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Abstract
Background: Mercury is a contaminant that reaches high levels in Nunavik (North of Quebec). It is
transformed into methylmercury (MeHg) and accumulated in marine mammals and predator fish, an
important part of the traditional Inuit diet. MeHg has been suggested to affect BP in adults and children
while the influence on HRV has only been studied in children. We aimed to assess the impact of MeHg
levels on HRV and BP in Inuit adults from Nunavik.

Methods: In the fall of 2004, the «Qanuippitaa?» Health Survey was conducted in Nunavik (Quebec,
Canada) and information on HRV was collected among 280 adults aged 40 years and older. Indicators of
the time and frequency domains of HRV were derived from a 2-hour Holter recording. BP was measured
according to the Canadian Coalition for High Blood Pressure technique. Pulse pressure (PP) was the
difference between systolic (SBP) and diastolic blood pressure (DBP). Blood mercury concentration was
used as exposure biomarker. Statistical analysis was conducted through linear regression and multivariable
linear regression was used to control for confounders.

Results: Mercury was negatively correlated with low frequency (LF) (r = -0.18; p = 0.02), the standard
deviation of RR intervals (SDNN) (r = -0.14; p = 0.047) and the coefficient of variation of RR intervals
(CVRR) (r = -0.18; p = 0.011) while correlations with other HRV parameters did not reach statistical
significance. After adjusting for confounders, the association with LF (beta = -0.006; p = 0.93) became non
significant. However, the association with SDANN became statistically significant (beta = -0.086; p = 0.026)
and CVRR tended to decrease with blood mercury concentrations (beta = -0.057; p = 0.056). Mercury
was positively correlated with SBP (r = 0.25; p < 0.0001) and PP (r = 0.33; p < 0.0001). After adjusting for
confounders, these associations remained statistically significant (beta SBP = 4.77; p = 0.01 and beta PP =
3.40; p = 0.0036). Moreover, most of the HRV parameters correlated well with BP although SBP the best
before adjustment for mercury exposure.

Conclusion: The results of this study suggest a deleterious impact of mercury on BP and HRV in adults.
SBP and PP increased with blood mercury concentrations while SDANN decreased with blood mercury
concentrations.
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Background
Mercury is a contaminant of great concern in the Arctic
and in northern Quebec (Nunavik) [1]. Mercury can be
transformed into methylmercury (MeHg) by biomethyla-
tion of the inorganic mercury present in aquatic sedi-
ments. It accumulates in the aquatic food chain and
reaches its highest concentrations in long-lived and pred-
atory fish and whales [2,3]. Arctic populations are highly
exposed to MeHg as their traditional diet is still largely
based on fish and marine mammal consumption.

A study carried out between 1977 and 1982 including 142
adults of Nunavik (Northern Quebec, Canada) revealed a
mean mercury blood concentration of 240 nmol/L [4].
Ten years later, another study was conducted by Dewailly
et al. [5] and the investigators noticed that blood mercury
levels had decreased (mean = 109 nmol/L) but still
remained high compared to populations in Southern
Quebec (mean = 3.7 nmol/L) [6] or Nunavik residents of
Caucasian origin (mean = 18.6 nmol/L) [5]. They also
reported that Inuit in the 45 to 75-year age group had the
highest mean blood mercury concentrations.

MeHg is well known for its toxic effect on the central nerv-
ous system (CNS) but recently, some authors have sug-
gested that it can also interfere with the normal function
of the cardiovascular system [7-11]. Some studies have
reported an association between mercury and myocardial
infarction [7], high blood pressure, [8,9] and reduced
heart rate variability (HRV) [8,10-12]. This latter reflects
the cardiac parasympathetic and sympathetic activities of
the autonomic nervous system (ANS). Reduced HRV can
cause ventricular fibrillation, which can lead to sudden
cardiac death [13-17]. A decrease in HRV has also been
associated with other cardiac events (angina pectoris,
myocardial infarction, coronary heart disease death, or
congestive heart failure) [18] and all causes of mortality
[19].

The impact of MeHg on BP has been reported in children
[8,11] and adults [9,20] while the influence of MeHg on
HRV has only been reported in subjects exposed in utero
[8,10-12]. In a cohort study of 7-year old children from
the Faroe Islands, the coefficient of variation of heart rate
(CVRR) in boys decreased by 47% in a range of cord
blood concentrations from 1 to 10 μg/L (5–50 nmol/L).
This was depicted as an indication of parasympathetic
nervous dysfunction in children exposed to low doses of
MeHg during the prenatal period [8]. This cohort was
examined at 14 years of age and a 2.7% decrease in the
heart rate coefficient of variation was detected. Moreover,
a decrease of 6.7% in the parasympathetic and sympa-
thetic activity was reported [11]. Oka et al. [10] conducted
a case-control study to assess the chronic effect of expo-
sure to high doses of MeHg on HRV in subjects suffering

