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Abstract

Background: In the context of a warming climate and increasing urbanisation (with the associated urban heat island
effect), interest in understanding temperature related health effects is growing. Previous reviews have examined how
the temperature-mortality relationship varies by geographical location. There have been no reviews examining the
empirical evidence for changes in population susceptibility to the effects of heat and/or cold over time. The objective
of this paper is to review studies which have specifically examined variations in temperature related mortality risks over
the 20" and 21°" centuries and determine whether population adaptation to heat and/or cold has occurred.

Methods: We searched five electronic databases combining search terms for three main concepts: temperature, health
outcomes and changes in vulnerability or adaptation. Studies included were those which quantified the risk of heat
related mortality with changing ambient temperature in a specific location over time, or those which compared mortality
outcomes between two different extreme temperature events (heatwaves) in one location.

Results: The electronic searches returned 9183 titles and abstracts, of which eleven studies examining the effects of
ambient temperature over time were included and six studies comparing the effect of different heatwaves at discrete
time points were included. Of the eleven papers that quantified the risk of, or absolute heat related mortality over time,
ten found a decrease in susceptibility over time of which five found the decrease to be significant. The magnitude of the
decrease varied by location. Only two studies attempted to quantitatively attribute changes in susceptibility to specific
adaptive measures and found no significant association between the risk of heat related mortality and air conditioning
prevalence within or between cities over time. Four of the six papers examining effects of heatwaves found a decrease
in expected mortality in later years. Five studies examined the risk of cold. In contrast to the changes in heat related
mortality observed, only one found a significant decrease in cold related mortality in later time periods.

Conclusions: There is evidence that across a number of different settings, population susceptibility to heat and
heatwaves has been decreasing. These changes in heat related susceptibility have important implications for
health impact assessments of future heat related risk. A similar decrease in cold related mortality was not shown.
Adaptation to heat has implications for future planning, particularly in urban areas, with anticipated increases in
temperature due to climate change.
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Background

The global climate is projected to warm although to
what extent depends on future greenhouse gas emissions
and socioeconomic and land use changes. Global surface
temperatures are likely to warm by between 0.3 °C and
4.8 °C by the end of this century relative to the end of
the last, depending on modelling choices which reflect
differences in the amount of anthropogenic forcing in
different scenarios [1]. It is anticipated that there will be
increasing variability in future temperatures and extreme
weather events over most geographical regions [1-4].
For example, heatwaves are likely to increase in fre-
quency and severity and this, combined with projected
demographic changes, will lead to an increase in popula-
tion exposure to extreme events [5, 6]. However, the
same locations may still experience (extreme) low tem-
peratures. These are important considerations for public
health, as both heat and cold exposure lead to increased
risk of mortality [7-21].

Adequate public health responses to temperature related
effects of climate change require a sound risk management
process, informed by the use and synthesis of relevant evi-
dence. A framework for such a public health approach for
climate change adaptation is outlined by Hess et al. [22]. In
considering the future impact of temperature on health,
knowledge about past and current risks to health from
changes in ambient temperature is essential: it informs the
baselines used for future risk assessments upon which
management strategies may be based. Changes in
temperature related health outcomes over time could
give valuable insight into whether populations have
adapted to hot and/or cold temperatures in more
recent times. Understanding what has caused changes
in susceptibility to temperature related mortality can
help inform current public health policy and protection
of vulnerable communities. Alternatively, if temperature
related mortality remains unchanged this gives further
weight to the need for specific planned adaptive strategies
to address the health risks of future climate change. For
the purpose of this review, adaptation and acclimatisation
have been defined as in Fig. 1 below, with the definition of
adaptation based upon that of the Intergovernmental
Panel on Climate Change [23]. However, a distinction
between evidence of decreasing susceptibility to heat and
cold and evidence that adaptation or acclimatisation have
occurred should be made. For example, a decrease in
temperature related mortality may have arisen through
general improvements in health or social care rather than
specific planned adaptations to the effects of heat or cold:
to attribute decreasing heat or cold related mortality solely
to planned adaptive measures would be misleading.

Epidemiological evidence for the effect of temperature
on health outcomes is typically based on observational
studies. The relative risk of mortality per unit change in
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temperature (e.g. per degrees Celsius (°C)) is generally esti-
mated using a time series or case-crossover approach. This
is usually denoted by ‘U’,“V’ or T type curves, with adverse
health effects appearing below or above a given range of
temperatures [11]. Where a threshold temperature is set,
above or below which health effects occur (and can be
estimated using a log-linear or non-linear approach), this
point is often referred to as the Minimum Mortality
Temperature (MMT). The effect of individual heatwaves
is often estimated using episode analysis, where observed
numbers of deaths during the heatwave period are
compared to expected deaths estimated using an appro-
priate baseline.

A number of epidemiological studies [24-26] have
examined how temperature-mortality relationships vary
by geographical location. The geographical variation in
this relationship is also the subject of a review by Hajat
and Kosatsky [27], who explored possible explanations
for the differences in temperature related susceptibility
between countries. In a random-effects meta-regression
of studies, the relative risk of heat related mortality was
found to be strongly related to heat thresholds. Heat
thresholds (and RR of heat-related mortality) were
higher in countries closer to the equator (with higher
summertime mean temperatures). It was proposed that
the higher thresholds seen in countries closer to the
equator, may indicate some level of population adapta-
tion to heat. The risk of heat-related mortality was also
found to increase with increasing urban density, decreas-
ing city level GDP and increasing age of the population.

