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Abstract

Background: Few epidemiological studies of air pollution have used residential histories to develop long-term
retrospective exposure estimates for multiple ambient air pollutants and vehicle and industrial emissions. We
present such an exposure assessment for a Canadian population-based lung cancer case-control study of 8353
individuals using self-reported residential histories from 1975 to 1994. We also examine the implications of
disregarding and/or improperly accounting for residential mobility in long-term exposure assessments.

Methods: National spatial surfaces of ambient air pollution were compiled from recent satellite-based estimates
(for PM2.5 and NO2) and a chemical transport model (for O3). The surfaces were adjusted with historical annual air
pollution monitoring data, using either spatiotemporal interpolation or linear regression. Model evaluation was
conducted using an independent ten percent subset of monitoring data per year. Proximity to major roads,
incorporating a temporal weighting factor based on Canadian mobile-source emission estimates, was used to
estimate exposure to vehicle emissions. A comprehensive inventory of geocoded industries was used to estimate
proximity to major and minor industrial emissions.

Results: Calibration of the national PM2.5 surface using annual spatiotemporal interpolation predicted historical
PM2.5 measurement data best (R2 = 0.51), while linear regression incorporating the national surfaces, a time-trend
and population density best predicted historical concentrations of NO2 (R

2 = 0.38) and O3 (R
2 = 0.56). Applying the

models to study participants residential histories between 1975 and 1994 resulted in mean PM2.5, NO2 and O3

exposures of 11.3 μg/m3 (SD = 2.6), 17.7 ppb (4.1), and 26.4 ppb (3.4) respectively. On average, individuals lived
within 300 m of a highway for 2.9 years (15% of exposure-years) and within 3 km of a major industrial emitter for
6.4 years (32% of exposure-years). Approximately 50% of individuals were classified into a different PM2.5, NO2 and
O3 exposure quintile when using study entry postal codes and spatial pollution surfaces, in comparison to
exposures derived from residential histories and spatiotemporal air pollution models. Recall bias was also present
for self-reported residential histories prior to 1975, with cases recalling older residences more often than controls.

Conclusions: We demonstrate a flexible exposure assessment approach for estimating historical air pollution
concentrations over large geographical areas and time-periods. In addition, we highlight the importance of
including residential histories in long-term exposure assessments.
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Background
Exposure to ambient air pollution is a suspected risk fac-
tor for lung cancer [1-6]. Due to the long latency periods
associated with lung cancer, epidemiological analyses are
particularly challenging, especially for air pollution where
spatial and temporal variation in both residential mobility
and air pollution concentrations may produce significant
exposure misclassification if not properly incorporated
into the exposure assessment approach.
Residential mobility data are required for accurate long-

term air pollution exposure assessments, but due to the
difficulties in obtaining this information, residential loca-
tion at study entry or at time of diagnosis is often used to
estimate lifetime or long-term exposure estimates in epi-
demiological studies. Given that approximately half of all
individuals move within a five year period [7] and that
residential mobility varies depending on socio-economic
factors [8-11], there is potential for exposure misclassifica-
tion and bias in studies that ignore or improperly account
for residential mobility. While there is growing recognition
of the need for spatiotemporal epidemiology approaches
and life-time residential histories in exposure assessment
[12], mainly in cancer epidemiology [13,14], little is known
regarding the potential exposure misclassification and bias
resulting from self-reported residential histories, the most
common form of attaining residential histories in epide-
miological studies [15], and from the assumption of resi-
dential stationarity in air pollution epidemiology.
Incorporating residential histories into air pollution

exposure assessments requires corresponding air pollution
concentration estimates that cover the spatiotemporal
domain of the study period. To date, the association
between air pollution and lung cancer has been examined
using a variety of study periods and exposure assessment
approaches. The most common approaches have aggre-
gated air pollution monitoring levels within cities or
defined areas [1,2,6,16], estimated ambient air pollution
levels at residential addresses using fixed-site monitoring
data or dispersion models [3-5,17,18], or used proximity
to roads and industrial sources as exposure surrogates
[19,20]. In terms of national retrospective exposure assess-
ment studies, few are available that examine multiple pol-
lutants and exposure sources [21,22].
Here we develop a comprehensive spatiotemporal

exposure assessment approach for Canada and apply it to
a population-based case-control study of 8353 individuals
who provided lifetime self-reported residential histories.
For the exposure period 1975 to 1994, we assign fine par-
ticulate matter (PM2.5), nitrogen dioxide (NO2) and
ozone (O3) air pollution exposures, as well as exposures
to vehicle and industrial emissions. The implications of
disregarding and/or improperly accounting for residential
histories in long-term exposure assessments are also
examined. The exposure assessment methods developed

produce annual spatiotemporal exposure estimates and
will allow subsequent epidemiologic analyses to examine
latency periods, to include both urban and rural popula-
tions, and to study the contributions of multiple ambient
pollutants and local vehicle and industrial emissions to
lung cancer risk in Canada.