from fetal Minamata disease (FMD). HRV indices such as
the R-R interval (NN) and high frequency (HF) were lower
in FMD patients. Furthermore, the standard deviation of
R-R intervals (SDNN) and CVRR tended to be lower in the
FMD group but this difference did not reach statistical sig-
nificance. More recently, Murata et al. [12] reported an
association between MeHg exposure at parturition and
decreased vagal modulation of cardiac autonomic func-
tion in Japanese children aged 7 years. Regarding BP, a
deleterious impact of prenatal MeHg exposure on SBP was
observed in children from Faroe Island at 7 years of age
[8]. In adults, MeHg has been associated with decreasing
DBP and increasing PP in Greenlanders [9] and increased
risk of hypertension in inhabitants of the Brazilian Ama-
zon [20].

Taking into account that the impact of background mer-
cury levels on HRV in adults environmentally exposed has
never been reported and that results on mercury and BP
are inconsistent, we aimed to assess the impact of blood
mercury concentrations on HRV and BP in Nunavik Inuit
adults taking into account the influence of n-3 fatty acids
and other possible confounding factors. We hypothesized
that increasing blood mercury levels were associated with
reduced HRV and increased BP.

Methods
In the fall of 2004, the «Qanuippitaa?» Health Survey was
conducted in the 14 coastal communities of Nunavik. The
target population included all permanent residents,
except for non-Inuit households and individuals living
full time in public institutions. The survey plan was a
complex two-stage stratified random sampling. The first
stage was to select a stratified random sample of private
Inuit households with proportional allocation. The com-
munity was the only stratification variable used. This strat-
ification allowed the representation of the target
population to be up to standard. Since home addresses
(civic numbers) in some municipalities are consecutive,
the survey frame was sorted first by home addresses, fol-
lowed by a systematic draw of a predetermined number of
households to avoid selection of two immediate neigh-
bours. Since many Inuit regularly move from one house to
another, it was decided to sample households instead of
individuals. The assumption was that recruiting a member
of a household rather than a specific individual, would
increase coverage of the target population. To obtain a
good representation of each community, a proportional
allocation of sample units corresponding to the size of
each village was chosen. It was important to choose
households from all 14 communities since the distances
separating villages could be associated with significant
differences in lifestyle. In the second stage, all eligible peo-
ple were asked to participate according to the survey steps
or instruments. Among the 677 households visited by the
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interviewers, 521 agreed to participate to the survey. In the
present study, we used the 2-hour Holter data collected
only among 280 adults 40 years and older.

All the information used in this study was gathered on
board the research icebreaker «Amundsen». For this pur-
pose, each participant was invited to fill out question-
naires and to attend a clinical evaluation. Each individual
who accepted to participate in the survey signed a consent
form. The study protocol was approved by the ethics com-
mittee of Laval University. Questionnaires were used to
gather information regarding age, gender, smoking habits,
alcohol consumption, total income in the last 12 months
as well as leisure time physical activity. Leisure time phys-
ical activity was estimated using the energy expenditure
during exercise [MET (kcal/kg/week) = duration*fre-
quency*intensity]. During the clinical session, blood
samples were collected and anthropometric and physio-
logical measurements were taken. As anthropometric var-
iable, we measured waist circumference (WC), which was
obtained using a graduated tape when subjects were in a
standing position [21].

HRV indices were derived from a 2-hour Holter monitor-
ing system (GE MARQUETTE SERIE 8500) with a record-
ing frequency of 128 Hz. Seven leads (derivations V5, V1,
and AVF) were installed when subjects arrived to the clinic
after blood sample was taken. During 2 hours, subjects
stayed at the clinic and completed questionnaires and had
anthropometrics measurements. Interpretation and
extraction of HRV parameters were performed automati-
cally by using the software provided by General Electric
(MARS PC Ambulatory ECG Analysis System) while com-
plete signal was carefully edited using visual checks and
manual corrections of individual RR intervals and QRS
complex classifications. For the calculation of the RR
parameters, only R-R intervals between QRS complexes of
sinusal origin were used. Intervals whose duration was <
80% or > 120% of that of the running R-R average were
excluded. Time domain parameters included the average
of all R-R intervals (NN), standard deviation of R-R inter-
vals (SDNN), standard deviation of the average R-R inter-
vals calculated over 5-minute periods (SDANN), the
square root of the mean squared differences of successive
R-R intervals (rMSSD) and the proportion of interval dif-
ferences of successive R-R intervals > 50 ms (pNN50).
rMSSD and pNN50 are indices of cardiac parasympathetic
modulation. CVRR was calculated as (SDNN/NN) × 100.
Fast Fourier transformation was used to compute fre-
quency domain measurements. Thus, it was possible to
calculate very low frequency (VLF = 0.0033–0.04 Hz),
which may be an index of parasympathetic activity and
neuroendocrine and thermogenesis stimulus, low fre-
quency (LF = 0.04–0.15 Hz) which represents both sym-
pathetic and parasympathetic activity, and high frequency

