total partici-
pants, 125 (56.6%) were boys and 96 (43.4%) were girls. 

The average gestational age was 38.64 ± 1.17 weeks, and 
the mean birth weight was 3123.89 ± 426.13 g. Among 
the 221 children, 70.1% were breastfed for a minimum 
of 6 months. The average age of the children at cognitive 
testing was 4.61 ± 0.64 years. The average of VCI, VSI, 

Table 1 Characteristics of the mother-child pairs participants 
(n = 221)

Abbreviations: SD Standard deviation, BMI Body mass index, IQ Intelligence 
quotients, VCI Verbal comprehension index, VSI the visual space index, FRI the 
fluid reasoning index, WMI the working memory index, PSI Processing speed 
index, FSIQ Full-scale intelligence quotient

Characteristics Mean ± SD/number (%)

Maternal Characteristics
 Maternal age at delivery (years) 29.31 ± 5.41

 Pre-pregnancy BMI (kg/m2) 20.54 ± 2.97

 Maternal education

  Less than high school 87 (39.4)

  high school 43 (19.5)

  College graduate or higher 91 (41.2)

 Parity

  Primiparity 107 (48.4)

  Multipara 114 (51.6)

 Folic acid supplement

  None 72 (32.6)

  Before pregnancy 43 (19.5)

  During pregnancy 106 (48.0)

 Passive smoking

  Yes 88 (39.8)

  No 133 (60.2)

 Household income (yuan/year)

   < 60,000 85 (38.5)

  60,000–150,000 86 (38.9)

   ≥ 150,000 50(22.6)

Children Characteristics
 Sex

  Boys 125 (56.6)

  Girls 96 (43.4)

 Gestational age (weeks) 38.64 ± 1.17

 Birth weight (g) 3123.89 ± 426.13

 Age (years) 4.61 ± 0.64

 Breastfeeding duration (months)

   < 6 66 (29.9)

   ≥ 6 155 (70.1)

 Children’s IQ

  VCI 85.55 ± 11.35

  VSI 90.69 ± 11.62

  WMI 90.97 ± 13.15

  FRI 100.48 ± 11.24

  PSI 99.38 ± 11.31

  FSIQ 86.90 ± 11.53
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WMI, FRI, PSI and FSIQ scores among the children were 
85.55 ± 11.35, 90.69 ± 11.62, 90.69 ± 11.62, 100.48 ± 11.24, 
99.38 ± 11.31 and 86.90 ± 11.53, respectively.

Distributions of maternal serum APs and their associations 
and the internal consistency of diverse domain scores 
within the WPPSI‑IV assessment
The distributions of maternal serum APs are presented in 
Tables S1 and S2. All four APs were detected in mater-
nal serum samples, NP had the highest detection rate 
(98.2%) while 4-N-OP had the lowest (62.4%) (Table S1). 
The median concentrations of NP, 4-N-NP, 4-T-OP, and 
4-N-OP in 221 maternal serum samples were 95.75 ng/
ml, 1.73 ng/ml, 42.92 ng/ml, and 0.84 ng/ml, respectively 
(Table S2). The AP concentrations were higher among 
mothers of boys than those in mothers carrying girls, 
but the difference did not reach statistical significance 
(P > 0.05) (Table S2). The associations between the mater-
nal serum APs are shown in Fig. 1. The Spearman corre-
lation coefficient of each pair of APs was between − 0.03 
and 0.41. The internal consistency of various domain 
scores in the WPPSI-IV is displayed in Table S3. Addi-
tionally, scores from different domains displayed signifi-
cant associations (association coefficients = 0.21 to 0.49, 
all P < 0.01).