Methods
The lung cancer case-control study
We utilize the lung cancer component of the National
Enhanced Cancer Surveillance System (NECSS), which
includes 3280 histological-confirmed lung cancer cases
and 5073 population controls collected between 1994 and
1997 in the provinces of British Columbia, Alberta, Sas-
katchewan, Manitoba, Ontario, Prince Edward Island,
Nova Scotia and Newfoundland. The respective ethics
review boards of each province reviewed and approved the
NECSS study. Due to residential mobility, study partici-
pants are located in all provinces of Canada requiring
national-level exposure assessment. Johnson et al. [23]
describe the overall recruitment methodology for the
NECSS. Briefly, cases were identified through provincial
cancer registries and mailed a research questionnaire. The
response rate for contacted lung cancer cases was 61.7%.
Population controls were selected from a random sample
of individuals within each province, with an age/sex distri-
bution similar to that of all cancer cases (strategies for
recruiting population controls varied by province depend-
ing on data availability and accessibility). Provincial cancer
registries collected information from sampled controls
using the same protocol as for the cases. The response
rate for contacted population controls was 67.4%.
Residential histories at the 6-digit postal code level are

the basis of the air pollution exposure assessment reported
here. In urban areas a 6-digit postal code typically incorpo-
rates one side of a city block, but represent substantially
larger areas in rural locations (e.g. greater than 100 km2 in
remote locations of Canada). Residential histories were
converted to postal codes by the Public Health Agency of
Canada and geocoded using DMTI Inc. 1996 postal codes.
While lifetime residential histories were collected, the
exposure period was restricted to 1975 to the start of
study enrolment (1994), due to the presence of recall bias
in earlier reported histories (explained in more detail in
the discussion section) as well as the lack of information
on postal code locations, air pollution monitoring data
and geographic information prior to 1975.

Air pollution exposure assessment approach
A multi-staged approach was required to assign ambient
air pollution concentrations to residential histories from
1975 to 1994. The spatiotemporal exposure assessment
included three steps. First, national spatial surfaces were
created from recent satellite-based estimates (for PM2.5
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and NO2) and a chemical transport model (for O3). Sec-
ond, all National Air Pollution Surveillance (NAPS) mon-
itoring data were compiled and formatted for the study
period, including 120 NO2 stations and 1030 measure-
ment-years, 187 O3 stations and 1440 measurement-
years, 177 TSP stations and 1826 measurement-years,
and 25 PM2.5 stations and 141 measurement-years. Due
to the small number of PM2.5 measurements available,
and no measurements made prior to 1984, a random
effect model was used to estimate PM2.5 based on TSP
measurements and metropolitan indicator variables.
Finally, the spatial pollutant surfaces were calibrated
yearly to estimate average annual concentrations between
1975 and 1994. Two approaches were used for calibra-
tion: the first estimated historical annual averages using
smoothed inverse distance weighting (IDW) interpolation
of the ratios of spatial co-located historical NAPS and
surface estimates, while the second used linear regression
models.
Exposure to vehicle emissions was estimated using

proximity to highways and major roads, adjusted based
on historical vehicle emissions in Canada. Exposures to
industrial emissions were calculated based on proximity
to major and minor industrial sources extracted from a
comprehensive database of industrial facilities in Canada
operating during the study exposure period. Estimates
for different vehicle and industrial emission sources were
not converted into concentrations and added to ambient
concentration estimates as we want to examine each
source and distance threshold separately in subsequent
epidemiological analyses. Specific components of the
exposure assessment approach are described in detail
below.

National spatial pollutant surfaces
Spatial models of ambient PM2.5, NO2 and O3 concentra-
tions were developed to represent current spatial pollution
patterns across Canada. A PM2.5 surface was derived from
Aerosol Optical Depth (AOD), using data from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) and
the Multiangle Imaging Sectroradiometer (MISR) satellite
instruments, and was combined with a chemical transport
model (GEOS-Chem; http://www.geos-chem.org) to esti-
mate the relationship between aerosol optical depth and
surface PM2.5 (for full details see [24]). Estimates for PM2.5

represented a composite estimate developed from 2001 to
2006 and included locations with greater than 100 valid
measurements to ensure estimate representativeness. The
NO2 surface was estimated from tropospheric NO2 col-
umns retrieved from the Ozone Monitoring Instrument
(OMI) and also used GEOS-Chem to calculate the rela-
tionship between the NO2 column and surface NO2 [25].
NO2 estimates used data from 2005 to 2007 as OMI mea-
surements began in late 2004. Both PM2.5 and NO2 were

estimated at a 0.1 × 0.1 degree resolution (~10 × 10 km).
The O3 surface was created from the Canadian Regional
and Hemispheric O3 and NOx System (CHRONOS) [26].
This model is reinitialized every 24 h with meteorology
and is fused with the O3 observations across Canada and
the U.S. on an hourly basis using an optimal interpolation
approach based upon a least square combination of the
CHRONOS and measured O3 data that minimized the
error variance. This surface was created at a 21 km resolu-
tion and represents average summer (May through Sep-
tember) concentrations from 2004 to 2006. Figure 1
illustrates the PM2.5, NO2 and O3 pollutant surfaces used
to represent current spatial concentrations across Canada.
Next, these surfaces were calibrated with NAPS monitor-
ing data to estimate historical annual spatial exposure
surfaces.