(HF = 0.15–0.40 Hz) which is an index of solely parasym-
pathetic activity. The LF/HF ratio represents the sym-
patho-vagal balance [22,23]. BP was measured according
to the Canadian Coalition for High Blood Pressure pre-
vention and control using mercury sphygmomanometers,
15-inch stethoscopes, and cuffs sized to the subjects' arms
[24]. Prior to having their BP taken, subjects had to have
rested for five minutes and not eaten or smoked for at
least thirty minutes. Each subject had two BP readings and
means of systolic blood pressure (SBP) and diastolic
blood pressure (DBP) were calculated. Pulse pressure (PP)
was calculated as the difference between SBP and DBP.

Blood mercury and selenium concentrations were meas-
ured by inductively coupled plasma mass spectrometry
(ICP-MS). For mercury determination, blood samples
were diluted 20 fold in a solution containing ammonium
hydroxide before analysis. Concentrations of plasma total
cholesterol (total-C), triglycerides, low-density lipopro-
tein cholesterol (LDL-cholesterol) and high-density lipo-
protein cholesterol (HDL-cholesterol) were analysed
according to methods of the Lipid Research Clinics (US
Department of Health). Cholesterol and triglycerides con-
centrations were determined in plasma and in lipoprotein
fractions using an Auto-Analyzer II (Technicon Instru-
ments Corporation, Tarrytown, New York). The HDL frac-
tion was obtained after precipitation of LDL in the
infranatant with heparin and manganese chloride. Low-
density lipoprotein (LDL-cholesterol) was calculated
using Friedewald's formula [25]. Insulin determination
was performed with an Auto-analyzer Roche Modular
analytics E170 (Elecsys module) using a commercial dou-
ble-antibody radioimmunoassay. Plasma glucose was
measured enzymatically through a reaction with hexoki-
nase. Insulin sensitivity was estimated from the HOMA
model (Homeostasis model assessment) as fasting insulin
times fasting glucose/22.5 [26]. The fatty acid composi-
tion of the erythrocyte membranes was measured after
membrane purification, chloroform/methanol lipid
extraction [27] and methylation of fatty acids, followed by
capillary gas-liquid chromatography using a DB-23 col-
umn (39 × 0.25 mm ID × 0.25 μm thickness) in a Hewlett-
Packard GC chromatograph.

Statistical analyses
As an initial step, descriptive statistics for all variables
were produced. Results are presented as arithmetic mean
± standard deviation for continues variables with normal
distribution. Log-transformation was applied to variables
with skewed distribution and geometric means were cal-
culated. Proportions are presented for categorical data.
Taking into account the complex sampling design used in
this study, sampling weights were incorporated into the
calculation of descriptive statistics as well as linear regres-
sion parameters. Weighting participants answers takes
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into account the probability of selecting each individual
as induced by the design of the survey, the rates of non-
response and differences observed between the sample
and the population. The weight corresponds to the
number of persons in the entire population who are rep-
resented by the respondent. Thus, the estimates generated
by using sampling weights could be generalized to the
entire population of Nunavik. Details on methodology
are available in the methodological report of the survey
[28].

The relationship between blood mercury levels and the
outcomes (Holter and BP parameters) was analysed using
Pearson's correlation. The influence of potential con-
founding factors was examined through multivariable
regressions. Variables assessed as potential confounders in
HRV models were gender, age, waist circumference (WC),
insulin sensitivity (HOMA-IR), LDL-cholesterol, HDL-
cholesterol, triglycerides, smoking habits, alcohol con-
sumption, physical activity, socio-economic status (meas-
ured as total income), n-3 fatty acids [Docosahexanoic
acid (DHA) and Eicosapentanoic acid (EPA)]. In BP mod-
els, we also considered selenium as potential confounder.
All variables were included in the initial models and
selected as confounders if their exclusion modulated the
regression coefficients by more than 10%. Squared partial
correlation coefficients of the variables retained in the
final models were also calculated in order to determine
which of them explained a significant proportion of the
model's variance. Final models were analysed to verify if
the assumptions of a linear regression were respected.
Thus, linearity, normality and homoscedasticity (homo-
geneity of variance) of the residuals were examined using
graphic plots of the jackknife residuals versus predicted
values of the dependent and independent variables. Col-
linearity between variables included in the final models
were also analysed to avoid including in the same model
two variables highly correlated. A p < 0.05 was considered
of statistical significance. All analyses were performed
using SAS v. 9.1 and SUDAAN v.9.3 software (SAS Insti-
tute, Cary, NC).

