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Abstract 

Background A growing body of literature investigated childhood exposure to environmental chemicals in associa‑
tion with attention‑deficit/hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures 
of multiple chemical classes. This study examined associations of concurrent exposure to non‑persistent chemicals 
with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay (DD), 
and typical development (TD).

Methods A total of 549 children aged 2–5 years from the Childhood Autism Risks from Genetics and Environ‑
ment (CHARGE) case‑control study were administered the Aberrant Behavior Checklist (ABC). This study focused 
on the ADHD/noncompliance subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty‑two 
chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quanti‑
fied in child urine samples, and 43 chemicals detected in > 70% samples were used to investigate their associations 
with ADHD symptoms. Negative binomial regression was used for single‑chemical analysis, and weighted quantile 
sum regression with repeated holdout validation was applied for mixture analysis for each chemical class and all 
chemicals. The mixture analyses were further stratified by diagnostic group.

Results A phthalate metabolite mixture was associated with higher ADHD/noncompliance scores (median count 
ratio [CR] = 1.10; 2.5th, 97.5th percentile: 1.00, 1.21), especially hyperactivity/impulsivity (median CR = 1.09; 2.5th, 
97.5th percentile: 1.00, 1.25). The possible contributors to these mixture effects were di‑2‑ethylhexyl phthalate 
(DEHP) metabolites and mono‑2‑heptyl phthalate (MHPP). These associations were likely driven by children with ASD 
as these were observed among children with ASD, but not among TD or those with DD. Additionally, among chil‑
dren with ASD, a mixture of all chemicals was associated with ADHD/noncompliance and hyperactivity/impulsivity, 
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and possible contributors were 3,4‑dihydroxy benzoic acid, DEHP metabolites, MHPP, mono‑n‑butyl phthalate, 
and cadmium.

Conclusions Early childhood exposure to a phthalate mixture was associated with ADHD symptoms, particularly 
among children with ASD. While the diverse diagnostic profiles limited generalizability, our findings suggest a poten‑
tial link between phthalate exposure and the comorbidity of ASD and ADHD.

Keywords ADHD, Environmental phenols, Parabens, Phthalates, Organophosphate pesticides, Trace elements, 
Mixtures

Background
Attention-defici/hyperactivity disorder (ADHD) is a neu-
rodevelopmental disorder, in which the individual mani-
fests developmentally inappropriate levels of symptoms 
of inattention and/or hyperactivity/impulsivity [1]. Symp-
toms associated with the disorder occur on a continuum. 
ADHD is highly common, with the prevalence ranging 
from 5.9% [2] to 9.4% [3] and is twice as common in males 
as in females [2]. Because ADHD symptoms are increas-
ingly diagnosed in the autism population, with the publica-
tion of the Diagnostic and Statistical Manual–5 (DSM-5) 
edition permitting the co-morbid diagnosis of ADHD to 
be given in autistic individuals [1], it is important to under-
stand what factors might influence the presence of ADHD 
symptoms in autistic as well as non-autistic individuals. 
Estimates of ADHD symptoms in autism vary with older 
studies finding lower estimates, for example  2% [4], and 
more recent studies, as high as 78% [5]. The importance of 
studying autistic youth with significant ADHD symptoms 
is reinforced by findings from a recent study indicating 
1.2% of children in the U.S. have both disorders [6]. Our 
group found that the rate of ADHD symptoms in children 
diagnosed with autism as well as with neurodevelopmen-
tal disorders who do not have autism is significantly higher 
than expected in the general population [7].

Despite the high heritability of ADHD, environmen-
tal factors, including chemical exposures, nutrient defi-
ciencies, preterm birth, pregnancy complications, and 
extreme deprivation, are also associated with develop-
ment of ADHD [8, 9]. While the prenatal period has 
been recognized as the most sensitive window of neu-
rodevelopment, chemical exposure during the early 
postnatal period has also been a focus due to the con-
tinued postnatal development of the brain [10, 11]. An 
accumulating body of epidemiological literature sug-
gests that prenatal as well as early-life exposures to 
environmental chemicals are associated with ADHD 
diagnosis or symptoms [12, 13].

Young children are exposed to mixtures of non-per-
sistent environmental chemicals, including environmen-
tal phenols and parabens, phthalates, organophosphate 
(OP) pesticides, and trace elements [14]. Many of these 
chemicals have the potential to induce neurotoxicity and 

contribute to behavioral problems in laboratory animals 
[15–25], through mechanisms such as the disruption of 
thyroid hormone homeostasis [26–28], oxidative stress 
[29–31], or inhibition of the enzyme acetylcholinesterase 
in the brain [29, 30, 32]. However, epidemiological stud-
ies investigating childhood exposure to these chemicals, 
either as an individual compound or a mixture, in asso-
ciation with ADHD diagnosis or related behaviors have 
reported mixed results [33–50]. Additionally, there have 
been limited studies focusing on exposure to mixtures 
of environmental chemicals across multiple classes to 
address real-world exposures [51–53].

This study aimed to examine if concurrent exposure to 
each chemical as well as a mixture of these chemicals is 
associated with ADHD symptoms in early childhood in 
a cohort that includes children diagnosed with autism 
spectrum disorder (ASD) or developmental delay (DD) 
and those with typical development (TD).

Methods
Study population
Our study population consisted of a subset of chil-
dren from the Childhood Autism Risks from Genetics 
and Environment (CHARGE) case-control study [54]. 
The CHARGE study primarily recruited children who 
received services for ASD or DD through the California 
Department of Developmental Services. General popu-
lation controls were randomly selected from state birth 
files and frequency-matched to the sex, age, and resi-
dential catchment area of ASD cases. Given the male-
to-female ASD prevalence ratio, the goal was to recruit 
more males (80%) than females (20%). Children were eli-
gible for inclusion in the CHARGE study if they were 2 to 
5 years old at enrollment, born in California, living with 
at least one biologic parent who speaks English or Span-
ish, and residing in the study catchment areas. Details 
on study design, subject recruitment, and data collec-
tion protocols are available elsewhere [54]. After being 
enrolled, children were administered a set of standard-
ized assessments to confirm their diagnosis (Fig. S1). For 
example, children recruited as having ASD were clinically 
confirmed. Children recruited as having DD or controls 
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were screened for ASD and evaluated for DD. Diagnostic 
tools and algorithms to classify children into ASD, DD, or 
TD groups are described elsewhere [54]. The study pro-
tocol received approval from the University of California 
(UC) Davis Institutional Review Boards and the State of 
California Committee for the Protection of Human Sub-
jects. Before collecting data, participants provided writ-
ten consent.