No review, however, has examined how or whether
temperature-related mortality varies over time in one
location. This paper seeks to address this gap in know-
ledge. Specifically we review the evidence for changing
population susceptibility (in terms of mortality) to ambient
heat and cold and heatwaves or cold snaps over different
time points over the last century and more recently.
Understanding changing temperature-related mortality,
the time scales over which this has occurred, and its
possible causes could make important contributions to
managing future risk. We discuss the extent to which
changes in susceptibility are attributed to planned adaptive
measures within the selected studies and consider how
this evidence could be used in assessments of future
temperature related health impacts. Both heat and cold
related mortality are reviewed, as in many parts of the
world studies suggest cold related mortality currently has
and will continue to have a substantial contribution to
temperature related mortality, even under warming pro-
jections [28, 29].

We review both changes in mortality in response to
general temperature increases or decreases and to extreme
weather events, such as heatwaves and cold snaps. Extreme
events are included since the specific adaptive measures
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Adaptation:

The IPCC have defined adaptation as “Adjustment in natural or
human systems to a new or changing environment. Adaptation to
climate change refers to adjustment in natural or human systems in
response to actual or expected climatic stimuli or their effects,
which moderates harm or exploits beneficial opportunities. Various
types of adaptation can be distinguished, including anticipatory and
reactive adaptation, private and public adaptation, and autonomous
and planned adaptation.” [23]

For the purpose of this review, we define population adaptation to
heat and/or cold as adjustment(s) which reduce the harmful effects
on the health of a population or its health system in response to
actual or expected temperature changes, as measured by
reduction in mortality or morbidity (contact with health services may
be used as a proxy for this). This can be anticipatory, spontaneous
or planned. For example, in this context, planned adaptation would

4 h

Acclimatisation : A physiological protective
response to changes in temperature,
occurring over a short time period (within
one season).

In practice, acclimatisation and adaptation
are likely to be difficult to separate within
epidemiological studies.

populations susceptibility to the effect of experienced heat.

include specific structural or policy interventions which reduce a

A /

Fig. 1 Definition of Adaptation (based on the Intergovernmental Panel on Climate Change (IPCC) definition [23]) and Acclimatisation

and policies relating to these may differ to those for general
temperature effects. For example, there are many specific
measures, such as heat health warning systems (HHWYS)
that are only fully activated during an extreme event
[30, 31]. Political will to react to extreme events, such
as the 2003 heatwave (commonly stated as the trigger
for many European countries’ HHWS) may be greater
[32], as although considered low probability they have
an immediate and high impact compared to slowly
changing environmental risk.

Only the direct effects of ambient temperature on
health (all cause and cause specific mortality — for
example mortality due to cardiac or respiratory disease)
are considered in this review. A review of individual and
specific adaptive measures (e.g. the effectiveness of electric
fans, or heat health warning systems) is beyond the scope
of this paper and has, in part, been undertaken in previous
works [33-35].

Methods

All populations, analysed/aggregated at either city, regional
or national level, were included in this review. We included
observational studies (time series, case-crossover or period
analysis design) which:

e quantified the risk of health related events with
changing ambient temperature in one location over
a given time period (not limited); or

e compared outcomes between two different discrete
extreme temperature events (>1 day, for example,

usually defined by the context specific definition of a
heatwave or cold spell) in one location.

Where studies compared the effect of temperature
extremes but by individual days (e.g. risk at the 98" per-
centile of temperatures compared with average temperature
but as part of a heatwave) these were categorised as the first
type of study — assessing the effect of ambient increased
temperature on health.

The primary outcome assessed was mortality (all cause
or by type), as estimations of this are not sensitive to
changes in organisation of care (whereas, hospital admis-
sion rates for example, may change over time, not as a
function of morbidity but related to changing expecta-
tions or access to care). Studies which only examined
deaths coded as due to heat or temperature disturbances
(e.g. heatstroke, hypo/hyper-thermia) were excluded as
these deaths are comparatively rare, the coding of such
death may vary and they may also be associated with
occupational or working conditions unrelated to ambi-
ent temperature (e.g. heat stroke may occur in military
recruits in training etc.). Studies were excluded if there
were no quantitative results available that compared
mortality (risk or rates or attributable burden) over time.

Five electronic databases were searched (Ovid MED-
LINE, Ovid EMBASE, CINAHL, Psych- info and Global
Health) using three main concepts: temperature, health
outcomes and changes in vulnerability or adaptations.
Search terms were combined using the appropriate
Boolean operator terms and limited to English and to
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humans. Further articles were identified through snow-
balling of references and hand searching of relevant
journals not indexed in the databases (e.g. Nature
Climate Change).

Data from studies was extracted on location and
duration of the study, exposures studied, health outcome
measures, methods used for estimating the effect and
methods used to assess changes in mortality at the time
points recorded. Where available, subgroup analysis was
also recorded (e.g. by age category or by cause of death).
Contextual information, for example whether protective
measures had been introduced during the study time
period, was recorded even if the description of these was
qualitative rather than quantitative.