Sensitivity analyses were performed in order to assess if
exclusion of individuals with hypertension, myocardial
infarction, stroke and other cardiovascular diseases was
necessary for HRV analyses. We also verified if exclusion
of individuals with antiarrhythmic or beta blocker medi-
cation was necessary. For BP analyses, we verified if exclu-
sion of individuals taking medication for hypertension
changed the regression coefficients.

Owing to the complex sampling method used in this
study, the bootstrap technique was selected to determine
variances in the descriptive statistics as well as the regres-
sion coefficients derived from the sampling design [28-

30]. This technique provides precision measurements for
estimates obtained from a complex sample design. The
bootstrap is in fact a re-sampling method that consists of
drawing subsamples (500 subsamples were used in this
study) from the original sample and generating estimates
for each of those subsamples. An estimation of the sam-
pling variance is deduced by measuring the dispersion
between those estimations. In order to extract an estimate
for each subsample that could be inferred to the entire
population, sample weighting must be used. It involves
the production of a set of weights for each subsample.
These sets of weights are called bootstrap weights. The cal-
culation of sampling weights as well as bootstrap weights
for this survey was done by the Institut de la Statistique du
Québec. Details on methodology is available in the meth-
odological report of the survey [28].

Results
During the survey, 472 individuals of 40 years and over
were eligible to the HRV session whereas 280 (59%)
accepted to participate. For the statistical analyses, we
excluded 69 individuals due to technical problems related
to HRV (artefacts, bad connections, etc), 1 individual with
blood mercury data not available and 5 individuals who
were not Inuit. Thus, data on HRV and BP were available
from 205 individuals (43%).

Characteristics of the participants are presented in Table 1.
The mean age of the participants was 52.1 years and the
study sample included 85 men (mean age: 53.0 years) and
120 women (mean age: 51.2 years). The arithmetic mean
of blood mercury concentration was 133.2 nmol/L (27
μg/L) ranging from 2.4 to 760 nmol/L while geometric
mean was 97.8 nmol/L (19.6 μg/L). Mercury blood con-
centrations increased with age (r = 0.35; p < 0.0001) and
were similar in women and men (p = 0.63).

Holter and BP parameters are presented in Table 2. Means
of SBP and DBP were 123 mmHg and 75 mmHg respec-
tively. All HRV variables but NN showed a skewed distri-
bution. The correlations between mercury and BP and
Holter parameters are presented in Table 3. Blood mer-
cury concentration was negatively correlated with LF (r = -
0.18; p = 0.02), SDNN (r = -0.14; p = 0.047) and CVRR (r
= -0.18; p = 0.011) while correlations with other HRV
indices did not reach statistical significance. Mercury was
positively correlated with SBP (r = 0.25; p < 0.0001) and
PP (r = 0.33; p < 0.0001).

The adjusted regression coefficients are presented in Table
3. The significant association between mercury and LF
observed in simple correlation became non significant
after adjusting for confounding factors. However, the
association with SDANN became statistically significant
(beta = -0.086, p = 0.026) after adjusting for confounders.
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There was a trend for SDNN (beta = -0.056, p = 0.10) and
CVRR (beta = -0.057, p = 0.056). Mercury remained posi-
tively associated with SBP (beta = 4.77; p = 0.01) and PP
(beta = 3.40; p = 0.0036) after adjusting for confounders.

Squared partial correlation coefficients for mercury as well
as confounders included in final models are presented in
Table 4. Mercury explained 4.14% and 4.76% of the vari-
ance in SBP and PP models. WC and age also explained a
significant proportion of the variance in SBP and PP mod-

Table 1: Characteristics of the participants

Variables N Arithmetic mean (SD) Geometric mean Range

Age (years) 205 52.1 (28.3) 40 – 73
Gender (%) 205

Female 120 (58.6%)
Male 85 (41.5%)

Mercury (nmol/L)§ 205 132.9 (329.8) 97.8 2.4 – 760.0
Fasting insulin (pmol/L)§ 203 68.9 (204.5) 52.1 13.0 – 448.0
Fasting glucose (mmol/L)§ 202 4.9 (3.7) 4.8 2.8 – 15.1
HOMA-IR § 201 16.9 (77.3) 11.0 1.9 – 244.3
Total-Cholesterol (mmol/L) 202 5.4 (2.8) 3.3 – 8.2
LDL-Cholesterol (mmol/L) 202 3.1 (2.7) 0.7 – 6.1
HDL-Cholesterol (mmol/L) 202 1.7 (1.6) 0.8 – 4.3
Triglycerides (mmol/L)§ 202 1.3 (2.4) 1.1 0.3 – 5.5
EPA (% fatty acids)§ 205 2.5 (4.2) 2.1 0.50 – 7.27
DHA (% fatty acids) 205 6.7 (5.1) 1.56 – 10.09
WC (cm) 204 96.0 (41) 66.0 – 136.0
Smoking habits (%) 198