Among those who were enrolled between 2006 and 
2017, a total of 549 children who provided a sufficient 
volume (≥ 16 mL) of urine and were assessed for ADHD 
behaviors were included in this study (Fig. S1). These 
children were classified as either ASD (n = 225), DD 
(n = 88), or TD (n = 236).

Assessment of ADHD symptoms
Children at 2 to 5 years old were assessed for ADHD 
symptoms using the Aberrant Behavior Checklist 
(ABC) at the UC Davis Medical Investigations of Neu-
rodevelopmental Disorders (MIND) Institute. The ABC 
was selected to assess behavioral symptoms because a 
substantial portion (57%) of the participants have intel-
lectual disability. It was developed for children with 
neurodevelopmental concerns, particularly to assess 
the response to interventions [55]. The ABC has dem-
onstrated moderate to high convergent validity with 
other commonly used scales, mostly in children with 
neurodevelopmental disorders [56, 57]. Furthermore, 
it showed good validity in children with ASD and TD 
[56] and in toddlers with neurodevelopmental disor-
ders [58]. The ABC consists of 58 items, each of which 
is scored from 0 (not at all a problem) to 3 (the prob-
lem is severe in degree) with higher scores indicat-
ing greater problems [55]. The current study used the 
ADHD/noncompliance subscale of the ABC as the 
subscale items align most closely with those on the 
DSM-5  Text Revision (DSM-5-TR) [1] for ADHD, as 
opposed to the other subscales (Irritability, lethargy, 
stereotypy, and inappropriate speech). The ADHD/
noncompliance subscale is composed of 16 items with 
a score range of 0–48 to assess ADHD symptoms. The 
ADHD/noncompliance subscale was further separated 
into two subdomains to explore the ADHD symptoms 
by subtypes: hyperactivity/impulsivity (10 items with 
a score range of 0–30) and inattention (3 items with a 
score range of 0–9) [7]. Items related to defiance and 
oppositionality were excluded, as according to both 
the current and most recent previous DSM-5-TR [1], 
Oppositional and Defiant Disorder is considered a sep-
arate disorder. When considering other commonly used 
behavioral instruments, such as Child Behavior Check-
list [59] or Conners’ Parent Rating Scale [60], those 

items are assessed on separate scales. The list of items 
that belong to the ADHD/noncompliance subscale and 
two subdomains is shown in Table S1.

Urinary chemical quantification
Child spot urine samples were collected at the study visit 
when the child was 2 to 5 years of age. The urine samples 
were immediately stored at − 20 °C, and aliquots were 
shipped on dry ice to the New York State Department 
of Health’s Wadsworth Center’s Child Health Exposure 
Analysis Resource (CHEAR) Targeted Analysis Labora-
tory. A total of 62 trace organic chemicals were analyzed 
in urine within the CHEAR organic biomonitoring sec-
tion at Wadsworth: 30 phenols/parabens, 20 phthalate 
metabolites, and 6 dialkylphosphate  (DAP) metabolites 
of OP pesticides; 6 trace elements were measured in 
urine within the CHEAR inorganic biomonitoring sec-
tion at Wadsworth. The chemical names and abbrevia-
tions of the 62 analytes are presented in Table S2. For 
analysis of phenols/parabens, urine samples were enzy-
matically deconjugated and extracted using liquid-liquid 
extraction and analyzed by high-performance liquid 
chromatography-tandem mass spectrometry (HPLC-
MS/MS) [61–63]. For quantification of phthalate metab-
olites, urine samples were processed using enzymatic 
deconjugation followed by solid-phase extraction (SPE) 
prior to HPLC-MS/MS analysis [64, 65]. DAP metabo-
lites were extracted from urine samples using SPE and 
analyzed by HPLC-MS/MS [66]. Trace elements in urine 
were analyzed within the CHEAR section of the Labora-
tory of Inorganic and Nuclear Chemistry at Wadsworth 
using Inductively Coupled Plasma Mass Spectrometry 
(ICP-MS) [67]. Detailed descriptions of the analytical 
method for each chemical class, including sample prepa-
ration, instrumental analysis, and mass spectrometric 
parameters, are available elsewhere [68].

Fifteen blinded duplicates were analyzed with study 
samples, along with multiple CHEAR reference materials, 
for quality assurance purposes. Median relative percent-
age differences of the valid duplicate samples, in which 
both were detected above the limit of detection (LOD), 
ranged from 5 to 46% for phenols/parabens, 5 to 38% for 
phthalate metabolites, 8 to 13% for OP pesticide metab-
olites, and 1 to 27% for trace elements (Table S3). The 
LODs ranged from 0.02 to 1 ng/mL for phenols/parabens, 
0.01 to 5 ng/mL for phthalate metabolites, 0.02 to 0.1 ng/
mL for pesticide metabolites, and 0.0007 to 0.45 ng/mL 
for trace elements (Table S3). Instrument software-gen-
erated values were used for urinary chemical concen-
trations below the LOD to reduce bias from replacing 
non-detected concentrations with a single value [69, 70].
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Statistical analysis
Descriptive analysis
Among 62 analytes quantified in child urine samples, 43 
chemicals with detection frequencies over 70%, including 
21 phenols/parabens, 12 phthalates, 5 pesticides, and 5 
trace elements, were included in the statistical analyses. 
Several zero or negative values, occurring as a result of 
blank correction of instrument software-generated val-
ues, were replaced with a fixed value (i.e., 0.0001) to allow 
natural log (ln)-transformation [71]. The positive nonzero 
values were then specific gravity (SG)-corrected using 
the following equation: Csg = C × [(SGmedian – 1)/(SG – 1), 
where Csg is the SG-corrected chemical concentration, C 
is the measured chemical concentration, SGmedian is the 
median (1.022) of SG values in this study samples, and 
SG is the measured SG value [72, 73].