Associations between maternal serum APs and childhood 
IQ by single‑exposure models
Table  2 shows the association between each maternal 
log10-transformed AP concentration and childhood 
IQ by GLMs. After adjustment, each unit increase in 

log10-transformed maternal NP exposure was associ-
ated with a 2.38 (95% CI: -4.59,-0.16) decrease in FSIQ. 
Mothers in the third tertile of log10-transformed 4-N-
NP was positively associated with FRI (β = 4.95; 95% CI: 
1.14, 8.77), while mothers in the second tertile of log10-
transformed 4-T-OP was inversely associated with WMI 
(β = -5.24; 95% CI: -9.58,-0.89; P for trend = 0.732). Fur-
thermore, Fig. S1 represents the log10-transformed 4-T-
OP was nonlinearly related to WMI in total children (P 
nonlinear = 0.017).

When stratified by child’s sex, each unit increase in 
log10-transformed maternal 4-N-NP exposure was 
associated with a 13.48 (95% CI: 1.09, 25.87) increase 
in WMI among girls, and mothers in the third tertile of 
log10-transformed 4-N-NP was positively associated 
with FRI (β = 6.66; 95% CI: 0.96, 12.36) in girls. Moreover, 
each unit increase in log10-transformed maternal 4-N-
OP exposure was associated with a 10.30 (95% CI: 1.18, 
19.43) increase in WMI among girls. Among girls, the 
RCS models also represented there was a dose‒response 
relationship between log10-transformed 4-N-OP and FRI 
(P overall = 0.048) (Fig. S2), and a U-shaped relationship 
and between log10-transformed 4-T-OP and WMI (P 
nonlinear = 0.023) (Fig. S2).

The association between maternal AP exposure and 
childhood IQ remained statistically significant even when 
not accounting for maternal folic acid supplementation, 
as well as when stratified by child sex (Table S5).

Combined effects of the AP mixture by BKMR models
No significant combined effects of the AP mixture on 
childhood IQ were found (Fig. 2, Figs. S4, S5). Compared 
with all four APs at their 50th percentile, the combined 
effect of the AP mixture more than their 50th percen-
tile exhibited a decreasing trend on VCI, VSI, WMI, PSI, 
and FSIQ in total children (Fig. 2) and girls (Fig. S5). The 
PIPs rooted in the BKMR model are presented in Table 
S4. NP had the highest PIPs for VSI, WMI, and FSIQ in 
total children and in girls. Significant decreases in child-
hood FSIQ levels were observed when the concentrations 
of NP increased from the 25th to the 75th percentiles 
(Fig. 3), however, this change was not significant in either 
boys or girls (Figs. S6, S7). The univariate dose‒response 
functions for APs with childhood IQ were generally con-
sistent with the GLM and RCS models (Fig.  4, Figs. S8, 
S9). For example, when fixing the other APs at their 50th 
percentile, NP showed a decreasing trend with VCI, VSI, 
WMI, PSI, and FSIQ in total children (Fig.  4) and girls 
(Fig. S9). There was no evidence of pairwise interactions 
between AP exposures and childhood IQ when all the 
other APs were fixed at their 50th percentile or stratified 
by sex (Figs. S10-S12).

Fig. 1 The correlation between the maternal serum APs 
concentrations among total children. Gradient color from red to blue 
and circle size represent the correlation coefficient
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Table 2 Association between each maternal serum AP concentration (ng/mL; tertile) and child’s intelligence quotient (n = 221)

APs VCI VSI WMI FRI PSI FSIQ
β (95%CI) β (95%CI) β (95%CI) β (95%CI) β (95%CI) β (95%CI)

Total

 NP (cont) -1.78 (-3.95,0.39) -1.80 (-4.25,0.64) -2.13 (-4.85,0.59) 0.03 (-3.14,3.21) -1.08 (-4.40,2.25) -2.38(-4.59,-0.16)*

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -1.27 (-4.86,2.32) 1.52 (-2.51,5.55) 2.00 (-2.48,6.48) 4.14 (-0.05,8.32)# -0.52 (-5.00,3.96) 0.14 (-3.54,3.82)

  Tertile 3 -0.67 (-4.31,2.98) -0.58 (-4.67,3.51) -0.36 (-4.91,4.19) -1.07 (-5.53,3.4) -1.14 (-5.92,3.64) -1.12 (-4.85,2.61)