Air pollution monitoring data
The NAPS monitoring network began measurements of
TSP in 1970, NO2 and O3 in 1975 and PM2.5 and PM10

in 1984. Figure 2 illustrates the location of all NAPS
monitors in Canada, 1975 TSP monitoring stations with
50 km buffers (for reference of historical monitor spatial
coverage) and all study participant residential postal
codes between 1975 and 1994.
NAPS monitoring data were first formatted into

monthly averages for all pollutants. Continuous monitor-
ing data were included if at least 50% of daily hourly
observations were available and at least 50% of days were
available in a month. Monthly averages from dichotomous
samplers (PM2.5) required a minimum of 3 of 5 valid
monthly measurements. Yearly averages were not calcu-
lated unless there were at least six months of complete
data with one month per season, and summer O3 averages
unless there were 3 months of data available. Supplemen-
tal material, Figure1 illustrates historical annual average
pollutant concentrations from available NAPS monitoring
stations that were in operation for all years. Temporal
trends show a large decrease in TSP concentration during
the study period (51% from 1970 to 1994), a decrease in
NO2 (28% from 1975 to 1994) and PM2.5 (32% from 1984
to 1994), and an increase in O3 (19% from 1975 to 1994).
Importantly, the changes in pollutant concentrations were
not uniform across geographic areas in Canada.
Modeling historical PM2.5 concentrations from TSP
Due to the lack of historical spatial and temporal PM2.5

measurement coverage, we used co-located PM2.5 and
TSP measurements between 1984 and 2000 to create pre-
dictive models of historical PM2.5 concentrations. The
overall approach to estimating PM2.5 is similar to that
used by Lall et al. [27] to estimate metropolitan area spe-
cific PM2.5 and PM10 relationships with TSP across the
U.S. We used random effect models (GLIMMIX proce-
dure in SAS 9.3) to account for the clustering of annual
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measurements over time at each NAPS station. Table 1
summarizes the final PM2.5 model incorporating TSP
concentrations (μg/m3) and census metropolitan area

(CMA) indicator variables. The R2 and RMSE for the
PM2.5 model was 0.67 and 2.31. Figure 3 illustrates the
measured and predicted PM2.5 concentrations. The
resulting PM2.5 model was applied to all valid TSP moni-
toring stations; the nearest CMA core within 100 km was
used to determine the CMA model coefficient for the
PM2.5 model, otherwise no CMA variable was included
in the model. Figure 2 in the supplemental material maps
the CMA’s used in the model and areas covered by the
100 km buffers.

Calibrating spatial pollutant surfaces using historical data
Two approaches were used to extrapolate current PM2.5,
NO2 and O3 surfaces to estimate annual concentrations
between 1975 and 1994. Both approaches were devel-
oped using 90% of the monitoring data available for
each year, while retaining 10% for model evaluation.
Model performance was assessed using adjusted R2 and
root-mean-square error (RMSE).
The first approach calibrates the current spatial sur-

faces (shown previously in Figure 1) using annual NAPS
monitoring data and smoothed IDW interpolation of
the ratio’s of spatial co-located historical NAPS and sur-
face estimates. The yearly calibrations were performed
using the following equation:

Yearly Historical Surfacej = Surfacex,y×
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Where for each year between 1975 and 1994 the annual
historical surface for pollutant j is equal to the current
spatial surface of pollutant j (Surfacex,y) at coordinates x,y
multiplied by the IDW interpolation of the ratio’s of spa-
tial co-located historical NAPS and surface estimates. dx,
y,k is the distance (km) from NAPS monitoring station k

to location x,y. NAPSJK and Surfacek are coincidently

sampled pollutant concentrations of j at station k. A
smooth interpolation option (smooth factor = 0.2) was
included in the IDW interpolation (not shown in equa-
tion 1 for simplicity), which uses three ellipses in the
interpolation method: points that fall outside the smaller
ellipse but inside the largest ellipse are weighted using a
sigmoid function [28]. The smoothed IDW function was
used to reduce abrupt changes in the yearly calibration
surfaces as these do not reflect spatial patterns of pollu-
tion change.
The second approach uses linear regression to model

annual concentrations. Predictor variables include the
spatial pollutant surfaces, a time-trend and historical
population density data. Population location data were
derived from the 1971, 1976, 1981, 1986, 1991, and

Figure 1 National pollutant surfaces created from recent
satellite estimates (for PM2.5 and NO2) and a dispersion model
(for O3). Insets represent higher population density locations in
Canada (south western BC and southern Ontario and Quebec).
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1996 Canadian census; between census years were
assigned the nearest census. The annual population den-
sity variables were calculated in a GIS for various buffer
distances (1 km to 50 km’s) around each NAPS monitor.
Roads and industry were not included in the models as
we want to separately evaluate exposure to these sources
and lung cancer risk. We used random effect models
(GLIMMIX procedure in SAS 9.3) to account for the
clustering of annual measurements over time at each
NAPS station and selected predictor variables that maxi-
mized model fit. We estimated R2 and RMSE statistics
by predicting the measurement data with the fixed-effect
coefficients using ordinary least squares regression.