Due to the heterogeneity of approaches to defining
and assessing changes in temperature related mortality
risk (for example, changes in relative risk (RR) or attrib-
utable mortality burdens over time) a meta-analysis was
not deemed appropriate. Where complete results from
more than one statistical model were presented, those
that were reported in full or stated to be the main model
by the authors are included. When results from more
than one model were given, those judged to have the
best control for confounders or best fit to data were
chosen. Where estimates were made over a period of
time the mid-point of this time period was used when
representing the information.

Results

Eleven studies met the inclusion criteria examining
changes in susceptibility to heat and cold over time and
six studies of heatwaves met the inclusion criteria.

Changes in vulnerability to ambient heat and cold over
time (non- heatwaves)

Types of study and methods used

Eleven studies [36—46] were identified that had quantita-
tively analysed changes in the effects of either ambient
heat, cold or both on mortality over time. The key infor-
mation about study populations, outcomes and methods
is summarised in Table 1. The majority of studies used
data from the US or Europe. The time periods studied
ranged from 18 to 150 years. Eight studies focused only
on urban populations [36—40, 43, 46], eight analysed all
age groups of which four reported trends in time also by
age category [36—39] and two papers only analysed older
age groups [43, 45]. Five studies examined the effects of
both high and low temperatures [39, 41-44], whilst all
others only examined the effect of heat. Ten papers
examined all-cause mortality, of which three also analysed
trends in heat related cardiovascular and/or respiratory
deaths [37, 38, 44] and one paper only analysed cardiovas-
cular mortality [43].
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A variety of health outcome measures were used within
the time series studies to analyse the effect of temperature
on health and how this varied with time (see Tables 1 and
2). Results were either presented as the RR of mortality per
1 °C (or 10 °F) increase in temperature [36, 38, 39, 43, 44],
the RR of mortality at one temperature compared to
another (e.g. 29 °C vs 22 °C) [36] or the 98" centile vs
average temperature [39] or as the (average) annual number
of excess heat or cold related deaths as a proportion of the
population [45, 46] or of deaths [37]. The most common
approach used to examine changes in susceptibility over
time was the comparison of RR or excess temperature
related deaths from the models on an annual or decadal
basis or between two defined time points. The extent
to which trends could be identified or were quantified
varied, with some studies also analysing year or dec-
ade as a modifying factor in the relationship or using
regression to examine the effect of time on heat/cold
related health outcomes [36, 45].

Where the time series models used a linear-threshold
approach to estimate the effect of temperature on mor-
tality, different decisions were taken regarding setting
the threshold above or below which temperature effects
were estimated. In some cases [42, 45] a change in
threshold or MMT was used to support evidence for or
against changes in susceptibility (i.e. an increase in
threshold represents a decrease in susceptibility to heat).
Even if not specifically analysed, a change in threshold is
important as it relates to the slope of the regression line.
One paper fixed the threshold [44] across the entire
analysis period but noted that it increased in later years
and two papers [42, 46, 47] allowed the threshold to vary
between decades. These approaches are commented on
further in the discussion section.

The amount of control for time varying factors within
the epidemiological models varied. For example, only
one paper specifically reported including air pollution
control in the main model [44] and this was only for the
last part of the century due to limited data availability
(see Table 1). One study [37] reported control for air
pollution as part of their sensitivity analysis and supple-
mentary materials. In those studies reporting cold effects
over time, control for influenza varied (see section on
varation in effect by study design and metrics used).

Temporal changes in susceptibility to ambient heat

The effect of increased temperature on mortality was
examined in eleven studies [36—46]. Of these, ten found
evidence of some decrease in susceptibility to heat (see
Table 1). Seven reported a measure of statistical signifi-
cance — either a test for trend or included confidence
intervals for estimates at two discrete time points. Of
these seven, five found the decrease over time or between
two time periods to be statistically significant at the 5 %
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confidence level. Given the different approaches to analysis
and quantitative formulation of the outcomes, changes in
RR over time are brought together graphically only for
those papers which used similar methods and the same
outcome metric (Figs. 2 and 3).

In those studies that examined changes in heat related
mortality over the last century, most change appears to
occur between the first (where risks appear substantively
higher) and last part of the last century [36, 39, 44]
(Fig. 2). Petkova et al. [36], appeared to show a slowing
of the decrease in risk from the 1980s onwards (as the
RR also approaches 1). Ha et al. [33] only analysed two
points in time — both after 1990, and did not find a
significant difference between RR of heat related mortal-
ity between the time points. Carson et al. [44] used
larger time frames to compare risk and therefore results
past 1980 cannot be visualised, however it appears that
the decrease in risk after 1927 was substantial. The
authors hypothesised that the large decrease seen in heat
related mortality risk could be due to heat related deaths
being caused by infectious diseases (such as diarrheal
disease or septicaemia) in the first part of the century,
but that with the epidemiological transition (the shift in
burden of disease from infectious diseases to chronic
non-communicable disease over time, due to improved
sanitation and healthcare [48]), these have become less
prominent over time. Of note, this study was the only
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one to use a weekly time series for the analysis of effect,
which may explain some of the difference in pattern seen
between this and other studies. Interestingly, Petkova et
al. [36] specifically examined the effect of short term mor-
tality displacement, and found it contributed less to heat
related mortality over the last part of the century despite
an ageing population.