Daily smoker 116 (59.0%)
Occasionally 7 (3.5%)
Not at all 75 (37.9%)

Physical activity (kcal/kg/week) & 130 43.9 (186) 20.2 0 – 364
Total income (%) 169

Less than $20,000 80 (47.3%)
$20,000 to less than $40,000 46 (27.2%)
$40,000 to less than $60,000 31 (18.3%)
$60,000 or more 12 (7.1%)

Alcohol consumption (%) 177
Yes 141 (79.7%)
No 36 (20.3%)

§ Variables not normally distributed; HOMA-IR: insulin sensitivity; EPA: Eicosapentaenoic acid; DHA: Docosahexaenoic acid; WC: Waist 
circumference; LDL-cholesterol: Low density lipoprotein; HDL-cholesterol: high density lipoprotein;
&Physical activity was calculated as: MET = duration*frequency*intensity of the exercise.

Table 2: Time and frequency domains parameters

HRV and BP parameters Arithmetic mean (SD) Geometric Mean Range

VLF (ms2)§ 890 (2108) 690/6.5 † 45 – 5999
LF (ms2)§ 574 (2006) 376/5.9 † 16 – 6596
HF (ms2)§ 206 (726) 134/4.9 † 16 – 2329
LF/HF§ 3.2 (5.4) 2.8 0.4 – 13
NN (ms) 810 (364) 557 – 1167
SDNN (ms)§ 80 (84) 76 24 – 226
SDANN (ms)§ 51 (67) 47 12 – 189
RMSSD (ms)§ 30 (37) 28 12 – 93
PNN50 (%) § 10 (31) 5 0 – 57
SBP (mm Hg) 123 (37) 85 – 187
DBP (mm Hg) 75 (21) 55 – 111
PP (mm Hg) 48 (27) 23 – 94

§ Variables not normally distributed; † for VLF, LF and HF, the Ln mean is also shown; SBP: systolic blood pressure, DBP: diastolic blood pressure, 
PP: pulse pressure.
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els while DBP was explained by triglycerides. In HRV
models, insulin sensitivity (evaluated as HOMA-IR)
explained a significant proportion of the variance in most
models (SDNN, NN, HF, LF) while age explained a signif-
icant proportion of the variance only in LF, NN and LF/HF
ratio models. The proportion of the variance explained by
gender was significant in HF and LF/HF ratio models
while HDL explained a significant proportion of the vari-
ance in VLF, rMSSD and pNN50 models. Finally, waist cir-
cumference explained a significant proportion of the
variance in VLF, HF, and rMMSD.

From 205 individuals included in the final analysis, 18
had a stroke, 8 had a myocardial infarction, 55 had hyper-
tension and 22 suffered from other cardiovascular dis-
eases. Sensitivity analyses showed that most of the HRV
parameters were similar to those from individuals not suf-
fering from cardiovascular diseases. Also, 23 individuals
were taking antiarrhythmic or beta blocker medication.
These individuals had lower LF, LF/HF ratio and higher
NN than individuals without antiarrhythmic or beta
blocker medication. Statistical analyses were conducted
excluding individuals with antiarrhythmic or beta blocker
medication and regression coefficients did not change sig-
nificantly. For BP analyses, sensitivity analyses showed
that exclusion of individuals taking medication for hyper-
tension did not change significantly the regression coeffi-
cients. Thus, these individuals were not excluded from the
analyses.

In the final models, the analysis of the jackknife residuals
showed that assumptions of the linear regression had
been respected. Jackknife residuals were normally distrib-
uted and the analysis of the homoscedasticity showed a
homogeneous variance distribution. Linearity assump-
tion was also respected in all models.

Since mercury affects both BP and HRV, and since both
are indicators of cardiovascular disease, we studied the
relationship between HRV and BP (Table 5).

Most of the HRV parameters correlated well with BP
although SBP the best before adjustment for mercury
exposure.

Discussion
To our knowledge, we reported the first study on HRV
conducted in adults exposed to MeHg through environ-
mental background exposure. We observed a diminution
of parasympathetic activity with higher blood mercury
concentrations. In multivariable analyses, only the associ-
ation with SDANN was statistically significant. However,
the associations with other HRV parameters were in the
same direction as those reported in previous studies
[11,12] and a trend was observed for SDNN and CVRR. BP
was also impacted by mercury in this population and SBP
and PP increased with blood mercury concentrations.