Exposure to vehicle emissions
Exposures to vehicle emissions were estimated using
proximity measures to highways (freeways and major

highways) and major roads (freeways, highways, and
arterial and collector roads). The 1996 DMTI Inc. road
network was used to derive proximity measures for all
case and control residential years, due to the lack of his-
torical national road networks. The average distance to
each road class was calculated separately as well as the
number of years residing within 50, 100 and 300 m of a
highway and/or major road. These proximity distances
were selected as vehicle related pollutant gradients, such
as for NO2 and volatile organic compounds, are highest
within 50 and 100 m of a major road but remain signifi-
cantly elevated to 300 m [29].
Emissions from vehicles have changed significantly

over time due to increases in vehicle kilometres travelled
and improved vehicle emission controls [30,31]. Exposure
indicators for years residing near highways and major
roads were therefore weighted to account for these

Figure 2 Location of all national air pollution surveillance monitors in Canada and study participant residential postal codes between
1975 and 1994.
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changes. Supplemental material, Figure 3 shows the
decrease in the total NOx emissions from on-road mobile
sources in Canada (used here to represent primary

vehicle emissions), including heavy and light duty diesel
and gasoline vehicles, from 1980 to 2007 and extrapo-
lated levels to 1970. NOx emissions estimates were com-
piled by Environment Canada using the latest emission
estimation methodologies and statistics available as of
March 2008. Emission factors were developed using
MOBILE6.2 C and the number of vehicle kilometres tra-
velled. MOBILE6.2 C is a vehicle emissions modeling
software specific to Canada and accounts for the vehicle
fleet profile, vehicle emission standards, and fuel charac-
teristics [32]. Given the NOx emissions trends documen-
ted in the United States from 1970 to 1980 [33], linear
extrapolation was used to estimate NOx emissions from
1980 to 1970. The ratio of resulting 1994 and 1975 NOx

emission estimates suggest that living near a major road
in 1975 is equivalent to 1.26 “1994” years due to changes
in vehicle emissions (the ratio also accounts for changes
in vehicle numbers). A weighting factor (1 + 0.013*(1994-
proximity exposure year)) was therefore used to adjust
proximity-based vehicle exposures to account for
decreases in the magnitude of vehicle emissions over the
study period.

Exposure to industrial emissions
A comprehensive inventory of industrial emissions
sources was compiled as part of the NECSS within the
Environmental Quality Database (EQDB) [23,34,35].
Locations of industrial manufacturing facilities and activ-
ities in approximately fifty standard industrial classifica-
tions (SIC) from 1970 to 1994 are included in the
database along with operational time periods. Approxi-
mately 7800 sources with a 4 digit SIC are included and
8200 municipal waste facilities. Major industries, includ-
ing metal smelters, pulp and paper mills, petroleum pro-
duct companies, foundry and steel plants, aluminum
smelters, non-hydro power plants, and petrochemical
companies, contain pollutant discharge estimates while
minor industrial sources have no emission records. The
distance between an industrial source and a subjects’
postal code has been validated to +/-150 m in urban loca-
tions [34]. The EQDB has been used in conjunction with
the NECSS to examine leukemia and chlorination by-
products [36] and residential proximity to industrial
plants and Non-Hodgkin’s Lymphoma [37]. We calculate
exposure to major industrial emissions and to minor
sources within 1, 2 and 3 km buffers from residential
postal codes. These distances were selected to ensure
specificity of proximity based exposure assessments for
multiple industries and substances. Similar distance
thresholds have been used previously in small area health
studies [38,39]. To be considered exposed, and to calcu-
late the number of years exposed to each proximity cate-
gory, at least 1 industrial facility had to be operating
within the associated buffer distance.

Table 1 Model used to predict historical PM2.5 using TSP
measurements and census metropolitan area indicator
variables (R2 = 0.67, RMSE = 2.31).

Variables Estimate SE p

Intercept 1.93 2.30 0.42

TSP 0.13 1.78e-2 < 0.001*

CMA Indicator

Calgary 0.44 2.63 0.87

Edmonton -1.82 2.69 0.50

Halifax 7.71 3.02 0.01*

Hamilton 4.76 3.02 0.12

Montreal 6.01 2.42 0.01*

Ottawa 4.86 2.94 0.10

Quebec 3.17 2.60 0.23

St. Johns 5.72 3.81 0.13

Saint John 3.28 30.7 0.29

Toronto 5.63 2.60 0.03*

Vancouver 6.50 2.47 0.01*

Victoria 2.48 2.73 0.36

Windsor 5.63 2.56 0.03*

Winnipeg 1.00 - -

Model performance: R2 = 0.67, RMSE = 2.31.R2 and RMSE estimated by
regressing the predictions from the fixed-effects terms against measured
values

*Significant at p < 0.05

Figure 3 Correspondence between predicted PM2.5

concentrations using TSP concentrations and metropolitan
indicator variables and NAPS PM2.5 measurements.
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Results
Residential histories
The NECSS questionnaire asked participants to list each
place in Canada that they had lived for at least one year.
A total of 8176 individuals (98%) reported at least one
full 6-digit postal code and 6918 individuals (83%)
reported at least 15 years of residential histories from
1975 to 1994. On average, individuals reported 2.3 (SD =
1.6) different residences from 1975 to 1994; 1617 indivi-
duals lived only in rural areas and 4222 individuals lived
only in urban areas of Canada. Urban areas were defined
using Statistics Canada community size classifications
(urban core, urban fringe, urban areas outside of CMA,
rural fringe, and rural areas outside of CMA). In total,
77% of the studies exposure-years occurred in urban
areas.
Importantly, while no significant difference (p = 0.54)

was found in the number of geocoded residential-years
between cases and controls for the 1975 to 1994 exposure
period, cases tended to report older addresses more often
than controls. Recall bias was especially evident for resi-
dential histories prior to 1975, as shown in Figure 4.