In all studies where the proportions of deaths attributable
to heat were analysed, deaths were decreased at the latest
compared to earliest dates (see Table 1 and Fig. 3a and b).
Two of these papers [37, 45] only presented risks for two
dates, making it difficult to comment on trend. Bobb et al.
[37] found the overall (combined average of all 105 US
cities analysed) attributable proportion of deaths to excess
heat to be significantly (5 % confidence level) less in 2005
compared to 1981. Carson et al. [44], using the same
metric, also found the proportion of deaths attributable to
temperatures above a given threshold to be significantly
lower in the last time period compared to all others, though
the pattern over the first 3 time periods is less clear. Two
studies analysed deaths attributable to excess heat per
million of the population (Donaldson et al. [45] and Davis
et al. [46, 47]). Donaldson et al. [45] compared two specific
time periods in three locations. In North Carolina and
South Finland the decreases in vulnerability were significant
(5 % confidence level) in all models. In South East England,
the decrease was only significant in the model with control

2
15 °
o ] O ]
U o
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1 o CH-
X
2 05
2 o
©
€ 0
1880 1900 1920 1940 1960 1980 2000 2020
-0.5
-1
o
-1.5
Year
O Carson (London) OPetkova (New York) ® Astrom (stockholm) A Ha (Seoul)
Fig. 2 Studies reporting relative risk of heat related mortality over time. This figure shows the relative risk associated with a 1 °C increase in
temperature above a common threshold (Carson et al. and Ha et al) and the relative risk associated with extremes of high temperature compared
to average temperatures (Petkova et al. and Astrom et al.). Note due to the different thresholds used, this graph is only illustrative of trends and not
differences in magnitude of risk between cities
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Fig. 3 Studies reporting heat related deaths over time. This figure shows studies comparing excess heat related mortality as a proportion of all
deaths (left) and studies where excess heat related mortality was reported per million population (right)
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for age and sex. However, it was not possible to repre-
sent the results from the adjusted models graphically as
only the changes in excess deaths were reported (ie. no
baseline or final figures) Davies et al. examined heat risk
in 28 US cities [46] and showed a decreasing trend
across the three time points but included no information
on significance.

Four papers analysed results using different methods/
outcomes to any other study and therefore are not repre-
sented graphically: Christidis et al. [41], Matzarakis et al.
[40], Barnett [43] and Ekamper et al. [42].

Christidis et al. [41] investigated the hypothesis of
‘adaptation’ by comparing heat and cold related mortal-
ity estimates obtained by using regression slopes from
either earlier or later years in the study. Regression
slopes from earlier time periods in the study (1976) were
used with weather data for the whole period to calculate
heat and cold related mortality to demonstrate mortality
with ‘no adaptation’. Results obtained using the slope of
the regression line from later years (2005) with the same
weather data as a comparison were used to demonstrate
deaths accounting for ‘early adaptation’. These scenarios
were compared to the actual heat and cold related
mortality calculated with slopes and weather data from
over the entire time period. They found actual heat
related mortality increased by 0.7 deaths per million per
year (using data from the whole time period) but if no
adaptation had occurred heat related mortality would
have increased by a larger amount (1.6 deaths per mil-
lion per year over the period 1976-2005, calculated
using regression slopes from the earlier time period with
weather data from the whole period).

Matzaraki et al. [40], examined the change in excess
mortalities attributable to different temperatures in 1970
and in 2007. For two of these ranges of temperature
(29 °C to 35 °C and 35 °C to 41 °C) the excess mortality
significantly decreased between the two time points. The

last temperature range (>41 °C) was reported as non-
significant but had low numbers of deaths.

Barnett [43] used a case-crossover approach to exam-
ine the increase in risk of cardiovascular mortality with
temperature in the US. Combined estimates for all the
cities showed a significant decrease in vulnerability be-
tween the two time periods analysed (1987 and 2000).

Ekamper et al. [42] reported both shifts in the MMT
(which increased over time) and slopes of regression
analysis. They reported a decrease in vulnerability over
time but did not test significance.

Temporal changes in susceptibility to ambient cold
Only five studies [39, 41-44] analysed the risk of cold
related deaths over time, all as part of an overall analysis
of temperature related mortality (i.e. none examined
cold effects alone). Results of the two of these studies
which reported the RR of cold related mortality below a
given threshold over time are illustrated in Fig. 2 below.
Three of the five studies examining cold effects reported
decreased susceptibility over time [39, 41, 44]. Carson et
al. found that this decrease was significant (at the 5 %
level) in a London based study [44] (see Fig. 4 below). In a
second UK based study, Christidis et al. [41], found that
actual cold related mortality decreased by 85 deaths per
million population per year over the period 1976-2006
(significance not reported). Using the same methods
as described in the above section (on heat) to exam-
ine changes in cold related mortality under actual,
‘adaptation’ and ‘no adaptation’ scenarios they found
that the decrease would have been smaller (47 deaths
per million population per year) with ‘no adaptation’
(see also Table 1). Although Astrom et al. found a de-
crease in cold related mortality over time, it was
found to be non-significant [39] except in the 0-14
year age category.
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Fig. 4 Studies reporting the relative risk of cold related mortality over time. This figure illustrates the relative risks associated with a 1 °C decrease
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The study based in the US no clear evidence of any
trend in cold related mortality over time [43] and a
trend in cold related vulnerability was not clear in the
study by Ekamper et al. [42].

Of note, all five studies had found a decreasing trend
in heat related mortality.

