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Abstract

Background: Ultraviolet B (UV-B) radiation plays a multifaceted role in human health, inducing DNA damage and
representing the primary source of vitamin D for most humans; however, current U.S. UV exposure models are
limited in spatial, temporal, and/or spectral resolution. Area-to-point (ATP) residual kriging is a geostatistical method
that can be used to create a spatiotemporal exposure model by downscaling from an area- to point-level spatial
resolution using fine-scale ancillary data.

Methods: A stratified ATP residual kriging approach was used to predict average July noon-time erythemal UV
(UVEry) (mW/m2) biennially from 1998 to 2012 by downscaling National Aeronautics and Space Administration
(NASA) Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) gridded remote
sensing images to a 1 km spatial resolution. Ancillary data were incorporated in random intercept linear mixed-
effects regression models. Modeling was performed separately within nine U.S. regions to satisfy stationarity and
account for locally varying associations between UVEry and predictors. Cross-validation was used to compare
ATP residual kriging models and NASA grids to UV-B Monitoring and Research Program (UVMRP) measurements
(gold standard).

Results: Predictors included in the final regional models included surface albedo, aerosol optical depth (AOD),
cloud cover, dew point, elevation, latitude, ozone, surface incoming shortwave flux, sulfur dioxide (SO2), year,
and interactions between year and surface albedo, AOD, cloud cover, dew point, elevation, latitude, and SO2.
ATP residual kriging models more accurately estimated UVEry at UVMRP monitoring stations on average compared
to NASA grids across the contiguous U.S. (average mean absolute error [MAE] for ATP, NASA: 15.8, 20.3; average
root mean square error [RMSE]: 21.3, 25.5). ATP residual kriging was associated with positive percent relative
improvements in MAE (0.6–31.5%) and RMSE (3.6–29.4%) across all regions compared to NASA grids.

Conclusions: ATP residual kriging incorporating fine-scale spatial predictors can provide more accurate, high-resolution
UVEry estimates compared to using NASA grids and can be used in epidemiologic studies examining the health effects
of ambient UV.

Keywords: Ultraviolet radiation, Erythemal ultraviolet radiation, Kriging, Geostatistics, Exposure model, Area-to-point
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Background
Ultraviolet (UV) radiation is a ubiquitous environmental
exposure classified as a Group 1 human carcinogen ac-
cording to the International Agency for Research on
Cancer (IARC) [1]. UV radiation is emitted by the sun

and comprised of UV-A (315–400 nm), UV-B (280–
315 nm), and UV-C (100–280 nm) wavelengths [2]. The
majority of UV-A reaches the Earth’s surface, while 90%
of UV-B and virtually all UV-C is absorbed by ozone
and other atmospheric constituents [2]. Epidemiologic
studies have linked high levels of UV-A and UV-B ex-
posure with an increased risk of developing skin cancer
[3]. On the other hand, the primary source of vitamin D
for most humans is UV-B [4]. UV-B penetrates the skin,
which converts 7-dehydrocholesterol to previtamin D3
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and subsequently vitamin D3 [5]. Vitamin D deficiency
(serum 25-hydroxyvitamin D (25(OH)D) levels <20 nm/
mL) affects approximately 50% of the world’s population
[6], and has been associated with increased risks of
osteoporosis, cardiovascular disease, and cancers [5, 7].
Given the multifaceted roles UV, and in particular UV-

B, may play in both adversely affecting and promoting
human health, accurate exposure assessment is critical
to further elucidating its exact impact on health out-
comes in population-based studies. The amount of UV
reaching the Earth’s surface is affected by many factors,
including ozone, aerosol optical depth (AOD), altitude
(elevation is also used to define relative height), and
cloud cover [2, 8]. Several UV exposure models have
been developed for use in studies examining the associ-
ation between UV and human health outcomes [9–11].
However, these models are limited in their spatial, tem-
poral, and/or spectral resolution, likely contributing to
substantial exposure measurement error. Scotto et al.
[10] compiled a U.S. state-level composite measure of
UV-B radiation averaged from 1974 to 1987, created
using altitude, cloud cover, and latitude. Tatalovich et al.
[11] developed a 1 km resolution UV exposure model
using thin-plate smoothing splines to interpolate average
daily total global solar radiation (also referred to as
global horizontal irradiance [GHI] [12]), incorporating
1 km elevation and the location of National Solar
Radiation Database stations. Although GHI represents
all shortwave radiation (including near-ultraviolet to
near-infrared wavelengths, 300–2500 nm [13]), and is
expected to be correlated with UV-B, this metric lacks
specificity if UV-B is the exposure of interest. Previous
epidemiologic studies have also used U.S. National
Aeronautics and Space Administration (NASA) ery-
themal UV (UVEry) estimated from the Total Ozone
Mapping Spectrometer (TOMS) satellite sensor [14–22].
TOMS UVEry remote sensing images are available at a
daily temporal resolution, estimated using UV irradiance
reaching the Earth’s surface that is deduced from mea-
sured UV irradiance entering the atmosphere and
TOMS total ozone and surface reflectivity information,
and weighted by a model of susceptibility of Caucasian
skin to sunburn (i.e., erythema) [23]. However, this data-
set is limited due to its coarse spatial resolution of ap-
proximately 1° latitude × 1.25° longitude.
Area-to-point (ATP) residual kriging (also referred to as