Spearman’s rank correlation coefficients among 
SG-corrected concentrations of 43 compounds were 
computed. Mono-2-(carboxymethyl) hexyl phthalate 
(MCMHP), mono-(2-ethyl-5-carboxypentyl) phthalate 
(MECPP), mono (2-ethyl-5-hydroxyhexyl) phthalate 
(MEHHP), and mono (2-ethyl-5-oxohexyl) phthalate 
(MEOHP), originating from the same parent compound, 
di-2-ethylhexyl phthalate (DEHP), showed strong corre-
lations. Similarly, benzophenones and their metabolites, 
including 2,4-dihydroxybenzophenone (BP1), 2-hydroxy-
4-methoxybenzophenone (BP3), 2,2′-dihydroxy-4-meth-
oxybenzophenone (BP8), and 4-hydroxybenzophenone 
(OH4BP), also showed strong correlations due to the 
common exposure sources. Therefore, molar sums of 
DEHP metabolites and benzophenones were separately 
computed and used in the subsequent analysis rather 
than individual compounds.

Covariate selection
Potential confounders and risk factors for ADHD were 
identified a priori based on a directed acyclic graph (Fig. 
S2) [74]. ADHD/noncompliance subscale and two subdo-
main scores and SG-corrected chemical concentrations 
were compared by covariates using the Wilcox rank-
sum or the Kruskal-Wallis test, and those variables that 
had associations with all three outcomes (p < 0.05) were 
selected as covariates. The final set of covariates includes: 
CHARGE case-control study frequency matching factors 
(child’s sex [female, male], age at assessment [in years; 
centered to the mean], and recruitment regional center), 
child’s birth year (2000–2004, 2005–2008, 2009–2013) 
and race/ethnicity (non-Hispanic White, non-Hispanic 
non-White, Hispanic) as an indicator of structural rac-
ism, maternal metabolic conditions (healthy weight/
overweight and no metabolic conditions, obese or hyper-
tensive disorder/gestational diabetes), parity (1, ≥ 2), 
highest education in household (high school/GED or less, 

some college credit, bachelor’s degree or higher) as an 
indicator of socioeconomic status, and diagnostic groups 
(ASD, DD, TD). Among the indicator variables of socio-
economic status, which were weak to moderately corre-
lated with each other, parental education was selected, 
instead of mother’s age at delivery and homeownership, 
to avoid collinearity issues because it was most strongly 
associated with both exposures and outcomes.

Single‑chemical analysis
Negative binomial regression models, adjusting for the 
covariates, were used to examine the associations of 
each chemical with the ADHD/noncompliance subscale 
and two subdomain scores to account for over-dispersed 
count outcomes. The SG-corrected concentrations were 
ln-transformed and standardized prior to the regression 
analyses. Count ratios (CRs) and 95% confidence inter-
vals (CIs) were computed by exponentiating regression 
coefficients. The corresponding p-values were corrected 
for multiple comparisons using the false discovery rate 
(FDR) method per outcome and chemical class.

Mixture analysis
Repeated holdout validation for weighted quantile sum 
(WQS) regression for negative binomial outcomes was 
implemented to investigate the associations of each 
chemical class mixture with ABC scores [75]. For a WQS 
regression, the empirical weights, indicating the relative 
importance, of each chemical were estimated across 100 
bootstrap samples in the randomly partitioned training 
set (40%). In the remaining test set (60%), the WQS index, 
representing the total body burden, was computed per 
each chemical class using the estimated weights [76, 77]. 
The WQS index was used in negative binomial regres-
sion models with adjustment of the covariates to examine 
its association with the outcomes. To obtain stable WQS 
estimates, the repeated holdout validation approach was 
used by randomly partitioning the dataset 100 times and 
performing the WQS regression on each set, generating 
100 effect estimates and chemical weights and taking the 
median as the final estimate [75]. By iterating the parti-
tioning process 100 times, this approach improves gen-
eralizability by mitigating the impact of sample-specific 
chemical weights and WQS index estimates and address-
ing the potential for unbalanced partitions and biased 
estimates from a single partition. Our focus was on the 
positive direction, as our hypothesis posited that the mix-
ture index would be associated with higher ABC scores 
(i.e., greater behavioral problems). When a chemical class 
mixture showed significant associations in 95% of the rep-
etitions (i.e., CR between the 2.5th and 97.5th percentiles 
[PCT] indicating either CR > 1 or CR < 1), its chemical 
weight distribution was presented. Based on the Busgang 
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Criteria, chemicals that had 90 and 50% of the repetitions 
above their class threshold were defined as probable and 
possible contributors, respectively [68, 78]. For exam-
ple, if a phthalate metabolite exceeded the class thresh-
old (1/9 phthalate metabolites = 0.11) in over 50% of the 
repetitions, the metabolite was considered as a possible 
contributor.

Associations between total mixtures of all 43 analytes, 
and ABC scores were investigated using random subset 
WQS with repeated holdout validation, which iteratively 
selects random subsets of 7 chemicals (√43 ~ 7) and esti-
mates weight parameters by combining results across 
multiple ensemble steps [75, 79].

Stratified/effect modification analysis
As children with ASD, followed by those with DD, 
showed more ADHD symptoms when compared to those 
with TD [7, 58], the mixture analyses were stratified by 
diagnostic group (i.e., ASD, DD, and TD). Furthermore, 
as previous studies reported sex-specific associations of 
phenols, phthalates, OP pesticides, and trace elements 
with child neurodevelopment [13, 80–83], child’s sex was 
evaluated as an effect modifier in the mixture models for 
ADHD/noncompliance. Sex-stratified interaction WQS 
regression models, with 100 repeated holdouts, were 
constructed by including the interaction term between 
sex and WQS index in addition to their main effects and 
covariates [78, 84]. These models allow for sex-specific 
effect estimates and chemical weights.

All analyses were performed with an open-source R 
software, version 4.1.0 (R Foundation for Statistical Com-
puting, Vienna, Austria), including the “gWQS” package 
[85]. A statistical significance level was set at 0.05 for 
unadjusted p-values and 0.10 for FDR-corrected p-values.

Results
ABC scores by demographic characteristics
The majority of the study children were males (80.1%) 
and born non-preterm (87.6%), and approximately 49% 
of them were non-Hispanic white (Table  1). More than 
half of the children were born to mothers who were not 
obese in pre-pregnancy and did not have any metabolic 
conditions (63.8%) and were multiparous (56.1%). Most 
of the participating families had a highest education level 
of a bachelor’s degree or higher (56.6%) and owned a 
home (60.4%).