One study exclusively examined the effects of cold
temperatures on mortality in Spain by examining shifts
in threshold for effects, but did not report quantitative
results and so has not been specifically discussed in this
review [49].

Variation of results of heat and cold mortality by study
characteristics

Variation of effect by study design and metrics used

It does not appear that the overall direction of effect over
time was influenced by study design (time series, case
crossover) or by the amount of time varying factors (e.g.
seasonality, temporal trends, holidays etc.) controlled for
by studies (see Additional file 1: Table S1a). Studies also
used different approaches in either fixing the thesholds
above which effects were modelled, or allowing these to
vary across each time period analysed. This did not appear
to alter the direction of effect demonstrated by studies
(which consistently demonstrated decreasing susceptibility
to heat effects regardless of precise design). However, the
implications of these different choices are considered in
the discussion section and in Table 3. Where sensitivity

analyses were carried out, allowing definitions of extreme
temperatures to vary by time periods analysed, small
differences in results were seen within studies [39] (see
Additional file 1: Table S1b) although the overall direction
of effect remained unchanged.

Using excess heat or cold related deaths as an outcome
includes many factors: the risk of mortality related to
changes in temperature for the given time period, base-
line mortality in the population and also the number of
days at different temperatures above or below the threshold
(where used) within that time period. In studies which used
this metric [37, 41, 45, 46], the number of heat-related
deaths decreased over time in three studies. However, this
could reflect changes in any of the factors mentioned above
(e.g. RR, baseline mortality or temperature). It could be
expected (though not always reported in these studies) that
temperature has been increasing over the last century [1]
and therefore the decreasing trend in excess deaths over
time in these studies illustrates a decrease in vulnerability
despite the increased temperature. One study [41] found
that the number of heat related deaths did not decrease
over time, but that the regression slope used to calculate
these did.

Given that few studies included control for ambient air
pollution in the main model it is difficult to know how
this would have affected trends. It should be noted that
the confounding role of air pollution is currently under
debate [50]. In the study by Carson et al. [44], controlling
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for air pollution did not affect the overall trend over time
in cold related mortality, indeed individual RRs for each
time period for cold-related mortality were higher after
controlling for air pollution. Bobb et al. [37] provided
information about models with pollution control as part
of a sensitivity analysis. In this paper, when fine particulate
matter was included in a linear model, the reduction in
heat related mortality between the two time points was no
longer significant at the 5 % level (though the reduction
remained significant in the non-linear model when air
pollution was included).

Influenza is often thought to be a confounding
factor when estimating the effects of cold (although
whether it is considered a confounder in this relation-
ship will depend on how much influenza survival and
transmission rates are affected directly by ambient air
temperature (i.e. placing it on the causal pathway
between lower temperatures and mortality) as op-
posed to seasonal and behavioural factors such as
school opening times (which occur independently of
day to day variation in temperatures)). Three of the
five papers reporting cold effects attempted to control
for influenza, for example with the inclusion of an in-
dicator for influenza within the models [39] or where
flu data was not available by excluding years of
known influenza epidemics [42, 44].

Variation of effect by subgroup analysis

Where studies examined temperature related mortal-
ity by specific subgroups such as cardiovascular or
respiratory mortality [37, 38, 43, 44], decreases in
these subgroups were seen for the effect of heat and in
three of the studies this was significant [36, 37, 43]. Of
interest, in the study by Ha et al. [38], there was a (non-
significant) decrease in risk of cardiovascular mortality
above the temperature threshold in contrast to a (non-sig-
nificant) increase in all-cause mortality. Carson et al. [44]
reported decreases in cardio-vascular and respiratory
deaths were less prominent than for all-cause mortality.
However, this study analysed a much longer time period
than others examining outcome specific mortality and
therefore factors such as the epidemiological transi-
tion may explain some of the differences. As previ-
ously mentioned, this study used weekly data which
may also affect the patterns in results seen between
different causes of death.

Where results were analysed by age group, the ma-
jority of studies found that the largest temporal re-
ductions in mortality were in the older age groups
[36, 37, 39]. Barnett [43] and Donaldson et al. [45]
only analysed the results in the elderly and over 55s
respectively and both found decreases in vulnerabil-
ity to heat.
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Variation of effect by location: between and within studies
The variety in approaches used for analysis makes it
difficult to compare the variation between studies of
effects seen across geographical areas. However, results
presented so far have been for area or national level
aggregated estimates. Four papers [37, 43, 45, 46] in-
cluded multiple cities or areas within the same paper
(i.e. same methods used). For those which analysed mul-
tiple cities within the US [37, 43, 46] some heterogeneity
in results was seen. Bobb et al. [37] found that 74/105
cities displayed a significant decrease in excess heat
related mortality between 1987 and 2005 and that cities
with cooler climates had a larger decline in heat related
mortality risk, though these cities also had the highest
heat related mortality at the start of the time period.
The cities with the largest increase in prevalence of air
conditioning over the time period also had the largest
declines in mortality, though this was not a statistically
significant association. For one city in Southern California,
susceptibility increased over time (not statistically signifi-
cant at the 5 % confidence level). Davies et al. [46] exam-
ined 28 US cities over an earlier time period. They found
heat related mortality rates had declined in 42 % of the
cities but that two cities on the West coast (Seattle and
Washington) had an increased number of excess deaths in
the later time periods. They also reported that 12 cities (in
the South) no longer displayed evidence of a threshold
temperature above which heat mortality occurred (see
Table 1 for details). Barnett [43] found the largest declines
in heat related mortality risk in the US were in the North
West, North East, Industrial West and Southern California.
The reason for the difference in regional declines seen
between these two papers cannot be conclusively deter-
mined, though some may be attributable to the difference
in levels of aggregation of data (for example, Barnett uses
regions, whereas Davies et al.. examine metropolitan areas),
the different time periods analysed between studies and
potentially the difference in methods used.