Of particular interest, 50% of the participants had mer-
cury concentrations in the range considered at risk accord-

Table 3: Results of simple and multivariable regression between mercury and HRV and BP parameters

Mercury (nmol/L)§

HRV and BP parameters Simple analysis Multivariable analysis

r Pearson Crude β (95% CI) Adjusted β (95% CI) Model R2

VLF (ms2)§ a -0.13 -0.12 (-0.26, 0.03) -0.06 (-0.20, 0.07) 0.12**
LF (ms2)§ b -0.18* -0.20* (-0.38, -0.03) -0.01 (-0.18, 0.16) 0.21***
HF (ms2)§ c -0.11 -0.12 (-0.27, 0.03) -0.01 (-0.17, 0.15) 0.17**
LF/HF § d -0.10 -0.22 (-0.51, 0.07) 0.01 (-0.33, 0.34) 0.24***
NN (ms) e 0.04 6.32 (-13.62, 26.27) -5.75 (-27.90, 16.41) 0.19***
SDNN (ms)§ f -0.14* -0.06* (-0.12, -0.001) -0.056 (-0.12, 0.01) 0.09**
SDANN (ms)§ g -0.09 -0.05 (-0.11, 0.01) -0.086* (-0.16, -0.01) 0.02
rMSSD (ms) § h -0.12 -0.06 (-0.12, 0.01) -0.03 (-0.09, 0.04) 0.12**
pNN50 (%) § i -0.12 -0.19 (-0.39, 0.02) -0.09 (-0.32, 0.13) 0.12*
CVRR (%) § j -0.18* -0.07* (-0.12, -0.01) -0.057 (-0.11, 0.001) 0.03*
SBP (mm Hg) k 0.25*** 5.20*** (2.70, 7.70) 4.77* (1.12 – 8.42) 0.27***
DBP (mm Hg) l 0.01 0.13 (-1.44, 1.71) 1.99 (-0.29, 4.29) 0.08*
PP (mm Hg) m 0.33*** 5.07*** (3.15 – 6.99) 3.40* (1.11 – 5.69) 0.41***

* p < 0.05; ** p < 0.01; *** p < 0.0001; § Log-transformed variables; a model adjusted for HDL, WC and DHA; b model adjusted for smoking, DHA, 
triglycerides, EPA, WC, HOMA-IR and age; c model adjusted for smoking, triglycerides, EPA, alcohol, DHA, HOMA-IR, HDL, gender and WC; d 

model adjusted for alcohol, DHA, HDL, EPA, LDL, triglycerides, age, HOMA-IR, WC, gender and socio-economic status; e model adjusted for total 
income, EPA, smoking, gender, HOMA-IR, HDL and age; f model adjusted for EPA and HOMA-IR; g model adjusted for EPA; h model adjusted for 
smoking, HDL, DHA, WC and HOMA-IR; i model adjusted for smoking, HDL, HOMA-IR, DHA, age and WC; j model adjusted for EPA; k model 
adjusted for age, WC and selenium; l model adjusted for EPA, selenium and triglycerides; m model adjusted for selenium, WC and age.
Page 6 of 11
(page number not for citation purposes)



Environmental Health 2008, 7:29 http://www.ehjournal.net/content/7/1/29
ing to Health Canada recommendations, defined as
mercury blood concentrations between 20 μg/L (100
nmol/L) and 100 μg/L (500 nmol/L) [1]. If compared
with a study conducted in 1992 by Dewailly et al. [5], mer-
cury concentrations decreased for the same age group but
still remain high (97.8 vs. 135.6 nmol/L in 1992) [31].
The comparison with mercury levels obtained in other
populations is limited as we only included adults of 40
years and older and available data concerning adult expo-
sure often include a wide age range.

Previous studies showing an impact of mercury on HRV
have involved children exposed in utero [8,11,12] and
adults suffering from FMD [10]. Changes in normal HRV
were also detected in rats exposed to MeHg chloride [32].
In children exposed in utero, a negative influence of MeHg
on HRV was detected in the Faroe Islands at 7 years of age
[8] and this influence persisted when the same cohort was

assessed at 14 years of age [11]. At 7 years of age, a
decrease of HRV was found only in boys with mercury
concentrations in the range from 1 to 10 μg/L (5–50
nmol/L) whereas at 14 years of age, only a slight decrease
of HRV was observed in this range of concentrations.
However, a decrease in sympathetic and parasympathetic
activities was observed in the sample ranging from 0.9 to
351 μg/L (4.5–1755 nmol/L). Even if the results at 14
years of age are not similar to those obtained at 7 years of
age, these results suggest an influence of MeHg on HRV in
children exposed in utero. The authors suggest that
changes observed in HRV could be the result of an influ-
ence of MeHg on the brainstem nuclei that regulates HRV.
Furthermore, evidence indicates that the developing brain
could be considerably more sensitive to the toxic effects of
MeHg than the mature adult brain [33]. In a case-control
study conducted by Oka et al. [10], they observed that
individuals suffering from fetal Minamata disease (FMD)