Median (interquartile range) for ABC scores in the 
whole study population were 7 (1, 19) for the ADHD/
noncompliance subscale, 4 (1, 11) for the hyperactivity/
impulsivity subdomain, and 2 (0, 4) for the inattention 
subdomain. The ABC scores differed by demographic 
characteristics (Table  1). Non-preterm children had 
lower ABC scores than children born pre-term, and 

non-Hispanic white and Hispanic children had lower 
scores compared to non-Hispanic, non-White (i.e., Asian, 
Black, and multi-racial) children. Children whose moth-
ers were 30 to 34 years old at delivery had lower scores 
than those whose mothers were younger than 30 years or 
at or older than 35 years. Children born to mothers who 
were obese in pre-pregnancy or had hypertensive disor-
der or gestational diabetes had higher scores compared 
to those born to mothers who were not obese or did not 
have metabolic conditions. The first-born children had 
higher scores than the second- or later-born children. 
Children born to parents whose maximum education 
level was high school or less had higher scores than those 
born to parents with higher education. Children from 
families that owned a home had lower scores than those 
from families that did not. In terms of diagnostic groups, 
children with ASD had the highest, those with DD had 
the second highest, and those with TD had the lowest 
scores.

Child urinary chemical concentrations
Detection frequency and distributions of SG-uncor-
rected concentrations of each chemical in child urine 
samples are presented in Table S3. Sixteen out of 30 phe-
nols/parabens, 11 out of 20 phthalate metabolites, 5 out 
of 6 pesticide metabolites, and 4 out of 6 trace elements 
were detected in greater than 90% of the samples. Several 
chemicals within each class were significantly correlated 
with each other (Fig. S3). Specifically, benzophenones 
(BP1, BP3, and BP8) showed strong correlations, as did 
DEHP metabolites (MCMHP, MECPP, MEHHP, and 
MEOHP). Correlations were weak to moderate among 
other phthalate metabolites (Spearman’s rank correla-
tion coefficients [rsp] = 0.22–0.69) and among pesticide 
metabolites (rsp = 0.28–0.67), while they were moderate 
to strong among parabens (rsp = 0.30–0.78). There were 
differences in urinary chemical concentrations across all 
demographic characteristics, particularly birth year for 
all chemical classes, child sex for phthalate metabolites, 
homeownership for pesticide metabolites, and diagnostic 
groups for trace elements (Fig. S4).

Associations of individual chemical concentrations 
with ADHD/noncompliance subscale and two subdomain 
scores
There were several associations between individual 
urinary chemical concentrations and ABC scores, as 
shown in volcano plots (Fig.  1). Among all children, 
∑DEHP was associated with higher scores of all three 
subscale/subdomains (CR = 1.09, 95% CI: 1.00, 1.20 
for ADHD/noncompliance; CR = 1.11, 95% CI: 1.01, 
1.22 for hyperactivity/impulsivity; CR = 1.06, 95% 
CI: 0.99, 1.13 for inattention) (Table S4). Two other 
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Table 1 Aberrant Behavior Checklist (ABC) ADHD/noncompliance subscale and two subdomain scores by characteristics of 549 
CHARGE children

ADHD Attention-deficit/hyperactivity disorder, ASD Autism spectrum disorder, CHARGE Childhood Autism Risks from Genetics and Environment, DD Developmental 
delay, Freq Frequency, GED General educational development, IQR Interquartile range, rsp, Spearman correlation coefficient, TD Typical development
a Missing (n): preterm birth (11), child’s race/ethnicity (5), maternal metabolic condition (16), parity (19), homeowner (21)
b P-values from the Wilcox rank-sum test or the Kruskal-Wallis test
c Spearman’s rank correlation coefficients between child’s age and ABC scores or DEP concentrations
d P-values from the significance test of Spearman’s rank correlation coefficient

Characteristics a All children
(n = 549)

Aberrant Behavior Checklist (ABC)

ADHD/noncompliance
(n = 515)

Hyperactivity/impulsivity 
(n = 520)

Inattention
(n = 547)

Freq (%) Median (IQR) p-value b Median (IQR) p-value b Median (IQR) p-value b

Sex 0.48 0.41 0.72

 Male 440 (80.1) 7.0 (1.0, 18.8) 4.0 (1.0, 11.0) 2.0 (0.0, 3.8)

 Female 109 (19.9) 6.0 (1.0, 19.0) 3.0 (0.0, 10.0) 2.0 (0.0, 4.0)

Child’s birth year 0.008 0.004 0.008

 2000–2004 150 (27.3) 5.0 (1.0, 14.5) 3.0 (0.0, 10.0) 1.0 (0.0, 3.0)

 2005–2008 215 (39.2) 6.0 (1.0, 15.0) 3.0 (0.0, 10.0) 1.0 (0.0, 3.0)

 2009–2013 184 (33.5) 10.0 (3.0, 20.5) 6.0 (1.5, 13.5) 2.0 (0.0, 4.0)

Preterm birth (<  37 weeks) 0.06 0.08 0.07

 No 481 (89.4) 7.0 (1.0, 17.5) 4.0 (0.0, 10.0) 1.5 (0.0, 4.0)

 Yes 57 (10.6) 10.0 (3.3, 24.0) 6.0 (1.0, 14.3) 2.0 (1.0, 4.0)

Child’s race/ethnicity 0.01 0.01 0.04

 White (non‑Hispanic) 271 (49.7) 5.0 (1.0, 16.0) 3.0 (0.0, 10.0) 1.0 (0.0, 3.0)

 Non‑White (non‑Hispanic) 115 (29.2) 10.0 (2.0, 24.5) 6.0 (1.0, 16.0) 2.0 (0.0, 4.0)

 Hispanic (any race) 159 (21.1) 7.5 (1.0, 15.0) 4.0 (1.0, 10.0) 2.0 (0.0, 3.0)

Mother’s age at delivery 0.004 0.009 0.008

 <  30 years 245 (44.6) 8.0 (1.0, 20.5) 4.0 (1.0, 13.0) 1.0 (0.0, 4.0)

 30–34 years 169 (30.8) 4.0 (0.5, 12.5) 2.0 (0.0, 8.0) 1.0 (0.0, 3.0)

 ≥ 35 years 135 (24.6) 10.0 (3.0, 17.0) 5.5 (1.3, 10.0) 2.0 (0.0, 4.0)