Ambient exposure assessments
The first approach to calibrating current pollution surfaces
used IDW interpolation to create annual surfaces between
1975 and 1994. Figure 5 illustrates the resulting PM2.5

exposure surfaces for 1975, 1980, 1985, 1990 and 1994,
PM2.5 measurement locations with 50 km buffers, the
average PM2.5 exposure surface between 1975 and 1994,
and the location of the case-control study subjects. Twenty
annual exposure surfaces were created from 1975 to 1994,
but only five are shown here. The study population resi-
dential years indicates the locations of all yearly residential

histories during the twenty year exposure period summed
within a 50 km grid. The temporally adjusted surfaces for
NO2 and O3 are provided in Figures 4 and 5 of the supple-
mental material.
The performance of the linear regression models was

moderate for all three pollutants (PM2.5 R
2 = 0.33, NO2

R2 = 0.36 and O3 R2 = 0.47) as described in Table 2.
Population density within 10 km of monitoring stations
was most strongly associated with PM2.5, while popula-
tion density with 5 km was most strongly associated with
NO2 (positively associated) and O3 (negatively asso-
ciated). A linear time-trend did not improve the O3

model and was therefore not included in the final model.
Evaluation of the two historical calibration approaches

are shown in Table 3 which summarizes the R2 and
RMSE of model evaluations using the 10% sample of
monitoring data withheld each year. The spatiotemporal
IDW interpolation of PM2.5 had the best performance
(R2 = 0.51), while the NO2 and O3 linear models had the
best performance (R2 = 0.38 and R2 = 0.56). Model per-
formance tended to decrease for older measurements,
but not substantially. Additional file 1: Supplemental
material 1, Figure 6 presents the scatter plots for each
model evaluation.
Table 4 presents the exposure assessment results using

both historical calibration methods and air pollution
exposures derived from NAPS monitoring data within 50
km of residential postal codes. To ensure accurate expo-
sure assessment, results are presented for individuals
with at least 15 complete exposure-years between 1975
and 1994. Exposures for different time-periods (e.g.
1975-1980, 1975-1985, and 1975-1990) were also calcu-
lated to examine different latency periods (data not
shown).

Exposure to vehicle and industrial emissions
Proximity measures used to represent exposure to vehicle
emissions are summarized in Table 5. Individuals lived
within 50, 100 and 300 m of a highway for a mean of 0.5
(SD = 2.9), 1.1 (SD = 4.0) and 2.9 (SD = 6.3) years,
respectively. Exposure years increased slightly when
weighted by temporal emission changes. The average
mean distance from study participants’ postal codes to
the nearest highway was 3.9 km. When residential his-
tories were restricted to urban areas (where proximity is
a more accurate measure of exposure than in rural
areas), the distance to highways and major roads
decreased substantially. Over half of the study population
was exposed to emissions from a major road at some
point during the study period (i.e. had lived at least one
year within 300 m of a major road).
The number of years study participants lived within 1,

2 and 3 km of a major and minor industry are summar-
ized in Table 6 as are aggregated emission estimates for

Figure 4 Percent of cases and controls reporting residential
addresses at the 6-digit postal code level from the start of
study enrollment (1994) to1944.
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major industrial sources. Proximity to specific emission
sources (e.g. oil refineries, smelters, and pulp and paper
mills) were also calculated (data not shown). Individuals
lived within 1, 2 and 3 km of a major industrial source
for a mean of 1.6 (SD = 5.3), 4.3 (8.3) and 6.4 (9.5)
years respectively. Over half of the study population (n
= 5942) lived within 3 km of a minor industrial source
for at least one year between 1975 and 1994.

Disregarding residential histories and exposure error
A total of 3305 study participants (40%) lived at their
study entry address for the entire twenty year exposure
period, while 622 (7.6%) participants lived for 15-19
years, 970 (11.9%) for 10-14 years, 1433 (17.5%) for 5-9
years, and 1756 (23%) for less than 5 years. Correlation
between ambient air pollution exposures derived from
study entry residential addresses only, in place of

exposures derived from residential histories and spatio-
temporal air pollution models, were relatively high for
PM2.5 r = 0.70, NO2 r = 0.76 and O3 r = 0.72. However,
when examining exposure misclassification based on
incorrectly assigned exposure quintiles, 50%, 49% and
46% of individuals where classified into a different
PM2.5, NO2 and O3 quintile. When temporal variation is
removed from the exposure assessment (i.e. historical
exposures are derived from residential histories applied
to the current spatial pollution surfaces) 17%, 15% and
14% of individuals where classified into a different
PM2.5, NO2 and O3 exposure quintile. Similar results
were found for proximity based exposures, for example,
30% of individuals classified as not exposed to highway
emissions based on their address at study entry were
actually exposed when residential histories were used
for exposure assessment.