  P for trend 0.748 0.727 0.817 0.709 0.638 0.533

 4-N-NP(cont) 0.91 (-5.85,7.66) -2.93 (-10.52,4.65) 2.14 (-6.32,10.59) 4.67 (-4.26,13.60) 4.05 (-5.34,13.43) 0.87 (-6.05,7.80)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -2.34 (-5.89,1.20) -1.91 (-5.91,2.09) -1.93 (-6.39,2.53) 0.03 (-4.24,4.31) 0.83 (-3.74,5.40) -2.87 (-6.49,0.75)

  Tertile 3 0.70 (-2.49,3.89) -0.29 (-3.89,3.31) 0.12 (-3.89,4.13) 4.95 (1.14,8.77)* 2.65 (-1.43,6.73) 1.02 (-2.24,4.27)

  P for trend 0.708 0.850 0.980 0.014 0.204 0.588

 4-T-OP (cont) -0.12 (-1.59,1.34) 1.10 (-0.54,2.74) -0.37 (-2.21,1.46) -0.13 (-1.93,1.67) -0.26 (-2.15,1.62) -0.12 (-1.63,1.38)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -0.83 (-4.35,2.68) -2.38 (-6.30,1.53) -5.24(-9.58,-0.89)* -1.06 (-5.41,3.29) 3.45 (-1.09,7.99) -1.22 (-4.82,2.38)

  Tertile 3 1.23 (-2.35,4.81) 2.04 (-1.94,6.03) -0.97 (-5.40,3.45) 0.21 (-4.36,4.78) 2.06 (-2.70,6.83) 1.09 (-2.57,4.76)

  P for trend 0.479 0.285 0.732 0.933 0.388 0.531

 4-N-OP(cont) 2.06 (-3.78,7.89) 4.61 (-1.92,11.14) -1.05 (-8.36,6.26) 4.49 (-2.03,11.00) 1.39 (-5.49,8.26) 3.33 (-2.63,9.30)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -0.14 (-3.57,3.28) 0.64 (-3.22,4.50) -0.81 (-5.11,3.48) 2.44 (-1.86,6.73) 2.61 (-1.90,7.13) -0.79 (-4.30,2.72)

  Tertile 3 0.93 (-2.38,4.23) 0.45 (-3.27,4.17) -1.32 (-5.46,2.82) 2.76 (-1.34,6.86) -0.44 (-4.75,3.87) 0.28 (-3.11,3.67)

  P for trend 0.587 0.805 0.528 0.172 0.911 0.882

Boys

 NP (cont) -1.64 (-4.84,1.56) -0.95 (-4.31,2.41) -1.57 (-5.39,2.26) -1.40 (-5.65,2.85) -1.19 (-5.33,2.96) -1.81 (-5.08,1.47)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -0.36 (-5.68,4.97) 2.48 (-3.06,8.03) 1.39 (-4.96,7.73) 5.54 (-0.47,11.54)# 0.82 (-5.24,6.89) 0.17 (-5.28,5.62)

  Tertile 3 -0.08 (-5.58,5.42) -0.33 (-6.05,5.40) -0.62 (-7.18,5.93) -3.38 (-9.91,3.15) -3.47 (-10.07,3.13) -1.20 (-6.82,4.43)

  P for trend 0.990 0.800 0.789 0.452 0.338 0.641

 4-N-NP(cont) 3.41 (-5.77,12.60) -5.00 (-14.59,4.60) -1.39 (-12.38,9.59) 2.56 (-11.25,16.38) 11.50(-1.72,24.72)# 0.53 (-8.89,9.96)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -3.21 (-8.68,2.27) -4.04 (-9.81,1.73) -4.41 (-11.00,2.17) -4.60 (-11.19,1.98) -1.09 (-7.59,5.41) -4.59 (-10.16,0.98)