Maternal metabolic conditions 0.03 0.03 0.03

 Healthy weight/overweight
and no metabolic conditions

354 (66.3) 6.0 (1.0, 16.0) 3.0 (0.0, 10.0) 1.0 (0.0, 3.0)

 Obese or hypertensive
disorder/gestational diabetes

180 (33.7) 8.0 (2.0, 21.8) 6.0 (1.0, 14.0) 2.0 (0.0, 4.0)

Parity < 0.001 < 0.001 < 0.001

 1 228 (42.8) 9.0 (3.0, 22.0) 6.0 (1.0, 14.0) 2.0 (0.0, 4.0)

 ≥ 2 305 (57.2) 5.0 (1.0, 14.0) 2.0 (0.0, 9.3) 1.0 (0.0, 3.0)

Highest education in household < 0.001 < 0.001 < 0.001

 High school/GED or less 57 (10.4) 20.5 (8.5, 28.0) 12.0 (5.0, 19.0) 3.0 (2.0, 5.0)

 Some college credit 179 (32.6) 7.0 (1.0, 16.8) 4.0 (1.0, 10.0) 2.0 (0.0, 3.0)

 Bachelor’s degree or higher 313 (57.0) 5.0 (1.0, 15.0) 3.0 (0.0, 10.0) 1.0 (0.0, 3.0)

Homeowner 0.008 0.007 0.002

 No 166 (31.2) 9.0 (2.0, 22.3) 5.0 (1.0, 15.0) 2.0 (0.0, 4.0)

 Yes 366 (68.8) 6.0 (1.0, 15.8) 3.0 (0.0, 10.0) 1.0 (0.0, 3.0)

Diagnostic groups < 0.001 < 0.001 < 0.001

 ASD 225 (41.0) 19.0 (10.0, 27.0) 11.0 (5.0, 18.0) 4.0 (2.0, 5.0)

 DD 236 (43.0) 8.5 (3.5, 19.0) 5.0 (2.0, 11.5) 2.0 (1.0, 4.0)

 TD 88 (16.0) 1.0 (0.0, 5.0) 1.0 (0.0, 3.0) 0.0 (0.0, 1.0)

Recruitment regional center 0.43 0.23 0.43

 Alta, Far Northern, Redwood Coast 268 (48.9) 7.0 (1.0, 16.0) 4.0 (0.0, 10.0) 1.0 (0.0, 3.0)

 North Bay, East Bay, San Andreas, Golden Gate 160 (29.2) 6.0 (1.0, 17.0) 3.0 (1.0, 10.0) 2.0 (0.0, 4.0)

 Valley Mt, Central Valley, Kern 120 (21.9) 10.0 (1.0, 21.0) 6.0 (1.0, 13.0) 2.0 (0.0, 4.0)

Median (IQR) rsp c p-value d rsp c p-value d rsp d p-value d

Child’s age at assessment 4.0 (3.4, 4.5) 0.12 0.005 0.13 0.004 0.11 0.01
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phthalate metabolites were marginally associated with 
higher scores: mono-n-butyl phthalate (MNBP) with 
hyperactivity/impulsivity (CR = 1.10, 95% CI: 1.00, 
1.21) and mono-carboxy isononyl phthalate (MCINP) 
with inattention (CR = 1.07, 95% CI: 0.99, 1.15). On 
the other hand, two phenols/parabens were associ-
ated with lower ABC scores: 3,4-dihydroxy benzoic 
acid (DHB34) with ADHD/noncompliance (CR = 0.90, 
95% CI: 0.82, 0.99) and hyperactivity/impulsiv-
ity (CR = 0.90, 95% CI: 0.81, 0.99) and triclosan with 
ADHD/noncompliance (CR = 0.90, 95% CI: 0.82, 0.99) 
and inattention (CR = 0.89, 95% CI: 0.83, 0.96). How-
ever, after correcting for FDR, only the association 
between triclosan and inattention remained significant 
(Table S4). Pesticide metabolites and trace elements 
were not associated with ABC scores.

Associations of chemical class and total mixtures 
with ADHD/noncompliance subscale and two subdomain 
scores
Mixture analyses showed that the phthalate index was 
associated with higher scores of ADHD/noncompli-
ance (median CR = 1.10, 2.5th and 97.5th PCT: 1.00, 
1.21) and hyperactivity/impulsivity (median CR = 1.09, 
2.5th and 97.5th PCT: 1.00, 1.25) among all children 
(Table  2). For both associations, ∑DEHP (17 and 15%, 
respectively) and mono-2-heptyl phthalate (MHPP) (23 
and 16%, respectively) exceeded the class threshold (i.e., 
1/9*100 = 11%) in over 50% of 100 repetitions and there-
fore were considered possible contributors based on the 
Busgang Criteria (Fig. 2). MNBP additionally contributed 

to the associations between the phthalate index and 
hyperactivity/impulsivity.

Stratified analysis by diagnostic group revealed sev-
eral associations among children with ASD but not 
among children with DD or TD (Table 2). Among chil-
dren with ASD, the phthalate index was also associated 
with higher scores of all three subscale/subdomains: 
ADHD/noncompliance (median CR = 1.15, 2.5th and 
97.5th PCT: 1.06, 1.26), hyperactivity/impulsivity 
(median CR = 1.22, 2.5th and 97.5th PCT: 1.07, 1.37), 
and inattention (median CR = 1.10, 2.5th and 97.5th 
PCT: 1.02, 1.20). While ∑DEHP, mono-benzyl phtha-
late (MBZP), MHPP, and MNBP were common possible 
contributors for ADHD/noncompliance (12, 11, 13, and 
21%, respectively) and hyperactivity/impulsivity (12, 
12, 12, and 17%, respectively), MHPP, mono-isobutyl 
phthalate (MIBP), and MNBP were possible contribu-
tors for inattention (12, 19, and 19%, respectively) 
(Fig.  3). The total mixture index, of which DHB34, 
∑DEHP, MBZP, MHPP, MNBP, and cadmium (Cd) 
were identified as possible contributors, was associated 
with higher scores of ADHD/noncompliance (median 
CR = 1.15, 2.5th and 97.5th PCT: 1.01, 1.29; median 
weight: 8, 5, 5, 4, 7, and 3%, respectively) and hyperac-
tivity/impulsivity (median CR = 1.21, 2.5th and 97.5th 
PCT: 1.04, 1.36; median weight: 3, 6, 5, 6, 10, and 5%, 
respectively) (Table 2 and Fig. 3). The WQS regression 
models for each chemical class restricted to DD or TD 
did not converge (Table  2). Only the models for total 
mixtures converged, but none of them showed signifi-
cant associations.