Table 4: Squared partial correlation coefficients

HRV and BP parameters Independent variables Adjusted β Partial R2 (%) p-value

VLF (ms2) § Mercury § -0.06 0.43 0.38
WC -0.02 10.17 <0.0001
HDL-cholesterol -0.34 5.52 0.004

LF (ms2)§ Mercury § -0.006 0.003 0.94
HOMA-IR -0.22 2.66 0.0178
Age -0.03 6.15 0.0069

HF (ms2)§ Mercury § -0.01 0.01 0.88
HOMA-IR§ -0.19 1.80 0.0466
WC -0.01 2.34 0.0102
Gender 0.39 4.17 0.0011

LF/HF § Mercury § 0.01 0.001 0.97
Age -0.05 6.32 0.0002
Gender -1.19 11.05 <0.0001

NN (ms) Mercury § -5.75 0.12 0.61
Age 4.63 8.66 <0.00010
HOMA-IR§ -37.63 5.01 .0028

SDNN (ms)§ Mercury § -0.056 1.25 0.10
HOMA-IR§ -0.12 7.95 0.0001

SDANN (ms)§ Mercury § -0.086 1.86 0.026
rMSSD (ms)§ Mercury § -0.03 0.29 0.395

HDL -0.10 1.66 0.0488
WC -0.01 3.69 0.0008

pNN50 (%) § Mercury § -0.09 0.28 0.43
HDL -0.36 1.88 0.032
WC -0.03 3.99 0.0006

CVRR (%) § Mercury § -0.057 1.66 0.056
SBP (mm Hg) Mercury § 4.77 4.14 0.01

Selenium § -6.45 2.92 < 0.0001
WC 0.29 7.03 0.0357
Age 0.59 11.27 < 0.0001

DBP (mm Hg) Mercury § 1.99 1.57 0.087
Triglycerides § 4.76 6.68 < 0.0001

PP (mm Hg) Mercury § 3.40 4.76 0.0036
WC 0.12 2.83 0.0083
Age 0.68 27.92 < 0.0001

In this table, we present only the confounding factors that explain a significant proportion of the variance. § Log-transformed variables; HOMA-IR: 
Homeostasis model assessment; WC: Waist circumference.
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had lower NN and HF than controls. These results also
support the hypothesis that the cardiac autonomic activity
may be vulnerable to MeHg toxicity during the prenatal
period. In this population, most of the cases recorded
were probably exposed both prenatally and postnatally
due to the long-term contamination of fish in the
Minamata Bay but this could not be confirmed [33]. The
hypothesis concerning the vulnerability of the cardiac
autonomic activity to MeHg toxicity during the prenatal
period is also supported by the results obtained by Murata
et al [12]. In that study, MeHg exposure at parturition was
associated with decreased vagal modulation of cardiac
autonomic function while postnatal mercury exposure
was not significantly related to the parasympathetic tone.

Although prenatal exposure to mercury has been sug-
gested to influence the cardiac autonomic system, post-
natal exposure could also have some influence on the
ANS. In Faeroe Island, LF component was affected by mer-
cury exposure at 7 years of age [11]. In our study, most of
the HRV parameters decreased with blood mercury con-
centrations although only the association with SDANN
was statistically significant. SDANN represents the long-
term HRV and it correlates with SDNN. In this study, the
association with SDNN approached the significance level
and a similar trend was observed in the CVRR model. The
fact that associations were in the same direction as those
observed in previous studies [10-12], contributes to sup-
port the hypothesis that mercury exposure may influence
HRV in adults.

Regarding BP, a previous study conducted in children
exposed in utero has reported an increment in SBP [8]
which is in accordance with the results from the present
study. In Greenlanders adults, mercury in blood was asso-
ciated with reduced DBP and increased PP [9]. Our results
are partially in accordance with those observed in Green-

landers since PP increased with mercury concentrations in
Inuit from Nunavik. Furthermore, our results are in
accordance with results derived from hair's mercury meas-
urement showing an association with increased SBP [20].