  Tertile 3 1.86 (-2.53,6.25) -1.95 (-6.58,2.68) -0.65 (-5.93,4.63) 3.32 (-2.01,8.66) 3.95 (-1.32,9.22) 1.67 (-2.80,6.13)

  P for trend 0.386 0.421 0.831 0.271 0.154 0.440

 4-T-OP (cont) 0.49 (-1.63,2.61) 1.53 (-0.67,3.74) -0.20 (-2.73,2.33) -0.19 (-2.97,2.58) -0.65 (-3.36,2.05) 0.29 (-1.88,2.46)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -0.16 (-5.25,4.93) -1.54 (-6.87,3.80) -5.07 (-11.12,0.98) -2.37 (-9.04,4.30) 3.35 (-3.08,9.79) 0.22 (-4.95,5.40)

  Tertile 3 2.96 (-2.20,8.11) 1.85 (-3.56,7.25) -1.69 (-7.82,4.44) -1.05 (-8.24,6.14) -0.54 (-7.48,6.41) -0.54 (-5.33,4.24)

  P for trend 0.249 0.484 0.615 0.783 0.855 0.602

 4-N-OP(cont) 2.28 (-6.79,11.36) 2.78 (-6.72,12.29) -2.36 (-13.2,8.47) -0.18(-10.58,10.23) 7.64 (-2.35,17.62) 4.38 (-4.89,13.65)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 1.77 (-3.27,6.81) 1.20 (-4.07,6.48) -1.00 (-6.99,4.98) -1.20 (-7.66,5.26) 2.72 (-3.54,8.98) -0.84 (-6.08,4.40)

  Tertile 3 0.42 (-4.25,5.09) -1.13 (-6.01,3.75) -3.71 (-9.24,1.83) 0.32 (-5.60,6.25) -0.55 (-6.29,5.19) 1.35 (-3.95,6.66)

  P for trend 0.862 0.643 0.185 0.937 0.904 0.821

Girls

 NP (cont) -1.79 (-4.98,1.41) -1.75 (-5.63,2.13) -2.96 (-6.49,0.56) 3.57 (-1.65,8.79) -1.43 (-7.51,4.65) -2.62 (-5.79,0.56)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -2.36 (-7.62,2.91) 2.40 (-3.99,8.79) 1.86 (-4.00,7.72) 4.97 (-1.28,11.23) -2.63 (-9.95,4.69) 0.69 (-4.61,5.99)

  Tertile 3 -1.39 (-6.76,3.98) 1.19 (-5.33,7.71) -1.27 (-7.23,4.70) 1.32 (-5.44,8.08) -0.96 (-8.87,6.96) -0.86 (-6.26,4.55)

  P for trend 0.612 0.720 0.664 0.692 0.805 0.749
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Discussion
The present study demonstrates the potential for nonlin-
ear dose‒response relationships and sex-specific associa-
tions between prenatal exposure to APs and the IQ of 
preschool children. Furthermore, prenatal exposure to 
the AP mixture exceeding the 50th percentile exhibited 
a decreasing trend in the VCI, VSI, WMI, PSI, and FSIQ 
scores among total children and among girls. To our 
knowledge, this study represents one of the initial epi-
demiological investigations into the impact of maternal 
serum AP exposure on the IQ of preschool children.

Studies have shown that the detection rate of APs in 
human, blood samples ranges from 55 to 100% [4–7]. In 
the current study, the detection rates of NP and 4-T-OP 
in maternal serum were found to be 98.2% and 91.0%, 
respectively, which are relatively high. The median con-
centrations of NP and 4-T-OP in maternal serum were 
95.75 ng/mL and 42.93 ng/mL, respectively. Conversely, 
Huang et al. reported a blood concentration of 14.6 µg/L 
for NP in pregnant women from Taiwan [6], and Shek-
har et al. found blood concentrations of 9.38 µg/L for NP 
and 5.46 µg/L for OP in pregnant Indian mothers [4]. 
These levels were significantly below the detection con-
centrations observed in our study. Although a study from 
Korea reported elevated blood levels of 89.9 µg/L for 
NP and 62.2 µg/L for OP [21], their NP levels remained 

lower than those observed in our study, indicating that 
pregnant women in the GZBC may face elevated poten-
tial toxicological risks due to exposure to APs. In addi-
tion, elevated maternal NP levels were linked to a higher 
risk of small for gestational age, shortened birth length, 
low birth weight, and pubertal development disorders 
[37–40]. Hence, there is an urgent need for studies inves-
tigating the relationship between maternal AP exposure 
during pregnancy and the growth and development of 
offspring in Guangxi.