Fig. 1 Volcano plots of covariate‑adjusted CRs and unadjusted p‑values of SG‑corrected, ln‑transformed, and standardized urinary chemical 
concentrations in association with ABC ADHD/noncompliance subscale and two subdomain scores among 549 CHARGE children. Red dots 
represent chemicals with an unadjusted p < 0.05 and an FDR‑corrected p < 0.10, orange dots represent chemicals with an unadjusted p < 0.05, 
and blue dots represent chemicals with a 0.05 < unadjusted p < 0.10. Negative binomial regression models were adjusted for CHARGE case‑control 
study frequency matching factors (child’s sex, age at assessment, and recruitment regional center), child’s birth year and race/ethnicity, parity, 
parental education, maternal metabolic conditions, and diagnosis. ABC, Aberrant Behavior Checklist; ADHD, attention‑deficit/hyperactivity disorder; 
BUPB, butyl paraben; CHARGE, Childhood Autism Risks from Genetics and Environment; CR, count ratio; DEHP, di‑2‑ethylhexyl phthalate; DHB34, 
3,4‑dihydroxy benzoic acid; FDR, false discovery rate; MCINP, mono‑carboxy isononyl phthalate; MNBP, mono‑n‑butyl phthalate; SG, specific gravity
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Table 2 Covariate‑adjusted associations between mixtures and ABC ADHD/noncompliance subscale and two subdomain scores 
among all children and stratified by diagnostic group

ABC Aberrant Behavior Checklist, ADHD Attention-deficit/hyperactivity disorder, ASD Autism spectrum disorder, CHARGE Childhood Autism Risks from Genetics and 
Environment, CR Count ratio, DD Developmental delay, PCT percentile, TD Typical development, WQS Weighted quantile sum
a WQS regression models were adjusted for CHARGE case-control study frequency matching factors (child’s sex, age at assessment, and recruitment regional center), 
child’s birth year and race/ethnicity, parity, parental education, maternal metabolic conditions, and diagnosis
b WQS regression models were adjusted for CHARGE case-control study frequency matching factors (child’s sex, age at assessment, and recruitment regional center), 
child’s birth year and race/ethnicity, parity, parental education, and maternal metabolic conditions
c Repeated holdout WQS regression models of each chemical class did not converge among children with TD or DD; therefore, the results were not presented

Outcome Mixture All (n = 549) ASD (n = 225)

Median  CRa 2.5 PCT 97.5 PCT Median CR b 2.5 PCT 97.5 PCT

ADHD/noncompliance Phenols/parabens 0.92 0.81 1.04 1.12 0.96 1.28

Phthalate metabolites 1.10 1.00 1.21 1.15 1.06 1.26
Pesticide metabolites 1.04 0.95 1.14 0.95 0.87 1.01

Trace elements 0.97 0.87 1.10 1.04 0.89 1.15

Total mixture 1.02 0.87 1.21 1.15 1.01 1.29
Hyperactivity/impulsivity Phenols/parabens 0.92 0.75 1.07 1.07 0.92 1.25

Phthalate metabolites 1.09 1.00 1.25 1.22 1.07 1.37
Pesticide metabolites 1.01 0.91 1.11 0.98 0.88 1.04

Trace elements 0.98 0.86 1.13 1.04 0.87 1.21

Total mixture 1.03 0.84 1.18 1.21 1.04 1.36
Inattention Phenols/parabens 0.97 0.85 1.09 1.11 0.97 1.25

Phthalate metabolites 1.05 0.97 1.12 1.10 1.02 1.20
Pesticide metabolites 0.98 0.93 1.07 0.99 0.91 1.08

Trace elements 1.01 0.93 1.10 1.01 0.92 1.12

Total mixture 0.98 0.85 1.08 1.11 0.96 1.26

TD (n = 236) c DD (n = 88) c

Median CR b 2.5 PCT 97.5 PCT Median CR b 2.5 PCT 97.5 PCT
ADHD/noncompliance Total mixture 1.01 0.69 1.51 0.75 0.47 1.18

Hyperactivity/impulsivity Total mixture 1.05 0.61 1.40 0.75 0.48 1.40

Inattention Total mixture 1.00 0.59 1.46 0.81 0.53 1.12

Fig. 2 Estimated weight distributions of urinary phthalate metabolites from 100 repetitions of weighted quantile sum (WQS) regression for (A) 
ADHD/compliance subscale and (B) hyperactivity/impulsivity subdomain. Boxes indicate 25th, 50th, and 75th percentiles, diamonds indicate 
mean, and whiskers indicate 10th and 90th percentiles of weights. The dashed line indicates the threshold (1/# of chemicals in the mixture). ADHD, 
attention‑deficit/hyperactivity disorder; DEHP, di‑2‑ethylhexyl phthalate; MBzP, mono‑benzyl phthalate; MCINP, mono‑carboxy isononyl phthalate; 
MCIOP, mono‑carboxy isooctyl phthalate; MCPP, mono (3‑carboxypropyl) phthalate; MEP, monoethyl phthalate; MHPP, mono‑2‑heptyl phthalate; 
MIBP, mono‑isobutyl phthalate; MNBP, mono‑n‑butyl phthalate
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Sex-stratified interaction WQS regression models 
revealed no significant effect modification by child’s 
sex for associations between any mixture and ABC 
scores, as evaluated using the 2.5th and 97.5th PCTs 
of the interaction term between WQS index and child’s 
sex (Table S5). However, the phthalate index was asso-
ciated with higher scores of ADHD/noncompliance 
among males only (median CR = 1.32, 2.5th and 97.5th 
PCT: 1.01, 2.70), with ∑DEHP and MHPP identi-
fied as possible contributors (Fig. S5a). On the other 
hand, the pesticide index was associated with higher 
scores of ADHD/noncompliance among females only 
(median CR = 1.28, 2.5th and 97.5th PCT: 1.03, 2.69), 
with diethylthiophosphate and dimethyldithiophos-
phate identified as possible contributors (Fig. S5b).