Donaldson et al. [45] analysed three different geograph-
ical areas (Southern Finland, Northern Carolina and
Southern England) and found that the decrease in heat
related mortality was smallest in South East England.

Susceptibility to extreme temperature events

Six papers were identified that examined differences in
all-cause mortality between two different heatwaves or
between heatwaves occurring over a number of years in
the same location [51-56] (see Table 2 for details). All
studies were from high or middle-high income countries.
Most of these papers use an episode analysis approach
to compare the expected and actual deaths during heat-
waves. The approaches taken to selecting an appropriate
baseline (for the expected deaths) varied between studies
(Table 2) from using a moving 15-30 day average [52] to
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using more complex models over longer time periods
(e.g. [51, 53, 55]). One study compared the absolute
number of deaths occurring in two heatwave periods
[54]. In comparing different heatwaves, some papers
(e.g. [56]) made allowances for the different characteris-
tics of various heatwaves by using model parameters
from previous years with weather data from a heatwave
in later years and vice versa. Other papers did not make
such allowances, but two reported a decrease in heat-
wave related mortality despite a general increase in the
maximum temperature encountered in later heatwaves.

Four papers reported decreased heatwave related
mortality in later years [51-54], of which two reported a
measure of statistical significance for this. Using a test
for linear trend, Kysely et al. [51] found a significant
decrease in the effects of heatwaves over the years.
Fouillet et al. [53] found the number of deaths to be
significantly fewer than those expected when derived
from a predictive model based on previous years data.

One study reported no pattern in effects of heatwaves
over time [55] and one found a non-significant increase
in expected heatwave related deaths in a later year,
despite there being an increase in air conditioning over
this time and having made allowances for differences in
heatwave characteristics [56]. This study used data from
Chicago and it was hypothesised that this could be due
to the increase in number of persons in the eldest age
category between the two events and the number of
older persons living below the poverty line (in the US,
socio-economic status has been associated with heat
related outcomes [57, 58], possibly because it relates to
access to working air conditioning which is predictive of
reduced heat related mortality [59-61]).

Where a decrease in mortality was seen, potential
explanations included the introduction of heat health
warning systems (HHWS), increased prevalence of air
conditioning, improved urban design and living stan-
dards (Table 2). No study attempted to quantify these
relationships.

No studies were located that specifically examined the
effects of cold snaps over time.

Discussion

Of the eleven papers that examined variations in the RR
of, or heat related mortality over time, all except one
[38] found some evidence of decreasing susceptibility. In
five of these, this decrease was significant at the 5 %
confidence level (either analysed as trend over time or
the difference between two discrete time points). Sus-
ceptiblity to heat appeared to stabilise over the last part
of the century in those studies which covered that time
period and in studies analysing more than one location,
the magnitude of the decrease varied according to region

Page 88 of 171

or city. Where examined, studies found a decrease in
cardio-vascular and respiratory heat related mortality.

Comparison of the magnitude of the changes in RR or
temperature related mortality between studies is difficult,
due to the variety of outcome measures and approaches
used to model the temperature-mortality relationships. For
example, where thresholds have been used, some studies
have fixed temperature thresholds across the whole time
period [44] and others have allowed them to vary within
time periods analysed [42, 46]. This is important due to the
inherent link between the temperature at which the thresh-
old is set and the slope of the exposure-response regression
line. There are further inherent limitations of approaches
used by individual studies. For example, results of studies
which use heat related mortality as an outcome (rather than
the RR of death at different temperatures) are also affected
by changes in baseline mortality and temperature over time.
This can make it difficult to ascertain how much suscepti-
bility to temperature itself is changing over time. Table 3
discusses in more detail the approaches used by individual
studies included in this review to assess changes in vulner-
ability. Whilst we have not gone so far as to recommend
one specific approach be used, we do highlight specific
aspects of each study design that have implications for the
interpretation and comparability of results obtained from
these studies (see Table 3). Residual confounding is likely in
many of the studies — although the importance of air pollu-
tion as a confounder is currently under debate [50], studies
examining year round risk also had incomplete control for
influenza and other seasonal trends or trends in mortality
over time. The results of studies examining temperature re-
lated health risks are also aggregated to at least city level,
which may lead to a masking of differences in vulnerability
of certain population subgroups. It would be important to
ascertain, for example, whether different sections of society
(e.g. age groups, rural vs. urban populations or groups of
different socio-economic status) display differences in their
changes in risk of heat related mortality over time. For
example, the urban heat island is likely to alter heat related
risk and with increasing urbanisation, understanding how
urban populations can and have adapted to heat will be
important to inform future planning of cities.