Only two epidemiological studies have investigated 
the potential link between prenatal exposure to APs and 
cognitive function in children. Apart from differences 
in measurement scales, there are also some dispari-
ties from our study. The prospective study conducted in 
Spain revealed that prenatal exposure to APs was linked 
to weaker performance across various cognitive domains 
among 5-year-old children. However, these associations 
did not reach statistical significance [20]. Furthermore, 
this study constructed an exposure matrix, considering 
the likelihood of pregnant women encountering vari-
ous EDCs in their employment during pregnancy, but it 
did not assess individual-level exposure of the specific 
APs. In another prospective study carried out in Taiwan, 
researchers did not observe any potential association 
between levels of NP and OP in umbilical cord blood and 

Abbreviations: 95%CI 95% Confidence interval, VCI Verbal comprehension index, VSI the visual space index, FRI the fluid reasoning index, WMI the working memory 
index, PSI Processing speed index, FSIQ full-scale intelligence quotient, AP Alkylphenol, NP Nonylphenol, 4-N-NP 4-Nonylphenol, 4-T-OP 4-tert-octylphenol, 4-N-OP 
4-n-octylphenol

The models were adjusted for maternal age at delivery, maternal pre-pregnancy BMI, passive smoking, maternal education, household income, folic acid 
supplementation, breastfeeding duration, child age, and child sex
* P < 0.05
# P < 0.10

Table 2 (continued)

APs VCI VSI WMI FRI PSI FSIQ
β (95%CI) β (95%CI) β (95%CI) β (95%CI) β (95%CI) β (95%CI)

 4-N-NP(cont) -4.28 (-15.69,7.14) 1.36(-12.53,15.24) 13.48(1.09,25.87)* 7.18 (-5.67,20.04) -0.03 (-14.96,14.91) 1.51 (-9.98,13.00)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -1.44 (-6.40,3.52) -0.99 (-6.99,5.01) 1.57 (-3.92,7.05) 4.57 (-1.38,10.53) 3.06 (-4.05,10.16) -1.14 (-6.12,3.84)

  Tertile 3 -1.16 (-6.20,3.88) 1.74 (-4.36,7.84) 2.59 (-3.04,8.21) 6.66 (0.96,12.36)* 1.87 (-4.93,8.68) -0.17 (-5.23,4.90)

  P for trend 0.613 0.622 0.350 0.020 0.557 0.905

 4-T-OP (cont) -0.80 (-2.96,1.37) 1.09 (-1.53,3.72) -0.75 (-3.15,1.66) 0.31 (-2.28,2.89) 0.12 (-2.85,3.10) -0.6 (-2.77,1.58)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -1.41 (-6.49,3.68) -3.27 (-9.26,2.73) -4.40 (-10.08,1.28) -0.08 (-6.25,6.09) 2.67 (-4.40,9.74) -1.46 (-6.56,3.64)

  Tertile 3 -1.33 (-6.81,4.14) 3.71 (-2.73,10.16) -1.35 (-7.34,4.64) 2.24 (-4.36,8.84) 3.75 (-3.82,11.32) 0.38 (-5.10,5.87)

  P for trend 0.627 0.267 0.657 0.520 0.311 0.892

 4-N-OP(cont) 3.30 (-4.97,11.57) 9.39(-0.46,19.25)# 1.08 (-8.13,10.29) 10.30(1.18,19.43)* -3.14 (-14.01,7.73) 4.08 (-4.20,12.37)