Discussion
In the present study, concurrent measurement of envi-
ronmental phenols and parabens, phthalates, OP pes-
ticides, and trace elements in child urine samples were 
examined in association with ADHD symptoms, spe-
cifically the ADHD/noncompliance subscale and the 
hyperactivity/impulsivity and inattention subdomains, 
among 2- to 5-year-old children diagnosed with either 
ASD, DD, or TD. In the single-chemical analysis, 
DEHP metabolites were cross-sectionally associated 
with increased hyperactivity and impulsivity, while 
triclosan with decreased inattention (Table  3). In the 
mixture analysis using WQS regression, exposure to 
phthalate mixtures was associated with ADHD symp-
toms, especially hyperactivity and impulsivity, and the 

Fig. 3 Estimated weight distributions of urinary chemicals from 100 repetitions of weighted quantile sum (WQS) regression, restricted to children 
with ASD. Phthalate metabolites in association with ADHD/noncompliance subscale, hyperactivity/impulsivity subdomain, and inattention 
subdomain are presented in (A), (B), and (C), respectively. Total chemicals in association with ADHD/noncompliance subscale and hyperactivity/
impulsivity subdomain are presented in (D) and (E), respectively. Boxes indicate 25th, 50th, and 75th percentiles, diamonds indicate mean, 
and whiskers indicate 10th and 90th percentiles of weights. The dashed line indicates the threshold (1/# of chemicals in the mixture). Full chemical 
names are listed in Table S2. ADHD, attention‑deficit/hyperactivity disorder; ASD, autism spectrum disorder
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possible chemicals of concern were DEHP metabolites, 
MHPP, and MNBP.

 These findings were likely driven by children with 
ASD, as the associations remained similar among chil-
dren with ASD, but not among children with DD or 
TD. In addition, among children with ASD, a mixture 
of phthalate metabolites, possibly contributed by MIBP 
and MNBP, were associated with greater inattention. 
Further, mixtures of all chemicals, including phenols 
and parabens, phthalates, OP pesticides, and trace ele-
ments, were associated with ADHD symptoms, espe-
cially hyperactivity and impulsivity, and common 
possible contributors were DHB34, DEHP metabolites, 
MBZP, MHPP, MNBP, and Cd. These findings suggest 
that the early childhood exposure to several phthalates, 
parabens, and cadmium may be associated with the 
comorbidity of ASD and ADHD. One possible reason 

why we observed these associations among children 
with ASD only is higher and more variable ABC scores 
compared to those with DD or TD. However, as chil-
dren with ASD are likely to have different dietary habits, 
behaviors, and usage of personal care products [86, 87] 
resulting in different exposure patterns to these non-
persistent chemicals, potential reverse causality cannot 
be ruled out. Further studies on chemical exposures in 
relation to diets and behaviors in children with ASD can 
help address these questions.

Our findings on associations between childhood 
phthalate exposure, as an individual compound or a mix-
ture, and greater ADHD symptoms in young children 
are generally in line with previous studies. One prospec-
tive study on childhood phthalate exposure in associa-
tion with ADHD-related behaviors reported that MNBP 
and monoethyl phthalate (MEP) as well as phthalate 

Table 3 Summary table of associations between single chemical or mixtures and ADHD/noncompliance subscale and two 
subdomain scores among all children and children with ASD

Full chemical names are listed in Table S2

ADHD Attention-deficit/hyperactivity disorder, ASD Autism spectrum disorder, CR Count ratio, FDR False discovery rate
a Associations with significant associations are presented. Item in bold indicates significance even after FDR correction. (+) represents increased CR and (−) represents 
decreased CR
b Possible contributors of mixtures that have significant associations with outcomes are presented. (+) represents increased CR and (−) represents decreased CR

Outcome Chemical class All (n = 549) ASD (n = 225)

Each chemical a Mixture b Mixture b

ADHD/
noncompliance subscale

Phenols/
parabens

DHB34 (−)
Triclosan (−)

Phthalate metabolites ∑DEHP (+)
MHPP (+)

∑DEHP (+)
MHPP (+)
MNBP (+)

Total mixture DHB34 (+)
BUPB (+)
OHMEP (+)
∑DEHP (+)
MBZP (+)
MHPP (+)
MNBP (+)
Cd (+)

Hyperactivity/impulsivity subdomain Phenols/
parabens

DHB34 (−)

Phthalate metabolites ∑DEHP (+) ∑DEHP (+)
MHPP (+)
MNBP (+)

∑DEHP (+)
MHPP (+)
MBZP (+)
MNBP (+)

Total mixture DHB34 (+)
∑DEHP (+)
MBZP (+)
MHPP (+)
MNBP (+)
Cd (+)

Inattention subdomain Phenols/
parabens

Triclosan (−)

Phthalate metabolites MHPP (+)
MIBP (+)
MNBP (+)
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metabolite mixtures, possibly contributed by MCINP, 
MEP, and MBZP, were associated with more externaliz-
ing problems, indicating more hyperactivity, aggression, 
and conduct problems in children aged 2–8 years [88]. 
Another study observed cross-sectional associations of 
greater ADHD traits with MBZP at 2 years [89]. Most 
of the  other cross-sectional studies examining ADHD 
diagnosis or related behaviors in middle-childhood or 
adolescence reported adverse associations with DEHP 
metabolites [90–94] and di-n-butyl phthalate metabolites 
[33, 92, 93, 95–97], while a  few additional  prospective 
studies did not find convincing associations [98–100]. 
Young children not only have different exposure patterns 
to phthalates from their mothers, as indicated by weak 
correlations of phthalate metabolite concentrations in 
young children with those in their mothers’ prenatal or 
postnatal urine samples [101, 102], but also higher body 
burden [103, 104]. Therefore, the accumulating epide-
miological evidence warrants further longitudinal inves-
tigations on early childhood exposure to phthalates and 
ADHD-related behaviors to establish causality, particu-
larly in prospective study settings.