Figure 5 Example of annual PM2.5 exposure surfaces created using the IDW interpolation calibration approach for all years between
1975 and 1994.
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Discussion
Incorporating residential mobility in chronic air pollution
studies is fundamental to accurate exposure estimates.
Boscoe [15] presents a review of environmental health
studies that have incorporated residential histories to-
date. In our study, only 40% of participants lived at their
study entry residence for the entire 20 year exposure per-
iod; on average, 2.3 (SD = 1.6) different residences per
subject were reported. Recall bias was present for self-
reported residential histories prior to 1975, with cases

recalling older residences more often than controls. This
has important implications for environmental epidemiol-
ogy using self-reported residential histories as many
environmental exposures have decreased substantially
over time. Consequently, exposure assessment based on a
greater proportion of older residential histories in cases
compared to controls will result in an upward bias, rather
than non-differential bias typically assumed from expo-
sure misclassification. Studies that incorporate self-
reported residential histories, particularity long-term resi-
dential histories - in this case over twenty years, may
need to account for reporting bias in epidemiological
analysis.
This study also demonstrated the importance of esti-

mating air pollution exposures from residential histories,
both in terms of including different residential locations
as well as the corresponding spatiotemporal air pollution
concentration estimates. Exposure quintiles based on
residential addresses at study entry had approximately
50% correspondence to exposure quintiles developed
from residential histories and spatiotemporal air pollu-
tion surface. These results address one of the research
opportunities suggested by Meliker and Sloan [12]:
“indentifying circumstances under which it is worth-
while to compile and incorporate extensive space-time
data histories of mobility or environmental contami-
nants”. Epidemiological studies of diseases with long
latency periods (in this case lung cancer) and/or that
examine spatially and temporally varying exposures (in
this case ambient air pollution) are clearly such
circumstances.

Table 3 Evaluation of spatiotemporal IDW interpolation
and linear regression models to predict annual historical
air pollution.

IDW
Interpolation

Linear
Models

Year Stations N R2 RMSE R2 RMSE

NO2 All 120 1030 0.22 6.66 0.38 5.92

1994-1990 94 349 0.30 5.66 0.36 5.42

1989-1985 88 300 0.20 6.61 0.44 5.54

1984-1980 62 226 0.13 6.72 0.40 5.62

1979-1975 52 155 0.17 8.75 0.29 8.07

PM2.5 All 177 1826 0.51 2.96 0.30 3.53

1994-1990 106 446 0.64 1.96 0.32 2.70

1989-1985 113 480 0.57 2.30 0.36 2.81

1984-1980 124 476 0.34 3.79 0.12 4.36

1979-1975 123 424 0.43 3.32 0.26 3.77

O3 All 187 1440 0.39 5.29 0.56 4.48

1994-1990 158 582 0.53 4.92 0.65 4.25

1989-1985 125 409 0.36 5.41 0.54 4.57

1984-1980 80 286 0.25 4.67 0.28 4.57

1979-1975 48 163 0.22 6.33 0.60 4.50

Table 4 Ambient exposure estimates derived from NAPS
monitors within 50 km of residential postal codes and
spatiotemporal exposure models.

Pollutant N* Mean SD Min IQR Max

NAPS Measurements ≤ 50 km

TSP (μg/m3) 4027 60.0 16.9 22.3 21.4 114.1

Modeled PM2.5 (μg/m
3)a 4027 17.0 2.5 11.9 3.4 25.7

NO2 (ppb) 3649 23.4 6.0 6.0 7.6 37.8

O3 (ppb)
b 4382 21.0 3.9 7.0 5.3 32.6

Spatiotemporal IDW Interpolation

PM2.5 (μg/m
3) 6833 11.3 2.6 3.6 3.9 19.0

NO2 (ppb) 6919 15.3 8.8 1.1 14.5 43.4

O3
b(ppb) 6919 23.2 3.7 12.9 4.6 35.4

Linear Regression Models

PM2.5 (μg/m
3) 6833 9.1 1.9 4.7 2.2 16.1

NO2 (ppb) 6919 17.7 4.1 13.1 5.0 35.1

O3
b (ppb) 6919 26.4 3.4 18.1 4.7 37.2

*Number of individuals with ≥ 15 complete exposure-years
a Modeled using TSP and CMA indicator variables as described previously in
Table 1
b Summer (May through September) O3

Table 2 Results of historical PM2.5, NO2 and O3 linear
regression models.

Model Distance Value SE p

PM2.5 Model [R2 = 0.33, RMSE = 3.57]

Intercept - 1.18 1.16 0.31

Satellite PM2.5 - 0.46 0.11 < 0.001

Population Density 10 km 3.94e-6 2.89e-7 < 0.001

Years < 1994 - 0.29 9.28e-3 < 0.001

NO2 Model [R2 = 0.36, RMSE = 7.00]

Intercept - 10.88 1.07 < 0.001

Satellite NO2 - 1.67 0.46 < 0.001

Population Density 5 km 2.6e-5 5.11e-6 < 0.001

Years < 1994 - 0.28 0.028 < 0.001

O3 Model [R2 = 0.47, RMSE = 5.13]