There are also limitations of the body of literature
reviewed as a whole. For example, there are no studies
specifically from low income settings, where planned
adaptive measures may be different to or less prevalent
than those used in high income settings. Changes in
temperature related mortality over time could be different
in these contexts. Secondly, the number of studies is small
and, due to differences in outcome measures and ap-
proaches used, is difficult to draw conclusions from. Also,
many studies [38, 39, 42—45] have not analysed factors
contributing to changes in risk over time. Although studies
have controlled for general long-term trends in mortality
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(which should, for example, pick up long term trends in
all-cause mortality), whether cause-specific (e.g. cardiovas-
cular) mortality has changed specifically due to adaptation
to heat or due to reduced cardio-vascular risk factors in
general cannot be determined from the models. Only two
papers made an attempt to quantitatively attribute changes
in vulnerability to specific adaptive measures [37, 46]. Each
found non-significant associations between air condition-
ing prevalence (see Additional file 1: Table S1b) changes
over time and heat related mortality within cities [37] and
overall [46]. Other studies included qualitative explanations
for the reduction in heat related mortality over time, for
example improved urban planning and building design
[36, 39, 44, 46], increased living standards and a reduc-
tion in risk factors for conditions such as cardiovascular
or respiratory morbidity [36]. These possible modifiers of
the heat-mortality relationship have been summarised in
Fig. 5. Identifying factors which have contributed to such
changes could be used to inform environmental and
health policy and future urban planning.

The possible slowing of the decline in heat related mor-
tality over the latter part of the last century is interesting.
This may, in part, be related to the epidemiological transi-
tion (for example, in the later part of the last century,
declining susceptibility due to fewer heat related deaths
from infectious causes would have occurred but heat-
related cardiovascular mortality, for example, may be
harder to prevent) but it also potentially demonstrates a
limit to ‘adaptation’. For example, there may be limits to
both physiological adaptation and adaptive changes in in-
frastructure. Further studies which examine trends over
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time and in particular in more recent years are necessary to
better understand this. Better integeration of physiological
and epidemiological research would enable improved
understanding of the importance that physiological adapta-
tion can play within populations.

Overall, studies which have examined the effects of spe-
cific heatwave events on mortality over time, have found a
reduction of heat-related mortality in later years [51-54].
These studies are not as robust in design as time-series or
case-crossover approaches, and particular effects of a
given heatwave may vary due to factors not captured in all
definitions (e.g. intensity, temperature related to previous
days etc.), that is to say that no two heatwaves are the
same and have different characteristics which can modify
the temperature-mortality relationship [62].

Despite a decreasing vulnerability to heat over time,
there is little consistent evidence for decreasing cold re-
lated mortality, especially over the latter part of the last
century. This may be unexpected, given advancements
in housing design and in medical care. However, this
should be considered in the context of the small number
of studies that examined cold, and fewer that included
information on the statistical significance. The lack of
reduction in vulnerability to cold remains important as
there is some evidence that maximum temperatures are
rising faster than minimum temperatures [63]. Conver-
sally, it might be expected by some, that as the climate has
warmed over the last century, populations would become
less vulnerable to heat and potentially more vulnerable to
cold. However, there is no evidence of increased vulner-
ability to cold, either in terms of cold related mortality or

Factors which modify (decrease) vulnerability: spontaneous factors

Spontaneous adaptive
behaviour: e.g.
avoidance of heat,

Factors which improve underlying
health of the population:
reduction in risk factors for

Improved treatment
of heat-related

appropriate clothing etc. cardiovascular disease etc. morbidity
Heat Biological causal .
exposure pathways Mortality

1

Planned interventions to
reduce heat exposure e.g.
HHWS, improved building

design, urban greening

Planned interventions to
reduce medical
vulnerability in heat
events

Factors which modify (decrease) vulnerability: planned adaptive measures

Fig. 5 Factors accounting for changes in vulnerability to heat over time
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relative risk. This does suggest that, at least at an
ecological level, there is no current evidence that
‘maladaptation’ has led to an increased vulnerability
to cold over time.

Reasons for the differences over time between heat and
cold related mortality have not been quantitatively ex-
plained in any papers. Therefore, different explanations
should be examined: if improvements in the standard of
living and reduction in risk factors for co-morbidities/im-
proved medical care have contributed to some of the tem-
poral decline in heat related mortality, it is reasonable to
expect similar reductions in cold related mortality if similar
pathways of causation exist. Some of the difference in trend
may be due to different causal pathways for heat and cold
exposure, for example, cold related mortality is known to
occur over longer lag periods and mortality displacement
(harvesting) is thought to be less important. It is also hpos-
sible that physiological acclimatisation contributes more
substantially to decreasing heat related mortality than to
cold related mortality. For example, in their paper, Kysely et
al. [51] specifically look at late summer versus early sum-
mer mortality from heat waves and find that this decreases
over time. Physiological acclimatisation and changes in this
over time have not been specifically evaluated in this review
and would be an interesting area of further research. As the
climate has warmed, the use of air conditioning and heat
warning systems/health messaging are also offered as hy-
potheses for decreased heat related mortality, where these
interventions are present. There have also been substantial
changes in building design over time. However, whilst some
of these might reduce vulnerability to heat specifically,
others, such as the increased proportion of people living in
flats might be expected to have the opposite effect [64].
Understanding differences in trends between heat and cold
related vulnerability represents an important gap in
knowledge.