  Tertile 1 Ref Ref Ref Ref Ref Ref

  Tertile 2 -2.04 (-7.07,2.98) 0.53 (-5.60,6.66) -0.97 (-6.61,4.67) 6.78 (0.57,12.98)* 2.35 (-5.11,9.81) -1.68 (-6.74,3.38)

  Tertile 3 2.16 (-2.89,7.20) 3.68 (-2.47,9.83) 2.01 (-3.65,7.67) 6.33 (0.17,12.49)* -0.06 (-7.46,7.35) 2.09 (-2.99,7.16)

  P for trend 0.457 0.248 0.513 0.033 0.956 0.467
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cognitive function among children aged 2 and 7 years. 
Ultimately, the outcomes of both studies were not impact 
by the child’s sex, and neither of the studies investigated 
the combined effects of AP exposure on cognitive devel-
opment. However, in our study, both single and mixed 
exposure models were employed to comprehensively 
investigate the relationship between prenatal AP expo-
sure and the cognitive abilities of preschool children. As 
a result, we observed some nonmonotonic and sex-spe-
cific associations. Given the potential enduring impact 
of prenatal exposure to EDCs on the developmental tra-
jectory of offspring, our findings propose a potential link 
between prenatal exposure to APs and adverse cognitive 
outcomes in preschool children.

Our findings underscore the intricate nature of the 
connection between prenatal AP exposure and neurode-
velopment in preschool children. We observed a negative 
association between maternal NP and childhood FSIQ 
scores and a positive association between maternal 4-N-
NP and childhood FRI scores. The neuroprotective mech-
anism of 4-N-NP is not yet clear, but similar to other 
EDCs [41, 42], APs may act as agonists of peroxisome 
proliferator-activated receptor (PPAR) and thus influence 
the PPAR signaling pathway [43, 44], given that receptor 
agonists of PPAR have been demonstrated to be associ-
ated with neuroprotection. Nevertheless, findings have 

also suggested that APs could potentially induce neuro-
toxicity through their impact on neuronal DNA replica-
tion [13], neuronal differentiation [45], inflammation 
[11], and injury or apoptosis [13, 46]. These effects could 
contribute to the impaired neurobehavioral, learning, 
and memory capabilities observed in rodents [9, 14, 15]. 
Furthermore, as an isomer of NP, 4-N-NP exhibits dis-
tinct exposure sources and levels, which could potentially 
account for the divergent effects observed in neurocog-
nitive development. However, there is limited research 
regarding the comparative toxicity between 4-N-NP and 
NP. To our knowledge, perinatal exposure to 4-N-NP has 
been associated with behavioral and neurodevelopmental 
impairments in offspring rats [18]. Indeed, the disparate 
effects on cognitive function should be interpreted with 
caution. Nevertheless, given the heterogeneity in associa-
tions reported in prior literature, the effects of maternal 
4-N-NP exposure on offspring cognitive function should 
be cautiously interpreted.

Moreover, we noted a nonlinear relationship between 
maternal 4-T-OP and childhood WMI, and a maternal 
AP mixture exceeding the 50th percentile exhibited 
a decreasing trend in VCI, VSI, WMI, PSI, and FSIQ 
among children. This suggests that the adverse impact 
of maternal 4-T-OP on childhood WMI intensifies at 
levels below the median but diminishes at levels above 