Underlying mechanisms of phthalates’ effects on 
ADHD remain unclear. ADHD is associated with altera-
tions in the dopamine system and associated brain 
regions, such as the striatum, and potentially, the mid-
brain [105–109]. Toxicological studies reported that rats 
or mice neonatally exposed to DEHP or dicyclohexyl 
phthalate had impaired tyrosine hydroxylase immunore-
activity within midbrain dopaminergic nuclei [18, 110]. 
Neonatal exposure of rats to DEHP or dibutyl phthalate 
expressed hyperactivity, concomitantly with alterations 
in gene expression in the midbrain and striatum [19, 22, 
23]. In addition to the effect of phthalates on subcortical 
structures, cortical thickness is modestly thinner in chil-
dren with ADHD and delayed in maturation in compari-
son to control participants [111, 112]. Among children 
with ADHD, DEHP metabolite concentrations were neg-
atively correlated with cortical thickness in the right mid-
dle and superior temporal gyri, suggesting a possible role 
of DEHP in impaired brain structures [93].

Significant associations of a phthalate metabolite mix-
ture with ADHD symptoms were observed among males 
only, with no evident effect modification by sex. However, 
given that this study population includes four times more 
males than females, thus  potentially underpowered for 
detecting associations in females, these findings should 
be interpreted with caution. Phthalates are reported to 
interfere with thyroid functions, which are essential for 
normal brain development, in a sexually dimorphic man-
ner [26, 28], and early thyroid hormone disruption may 

contribute to the development of ADHD [113]. Still, 
regarding phthalate exposure and ADHD-related behav-
iors, there is inconsistent evidence on effect modification 
by sex [81, 88, 90, 91, 96, 97] or mediation by thyroid hor-
mone [114]; therefore, these should be explored in future 
studies.

There are a limited number of studies examin-
ing associations of prenatal or childhood exposure 
to mixtures of multiple classes of urinary chemicals 
with ADHD diagnosis or related behaviors. Guilbert 
et al., who quantified phthalate/plasticizer metabolites 
and phenols/parabens in 416 prenatal maternal urine 
samples, observed that a chemical mixture, primarily 
weighted for BP3, triclosan, methyl paraben (MEPB), 
ethyl paraben (ETPB), and several phthalate metabo-
lites (diisononyl phthalate metabolites, di (isononyl)
cyclohexane-1,2-dicarboxylate metabolites, MBZP, 
MEP), was associated with more externalizing behav-
iors in 2-year-old French children [115]. Van den Dries 
et al. reported null associations of prenatal exposure to 
mixtures of phthalates, BPA, and OP pesticides with 
attention problems in 782 Dutch children aged 6 years 
[116]. Maitre et  al. that measured pre- and postna-
tal environmental exposures from outdoor, indoor, 
chemical, lifestyle and social domains in 1287 Euro-
pean mother-child pairs observed associations of pre-
natal exposure to an OP pesticide metabolite, dimethyl 
phosphate (DMP), with more externalizing symptoms 
at 6–11 years of age, while those of childhood DMP 
exposure with less ADHD symptoms [51]. Waits et  al. 
examined concurrent exposure to phthalates, OP pes-
ticides, and nonylphenol in relation to 76 ADHD diag-
noses versus 98 controls in Taiwanese children aged 
4–15 years. They observed associations of a chemical 
mixture, primarily contributed by two OP pesticide 
metabolites (DMP, diethyl phosphate [DEP]) and two 
phthalate metabolites (MEP, MBZP), with increased 
odds of ADHD [53]. Many of these chemicals, to which 
the general population is simultaneously exposed, 
have endocrine disrupting potentials and share com-
mon mechanisms, including disruption of thyroid and 
neurotransmitter functions [21, 26, 117, 118], and con-
centrations of these chemicals frequently measured in 
the urine are correlated within and across class [53, 68, 
115, 116, 119, 120]. Therefore, mixture analyses using 
multiple chemical classes helps with understanding of 
mixture effects of environmental chemicals on child 
neurobehaviors.

This study was strengthened by quantification of 62 
chemicals from four chemical groups in urine samples 
of young children. WQS was employed to examine 



Page 12 of 16Oh et al. Environmental Health           (2024) 23:27 

associations of chemical mixtures with ADHD-related 
behaviors, allowing for modeling multiple chemical 
exposures, which were correlated with each other, and 
minimizing the  multiple comparisons problem. How-
ever, several limitations should be noted. First, due 
to the cross-sectional design, our results do not rep-
resent causal effects of childhood chemical exposures 
on ADHD symptoms. Second, this study also relied on 
concentrations of non-persistent chemicals measured 
in a spot urine sample, which reflect recent exposure. 
In young children, several phenols, phthalate metabo-
lites, OP pesticides, and trace elements showed mod-
erate reproducibility over short-term periods but 
reduced reproducibility over longer time frames [121–
127]. Third, as this study used child urine samples as 
an exposure matrix, instead of whole blood samples, 
several other trace elements, especially known neu-
rotoxicants, were not able to be included as analytes. 
Fourth, though an array of sociodemographic vari-
ables were considered as covariates, there is potential 
residual confounding by unmeasured factors related to 
diet, lifestyle, or parental ADHD symptoms. Fifth, our 
results cannot be generalized to general population 
because approximately 57% of our study population 
included children with ASD or DD, who showed more 
ADHD symptoms than those with TD. Still, the diverse 
diagnostic profile enabled us to examine childhood 
exposure to chemical mixtures in association with the 
comorbidity of ASD and ADHD, while exploring their 
association with ADHD behaviors in typically devel-
oping children. As distinct exposure mixture patterns 
may have differential effects on children based on their 
susceptibility, further investigations into ADHD symp-
toms among children with neurodevelopmental disor-
ders are warranted.

Conclusions
In the CHARGE population, comprised of 2- to 5-year-
old children diagnosed with ASD, DD, and TD, concur-
rent exposure to a phthalate mixture, highly weighted 
for DEHP metabolites and MHPP, was associated with 
greater ADHD symptoms, possibly driven by children 
with ASD. Among children with ASD, a  mixture of 
all chemicals were associated with ADHD symptoms, 
and possible chemicals of concern were one phenol 
(DHB34), several phthalate metabolites (DEHP metab-
olites, MBZP, MHPP, and MNBP), and a trace element 
(Cd). Because children with ASD not only have more 
pronounced ADHD behaviors but also show differ-
ent exposure patterns to non-persistent chemicals due 
to different diet and behaviors, further attention to 

exposure of these children to possible neurotoxicants 
are warranted. Future investigation on exposure to 
mixtures of larger number of chemicals that share sim-
ilar exposure sources could better address real-world 
exposures, in association with ADHD symptoms.
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