Intercept - 6.85 1.66 < 0.001

O3 Dispersion Model - 0.73 0.06 < 0.001

Population Density 5 km -2.0e-5 2.5e-6 < 0.001
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Despite the fact that the Canadian NAPS monitoring
network is one of the longest-standing national air pollu-
tion monitoring programs worldwide and now covers the
majority of urban centers in Canada, its limited spatiotem-
poral coverage necessitated the creation of national mod-
els that capture both urban and rural populations. We
were able to use NAPS data within 50 km of residential
postal codes to assign exposures to 63%, 70% and 54% of
exposure-years for TSP, O3 and NO2. Very limited spatial
and temporal PM2.5 monitoring data were available (only
40% of exposure-years between 1984 and 1994 could be
assigned) and we therefore estimated historical PM2.5

using TSP and metropolitan area indicator variables. The
resulting models predicted PM2.5 variability well; the ratio
for modelled PM2.5/TSP (0.32, SD = 0.12) is very similar
to that found in US metropolitan areas (PM2.5/TSP = 0.30,
SD = 0.11) [27].
National spatial pollutant surfaces were compiled and

calibrated with historical NAPS data to assign ambient
pollutant concentrations to all study participants’ residen-
tial postal codes between 1975 and 1994. The two
approaches used to calibrate spatial pollutant surfaces dif-
fer in their approach to account for temporal and spatial
change; IDW interpolation accounted for the heterogene-
ity in pollution level changes across Canada during
the exposure period, while linear regression models

incorporated a linear time-trend and population density as
a spatial predictor. The interpolation approach better
represented historical PM2.5 concentrations, potentially
due to the larger spatial scale of PM2.5, while the linear
regression models better represented historical NO2 and
O3 concentration, which have finer spatial resolutions.
The creation of national spatiotemporal models

allowed for the inclusion of all study participants, regard-
less of geographic location and NAPS monitor coverage.
This was important as 42884 (23%) of exposure-years
occurred in rural areas. The mean PM2.5, NO2 and O3

exposure estimates derived from the spatiotemporal
models were 11.3 μg/m3 (SD = 2.6), 17.7 ppb (4.1), and
26.4 ppb (3.4) respectively. The magnitude of these expo-
sures are less than those used in other studies, for exam-
ple, the widely cited ACS study (PM2.5: 17.7 μg/m3 (3.0),
NO2 21.4 ppb (7.1); and O3 45.5 ppb (7.3)) [1]. This is
likely due to the inclusion of rural study participants as
well as lower ambient pollution levels in Canada. The
ability to incorporate rural areas in the exposure assess-
ment added to the variability in the studies exposure esti-
mates, particularly for NO2 and O3, as the majority of
historical NAPS measurements in Canada represent pol-
lutant concentration in large urban areas.
The results of the retrospective air pollution modeling

approach conducted here are comparable to other such

Table 5 Proximity measures to highways and major roads.

Proximity Measure # of People Exposeda # of Years Exposed (Mean ± SD) # of Weightedb Years Exposed (Mean ± SD)

Highways

≤ 50 m 341 0.5 (2.9) 0.7 (3.9)

≤ 100 m 647 1.1 (4.0) 1.5 (5.4)

≤ 300 m 1640 2.9 (6.3) 4.0 (8.5)

Major Roads

≤ 50 m 1438 2.3 (5.5) 3.2 (7.6)

≤ 100 m 2283 4.0 (6.9) 5.5 (9.5)

≤ 300 m 4517 10.1 (8.8) 13.8 (12.1)
a Number of individuals living > 1 year within 50/100/300 m of a highway or major road
b Weighted to account for temporal changes in vehicle emissions

Table 6 Proximity measures to major and minor industrial sources.

Proximity Measure # of People Exposeda # of Years Exposed (Mean ± SD) # of Facilities (Mean ± SD) Emissionsb (tonnes) (Mean ± SD)

Major Industries

≤ 1 km 838 1.6 (5.3) 6.2 (5.5) 4.5e5 (3.6e7)

≤ 2 km 1995 4.3 (8.2) 13.3 (11.6) 4.5e5 (3.5e7)

≤ 3 km 2743 6.4 (9.5) 21.3 (18.6) 1.9e3 (1.6e4)

Minor Industries

≤ 1 km 4137 11.4 (11.2) 32.6 (59.3) -

≤ 2 km 5515 16.7 (10.0) 115.7 (163.2) -

≤ 3 km 5942 18.9 (9.0) 218.0 (303.8) -
a Number of individuals living > 1 year within 1/2/3 km of a major or minor industrial source
b Summary of facility emissions > 0 tonnes. Only available for major industries
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studies; however, the majority of retrospective air pollu-
tion exposure assessments have been conducted solely
for urban areas. For example, Bellander et al. [18] used
emission data, dispersion models, and geographic infor-
mation systems (GIS) to assess exposure to NO2, NOx