Fig. 2. Combined effect of the maternal serum APs on childhood intelligence quotient in total children. APs were log10- transformed. Black circle 
indicates effect estimates, black vertical lines represent 95% confidence intervals, and red dotted lines represent the null. All models were adjusted 
for maternal age at delivery, maternal prepregnancy BMI, passive smoking, maternal education, household income, folic acid supplementation, 
breastfeeding duration, child age, and child sex
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it. Conversely, the detrimental effects of maternal AP 
mixtures on children’s cognition escalated at concen-
trations above the median. This phenomenon may be 
attributed to the disruption of the human endocrine 
system and gonadal hormones by APs [16, 17, 47, 48], 
which in turn can disrupt normal neurodevelopmen-
tal patterns during early fetal development. Although 
there are limited studies on the relationship between 
AP mixtures and child neurodevelopment, the exist-
ing research indicates that prenatal exposure to one or 
multiple EDCs has led to inconsistent effects [31, 32, 
49]. This variability could potentially arise from syn-
ergistic or antagonistic interactions among different 
EDCs, resulting in unpredictable neurodevelopmen-
tal outcomes. Moreover, genetic variations, timing of 
exposure, dose‒response relationships, environmental 
factors, and study designs might further influence the 
effects of EDCs, contributing to the observed inconsist-
ency in neurodevelopment.

Although the exact biological mechanisms remain 
uncertain, studies indicate that APs might disrupt essen-
tial processes crucial for fetal neurodevelopment. One 
potential mechanism is that APs may exhibit endocrine-
disrupting properties, which could involve interfer-
ence with the production or homeostasis of the thyroid 
hormone system [47, 48, 50]. The intrauterine thyroid 
hormone environment plays a critical role in neurode-
velopment, with thyroid hormones being involved in 
the formation and distribution of somatosensory cor-
tex and hippocampal neurons during early pregnancy 
[51–53]. Furthermore, maternal hypothyroidism can 
result in abnormalities in fetal cerebral cortex morphol-
ogy, neuronal structure, synaptic connections, and axonal 
myelination [52, 54]. The Generation R Study has also 
demonstrated a close relationship between maternal thy-
roid function and hormone levels in early pregnancy and 
child neurodevelopmental outcomes [55, 56]. In animal 
experiments, injecting NP into prepubertal goldfish and a 

Fig. 3 Association (estimates and 95% confidence intervals) of each maternal serum AP with childhood intelligence quotient in total children, 
when the other APs were fixed at their 25th, 50th, and 75th percentiles. All models were adjusted for maternal age at delivery, maternal 
prepregnancy BMI, passive smoking, maternal education, household income, folic acid supplementation, breastfeeding duration, child age, 
and child sex
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combination of NP and OP into lizards destroyed thyroid 
follicular epithelial cells, and raised thyroid-stimulating 
hormone levels while reducing triiodothyronine and thy-
roxine levels [50, 57], indicating that APs, whether alone 
or combined, can disrupt the hypothalamic-pituitary-
thyroid axis, ultimately affecting thyroid hormone levels. 
Although there is a scarcity of epidemiological studies 
investigating the link between prenatal AP exposure and 
thyroid function, animal studies have indicated that NP 
can traverse the placental barrier and accumulate in the 
thyroid of offspring [47]. Maternal exposure to NPs dur-
ing pregnancy and lactation has been linked to adverse 
effects on the growth and development of pups, including 
thyroid follicular structure abnormalities [18, 47], as well 
as learning and memory impairments [15, 18].

Another potential mechanism might be that prena-
tal exposure to APs may affect child neurodevelopment 
by oxidative stress and inflammation. Oxidative stress 
emerges when the body accumulates reactive oxygen spe-
cies (ROS) beyond the capacity of its antioxidant mech-
anisms to neutralize them, and finally causes adverse 
reactions and damage in the organism [58]. Studies have 
shown the association between prenatal AP exposure 
and elevated oxidative stress levels during pregnancy 
[59, 60]. Additionally, increased maternal oxidative stress 
has been observed to impact the brain development of 
the offspring [61]. Furthermore, prenatal AP exposure 
is associated with increased lipid peroxidation during 

pregnancy [59]. Animal studies have indicated that NP 
induces the accumulation of ROS in the brain, subse-
quently leading to lipid peroxidation, which could poten-
tially serve as a catalyst for the apoptotic process [62]. 
Both lactational and prenatal exposure to NP can activate 
offspring macrophages and lead to excessive produc-
tion of proinflammatory cytokines, subsequently, these 
cytokines travel to the brain through the gut-brain axis, 
and potentially trigger learning and memory deficits [8, 
19]. Other potential mechanisms include neurotransmit-
ter disorder [14], synaptic plasticity impairment [15] and 
apoptosis [12], all of which can disrupt the normal pro-
cess of fetal neurodevelopment.