Evidence from other studies and cities

Studies of differing vulnerability to temperature across
geographical regions [21, 24, 26, 65] are often cited as
potential evidence for adaptation. A review of these
studies [27] used meta-regression to establish city-level
characteristics associated with the heat-mortality rela-
tionship, demonstrating thresholds were generally higher
in communities living closer to the equator. It also found
that decreasing GDP, increasing age and population
density were associated with increased relative risks of
mortality from heat. This evidence is generally consist-
ent with the findings of this review: many of the studies
in this review hypothesised that improved standards of
living and healthcare would reduce risk factors for dis-
ease and also heat exposure, therefore reducing suscepti-
bility to heat over time. It is possible, however, that
some cities have become more densely populated which
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may have increased vulnerability to heat, for example
due to higher proportions of the population living in
flats and risks of building overheating. However, while
comparing results across cities or regions may implicitly
include adaptation to temperature over time, it cannot
give an estimate of how quickly or by how much com-
munity vulnerability can change.

This review provides suggestive evidence of decreasing
susceptibility to heat over time. Due to the information
included in the studies it cannot, however, determine
how much specific adaptive measures (such as the use of
cooling systems or HHWS) have contributed to changes
compared to general improvements in healthcare and
wellbeing in the population. The importance of air con-
ditioning has, however, been demonstrated in other
studies [57-61]. Studies, such as one undertaken in mi-
grants which showed reduced vulnerability to heat in
those who were born in Southern compared to Northern
Italy [66] lend some evidence that physiological and
behavioural adaptations to heat could be important and
last over population lifespans. Examining trends in cities
over time either within the same country or across
countries with similar life expectancies and level of
development could help further understand the role of
adaptation. For example, vulnerability to heat across the
US over time was shown to differ by city in the three
multi-city studies presented here [37, 43, 46]. Whilst
there are likely to be differences in patterns of risk
factors and mortality across the US, the overall trend in
these factors over time might be broadly expected to be
the same. Differences in heat related vulnerability, com-
pared to other specific trends over time by city could
support the hypothesis that adaptation to heat specific-
ally has occurred in these areas. Further studies would
be required to substantiate this and differentiate differ-
ent levels of underlying vulnerability across regions.

Implications for future climate change assessments and
policy

A systematic review of future temperature related
mortality projections synthesised evidence from 14 stud-
ies [67]. Of these, it was found that only half included
assumptions about adaptation or changes in vulnerability
in future estimates. Methods used to account for adapta-
tion varied from the use of analogue cities [68, 69]
analogue summers [70] and assuming adaptation to heat
for a pre-determined number of degrees Celsius [71, 72].
The merits and limitations of each of these approaches
have been discussed elsewhere [73-75]. Whilst the com-
parison of vulnerability to temperatures across regions
can be used to inform the ‘analogue cities’ approach and
differences in early versus late summers can be used to
inform how much short term acclimatisation can
achieve, the use of past declines in vulnerability has not
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been used, to our knowledge, to inform any future risk
assessments. It could be argued that past trends cannot
be used to inform future estimates of adaptation — the
climate is projected to warm faster over the next century
than in the past [1] and it is uncertain whether future
populations will be able to adapt at the same rate (for
example, some ‘markets’ for air-conditioning in the US
were already thought to be saturated [46]). It is also
unknown whether general health gains which lead to
reduced vulnerability have been achieved. Nonetheless it
is important to recognise that baseline vulnerability to
heat in particular has changed across a number of
settings. Baseline periods used in a number of studies
projecting future temperature related risk studies
published over the last decade span a period from the
1960s/70s to the 1990s/2000s [71, 76-78], though
some studies - especially those published most re-
cently, have used a more recent baseline period which
is likely to improve future estimates [28, 79-81].
Given the trends in mortality observed, estimates of
future risk could be improved to better reflect con-
temporary temperature related health risk. Where this
has not been done, projections of future heat related
mortality may have been over-estimated.

Conclusions

There is evidence that the risk of heat related mortality
has changed over the last century and more recently. Fur-
ther studies would be required to improve knowledge in
this area, for example to understand the rate of changes in
susceptibility more recently and whether changes are oc-
curring at equal rates across sectors of society. Attribution
of decreases in mortality to planned adaptive measures
may help to inform future actions or policy, as would
studies that specifically examine the effectiveness of cer-
tain adaptive actions. There are potential policy implica-
tions in the lack of decreasing vulnerability to cold.
Adaptive efforts should not focus on heat alone, despite
warming temperatures. Recent climate change risk assess-
ments (e.g. [28]) show that the risk from cold is expected
to account for most of the temperature related risk until
late in the century (this is because of the magnitude of the
RR and because there remain many more days below cold
thresholds until this time). Therefore, any adaptive strat-
egies would ideally reduce the risk from both heat and
cold in order to prepare for both short and longer term
temperature related risk, and urban and housing design
with other co-benefits to health should be emphasised
(e.g. [82]). Given the additional risk in urban areas due to
the urban heat island effect [83] understanding the risk
that future temperatures are likely to pose to health, and
how populations can adapt equitably using solutions with
co-benefits, is especially important in urbanised societies
to plan for healthy and sustainable cities.
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Lastly, when considering adaptation in impact assess-
ments of future temperature related risk, sensitivity analyses
which include differences in baseline vulnerability could
improve understanding of future risk, as would assessments
which could include, where possible, effects of certain
specific adaptive measures on future heat related risk.
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