In the present study, we tried to minimize the confound-
ing bias by assessing the influence of most of the HRV and
BP risk factors described in the scientific literature. Also,
the regression coefficients did not change significantly
when analyses were conducted excluding individuals with
systemic hypertension, myocardial infarction, stroke and
those with other cardiovascular diseases. Furthermore,
analysis was conducted by excluding individuals with
antiarrhythmic or beta blocker medication and the HRV
regression coefficients did not change significantly. In the
BP analysis, exclusion of individuals with anti-hyperten-
sive medication did not change the regression coefficients.
Additionally to HRV and BP risk factors, we also evaluated
the possible confounding effect of n-3 fatty acids which
are of particular interest in Arctic populations. In Nuna-
vik, levels of EPA and DHA increased linearly with mer-
cury blood concentrations (r = 0.50, p < 0.0001; r = 0.60,
p < 0.0001 respectively). n-3 fatty acids can positively
modulate HRV [34-36] as DHA can slow the heart rate
[37,38], prevent ventricular arrhythmias [39], and sudden
death [40]. n-3 fatty acids could also have a protective
effect on BP [41,42]. In BP analyses, we also included sele-
nium since it is correlated with mercury levels (r = 0.63, p
< 0.0001) and it could have a protective effect on BP [43].
In this study, selenium was a significant predictor in SBP
model and close to the significance level for DBP and PP.
Furthermore, selenium adjustment increased the mercury
coefficients in all BP models. This aspect constitutes an
important difference between our study and those previ-
ously published.

Table 5: HRV parameters (log-transformed) as predictors of blood pressure

SBP (mm Hg) DBP (mm Hg)

HRV § parameters Pearson r (p-value) Partial correlation coefficient &(p-value) Pearson r (p-value) Partial correlation coefficient &(p-value)

VLF (ms2) -0.14 (0.0227) -0.12 (0.05) -0.13 (0.07) -0.13 (0.07)
LF (ms2) -0.27 (< 0.0001) -0.25 (0.0002) -0.16 (0.013) -0.16 (0.01)

HF (ms2) -0.19 (0.0063) -0.17 (0.01) -0.22 (0.0005) -0.22 (0.0007)
LF/HF -0.14 (0.018) -0.11 (0.04) 0.11 (0.08) 0.11 (0.069)

SDNN (ms) -0.13 (0.036) -0.11 (0.07) -0.16 (0.007) -0.16 (0.007)
SDANN (ms) -0.07 (0.30) -0.05 (0.41) -0.14 (0.019) -0.14 (0.019)
rMSSD (ms) -0.12 (0.059) -0.11 (0.11) -0.20 (0.002) -0.20 (0.003)
pNN50 (%) -0.13 (0.047) -0.11 (0.11) -0.17 (0.015) -0.17 (0.019)
CVRR (%) -0.24 (< 0.0001) -0.21 (0.0010) -0.13 (0.036) -0.13 (0.036)

§ Log-transformed variables; &partial correlation coefficients adjusted for blood mercury concentrations
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Among other confounding variables included in the final
models, insulin sensitivity (measured as HOMA-IR)
explained a significant proportion of the variance in most
HRV models. It is known that the autonomic nervous sys-
tem is impaired in patients with diabetes. HRV diminishes
with higher blood glucose concentrations, possibly due to
an increase in the sympathetic activity [14,44-46]. Other
variables such as age and gender also explained a signifi-
cant proportion of the variance in some models. It is
known that HRV diminishes with age [47] and males are
more at risk of reduced HRV than females [48,49]. Obes-
ity was also associated with some of the HRV parameters.
It has been observed that weight reduction improves HRV
[23].

In the present study, most of the HRV regression coeffi-
cients did not reach the statistical significance although
they were in the same direction as those previously
reported. One of the limitations of this study is that data
on HRV were collected as part of a general health survey
and maybe statistical power was not high enough to
detect significant associations with all HRV parameters.
Also, the participation rate for ambulatory electrocardio-
grams was not high (34.2%) and this could bias the
results if individuals excluded from the analyses have dif-
ferent profiles than those included in the study. However,
the weighting method used allows us to minimize the bias
due to non-response which consequently minimizes risk
of selection bias. Among the main causes of refusal, 122
individuals (47%) did not sign a consent form. However,
among other 144 exclusions [69 individuals with non-
valid Holter (26%) and 75 (27%) excluded due to pace-
marker, no time, unspecified, device not available, handi-
capped, etc)], no significant differences were observed in
blood mercury levels compared to individuals included in
final analysis. Thus, exclusion of these individuals was not
linked to the exposure and consequently, the risk of selec-
tion bias is less probable. In addition, non-valid Holter
were due to artefacts, bad connections, non-functional
cassettes due to the Holter management and no individ-
ual was excluded due to poor heart function which may be
reflected by extremely low HRV for example.

Conclusion
The results obtained in the present study suggest a delete-
rious impact of mercury on BP and HRV in adults.
Although only the association with SDANN was statisti-
cally significant, most of the regression coefficients were
in the same direction as those observed in children. Tak-
ing into account that this is the first study regarding the
effect of mercury on HRV in adults, the results obtained
here should be confirmed in other populations.
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