Upon stratifying by child sex, we identified posi-
tive associations between prenatal AP exposure and 
FRI scores in girls, whereas no such associations were 
observed among boys. These findings imply that sex 
might modify the connections between prenatal AP 
exposure and the IQ of preschool children. However, 
prior studies did not observed any significant associa-
tions between prenatal AP exposure and children’s cog-
nitive scores [10, 20]. These differences may arise from 
variations in children’s age at assessment, neurodevel-
opmental evaluation scales, or AP exposure levels across 
different studies. The anti-androgenic properties of 
APs can result in perturbed androgen levels and abnor-
mal male gonadal development [16, 17]. Furthermore, 
gonadal hormones not only play a critical role in the 

Fig. 4 Univariate dose-response function (95% confidence intervals) between the log10-transformed concentrations of per maternal serum APs 
and childhood intelligence quotient, when fixing the concentrations of other APs at the 50th percentile in total children. Models were adjusted 
for were adjusted for maternal age at delivery, maternal prepregnancy BMI, passive smoking, maternal education, household income, folic acid 
supplementation, breastfeeding duration, child age, and child sex
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sexually dimorphic development of the brain but also 
hold significant importance in brain remodeling and 
cognitive function [63]. Animal studies also indicate that 
greater metabolism of NP in males could potentially be 
linked to the effects of gender differences in perinatal 
NP exposure [18, 64]. Hence, further research is war-
ranted to explore the potential influence of gender on 
the relationship between prenatal AP exposure and child 
neurodevelopment.

A strength of the study is its prospective examination 
of prenatal AP exposure and children’s cognitive devel-
opment. In addition, our study stands out by investigat-
ing both 4-N-NP and 4-N-OP, which distinguishes our 
research from previous studies that focused solely on 
prenatal exposure to NP and OP in relation to childhood 
neurodevelopment. Finally, our study is the first to uti-
lize the BKMR model to explore the combined impact 
of prenatal AP exposure on the IQ of preschool children. 
Given that chemical exposures often occur as mixtures, 
it is crucial to investigate their cumulative impacts. Some 
limitations need to be considered. First, the sample size 
was relatively limited. Second, some potential confound-
ing factors were not considered in this study, such as 
maternal occupation, which was included as a confound-
ing factor in other studies [20]. Moreover, we did not 
assess maternal IQ, although research has suggested that 
maternal IQ affects offspring’s intelligence level [65]; nev-
ertheless, we did incorporate covariate information con-
cerning maternal education into our analysis. Last, we 
only measured the AP levels in maternal serum in early  
pregnancy, which may result in exposure misclassifica-
tion and uncertainty of the exposure window. Nonethe-
less, importantly, AP exposure predominantly originates 
from external environmental sources, including pollutants 
in food, water, and air. Moreover, the metabolism of APs 
within the human body varies due to individual differences 
and the specific types of APs encountered. Hence, maternal 
serum AP levels during early pregnancy appear to be a 
suitable biomarker for assessing long-term exposure.

Conclusions
In conclusion, our findings provide evidence that prena-
tal exposure to APs during pregnancy might influence the 
IQ of preschool children, and these effects were modified 
by the child’s sex. While there might be a nonmonotonic 
relationship between prenatal exposure to AP mixtures 
and childhood IQ, our study indeed reveals the neuro-
toxic effects of certain individual APs, such as NP, upon 
exposure. Hence, both epidemiological and experimental 
studies are necessary to further investigate the long-term 
effects of intrauterine exposure to APs on child neurode-
velopment and provide insights into the potential biologi-
cal mechanisms.
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quotient, when fixing the other APs at their 25th, 50th, and 75th percen-
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