and SO2 ambient air pollution during 1960, 1970 and
1980 in Stockholm, Sweden. Model evaluation using his-
torical data was not possible, but the model was found
to have high correlation (r = 0.96) with aggregated
1994-1997 data from 16 monitors. In terms of national
models, Hart et al. [22] developed U.S. nationwide mod-
els of annual exposure to PM10 and NO2 from 1985 to
2000. Generalized additive models were used to predict
spatial surfaces from monitoring data and GIS-derived
covariates (e.g. distance to road, elevation, proportion of
low-intensity residential, high-intensity residential, and
industrial, commercial land use). Model performance
(R2) for PM10 and NO2 was 0.49 and 0.88 respectively.
Another national retrospective study was conducted as
part of the Netherlands Cohort Study on Diet and Can-
cer [21]. Ambient air pollution exposures were esti-
mated using regional (IDW monitor interpolation),
urban (regression modelling), and local (road proximity)
components. This approach explained 84%, 44%, 59%
and 56% of the variability in averaged monitor data
between 1976 and 1997 for NO2, NO, BS and SO2,
respectively. The density of monitors in the Netherlands
and the use of aggregated monitoring data may explain
the higher model performance than seen in this study.
The exposure assessment approach presented here capi-

talizes on study participants’ lifetime residential histories
and incorporates comprehensive modelling approaches to
estimate exposures to ambient air pollution and to vehicle
and industrial emissions. Nevertheless, there are several
limitations to this approach that may lead to exposure
misclassification. Due to privacy concerns, residential
addresses were coded using a standard geographic refer-
ence of 6-digit postal codes. Using a set geographic refer-
ence reduced error from changing postal codes over time;
however, the spatial accuracy of postal codes varies sub-
stantially between urban and rural areas of Canada. Proxi-
mity analyses for exposures to vehicle and industrial
emissions will therefore be more accurate in urban areas.
The ambient air pollution exposure assessment relies on
the accuracy of NAPS monitoring data, and historical
monitor locations, especially in rural areas, may have been
sited to capture local pollution problems. Unfortunately,
no historical data were available to evaluate the represen-
tativeness of NAPS monitoring data. Due to sparse tem-
poral and spatial PM2.5 monitor coverage, we created
historical models based on TSP monitoring data and
CMA indicator variables. While the model had good pre-
diction, it was created from a limited number of monitor-
ing stations from 1984 to 2000. Nevertheless, several

studies have estimated PM2.5 successfully from TSP [6,27].
The accuracy of the final spatiotemporal PM2.5, NO2 and
O3 surfaces is also determined from the initial concentra-
tion surface as well as fusion with historical NAPS
monitoring data or predictions incorporating a linear
time-trend and population density. Some anomalies exist
in the current spatial surfaces, for example, high PM2.5

concentrations in mountainous regions and PM2.5 and
NO2 in certain locations in the Prairies; however, few
study participants lived in these locations and exposure
misclassification is therefore limited. All historical moni-
tors were used to adjust annual spatial pollution surfaces,
which resulted in urban monitor ratios extrapolated to
rural areas. Few rural monitors exist and it was not possi-
ble to restrict to rural monitors when adjusting the spatial
pollution surfaces in rural areas. Exposure to vehicle emis-
sions was based on proximity measures to a national 1996
road network and a clear limitation was the lack of histori-
cal road databases. Industrial emissions were based on a
comprehensive database of industrial locations from 1970
to 1994; however, emission estimates were only available
for major industries, which restricted the examination of
specific industrial chemicals when minor industries were
included.

Conclusions
We conducted a comprehensive air pollution exposure
assessment for a population based lung cancer case-control
study of 8353 individuals using self-reported residential
histories between 1975 and 1994. Incorporating residential
histories was an important component of the exposure
assessment approach, and necessitated the creation of
national spatiotemporal air pollution models. Due to the
lack of historical air pollution measurements, as well as dif-
ferences in data availability between urban and rural areas,
a number of modelling approaches were used to assign
annual ambient PM2.5, NO2 and O3 concentrations, as well
as proximity measures for vehicle and industrial emissions,
to study participants’ residential addresses. The exposure
assessment methods developed here will allow subsequent
epidemiological analyses to examine latency periods asso-
ciated with lung cancer, include both urban and rural
populations, and study the contributions of multiple ambi-
ent pollutants and local vehicle and industrial emissions to
lung cancer risk in Canada. In addition, this exposure
assessment has demonstrated the importance of including
residential histories in long-term exposure assessments, as
well as the need to carefully examine self-reported residen-
tial histories for recall bias.

Additional material

Additional file 1: Supplemental material: Figure 1 Annual average (SD)
pollutant concentrations from all valid historical NAPS monitoring
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stations that were operating for the entire study period. Figure 2 Census
Metropolitan Areas (CMA’s) in Canada with PM2.5 and TSP
measurements used to create predictive models of historical PM2.5
concentrations. Figure 3 Yearly NOx on-road mobile emissions in Canada
from 1980 to 2007 and extrapolated levels to 1970. Figure 4 NO2
exposure surfaces (note: 20 annual surfaces were created but only 5 are
shown here) and locations of NAPS monitors with 50 km buffers. The
study population residential years represents all residential locations
between 1970 and 1994 summed within a 50 km grid. Figure 5 O3
exposure surfaces (note: 20 annual surfaces were created but only 5 are
shown here) and locations of NAPS monitors with 50 km buffers. The
study population residential years represents all residential locations
between 1970 and 1994 summed within a 50 km grid. Figure 6 Scatter
plots of measured versus predicted PM2.5, NO2 and O3 for IDW
interpolation and linear regression models.
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