ATP regression kriging) is a geostatistical interpolation
method capable of downscaling spatial data, or transition-
ing from a coarse area source unit to a relatively finer
point-level spatial resolution [24, 25]. In practice, ATP re-
sidual kriging has been conducted when a regression-
based prediction model is associated with a low coefficient
of determination (R2), suggesting that the predictors alone
do not explain an adequate amount of the variance in the

outcome. Furthermore, if a spatial structure or correlation
is observed in the residuals of the regression model (visu-
alized using a variogram), this spatial information can be
incorporated into modeling to improve downscaling [26].
ATP residual kriging also satisfies the coherence property,
where the attribute value of a variable for a given source
area is equal to the average of the downscaled, predicted
values of the points discretizing the source area. There
have been several applications of this method to down-
scaling precipitation, legacy soil, population density, Mod-
erate Resolution Imaging Spectroradiometer (MODIS)
imagery, and pan-sharpening [26–30]. However, to the
best of our knowledge, ATP residual kriging has not been
applied to downscale surface UV radiation.
Our goal was to develop an improved nationwide spa-

tiotemporal exposure model of UVEry from 1998 to 2012
with a higher level of spatial and temporal resolution
compared to existing models.

Methods
Overview of exposure modeling methodology
ATP residual kriging was used to create a spatiotemporal
exposure model of average July noon-time UVEry (mW/
m2) biennially from 1998 to 2012. The study area was
the contiguous U.S. The source unit or area variable be-
ing downscaled was NASA TOMS and OMI UVEry grid-
ded remote sensing images, referred to as grids from
here onward (Table 1). The target scale was 1 km, which
determined how many points discretized each grid. Each
discretizing point also represents a prediction point, or a
location at which UVEry was predicted. A k-nearest
neighborhood around each prediction point was defined
(n = 16 was used for this study), representing the grids
neighboring a prediction point that would be used in
later kriging steps. Ancillary data included variables
known to be associated with UV gathered from previous
literature: surface albedo, aerosol optical depth (AOD),
cloud cover, dew point, elevation, ozone, surface incom-
ing shortwave (SIS) flux, sulfur dioxide (SO2), and lati-
tude (Table 1) [2, 8, 31–35]. All data were preprocessed
for analysis in a geographic information system (GIS)
using ArcGIS (Esri, Redlands, CA). UVEry and ancillary
data were both joined with the prediction points and ag-
gregated to the grid level. Segmentation using IDRISI
Selva was performed to create nine regions in the con-
tiguous U.S. within which to conduct stratified kriging
(Clark Labs, Worcester, MA) [30, 36]. Separately for
each region, a grid-level random intercept linear mixed-
effects regression model was built (random intercept for
grid) using data from 1998 to 2012 (biennially). Grid-
level residuals from each model were calculated and a
grid-level variogram of the residuals was estimated sep-
arately for each year. ATP residual kriging was per-
formed using simple kriging in SpaceStat to downscale
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the grid-level residuals each year (BioMedware, Ann
Arbor, MI). Kriging weights for the residual value of
each grid neighboring a given prediction point were cal-
culated using the area-to-area (ATA) covariance and
ATP covariance. ATA and ATP covariances require a
point support variogram, which was estimated by apply-
ing variogram deconvolution to the grid-level variogram
[37]. The downscaled residual value at each prediction
point was calculated as the sum of the products of the
kriging weights and residual values for each neighboring
grid. The downscaled UVEry value at each prediction
point was calculated by adding the downscaled residual
value to the grid-level regression equation, which is as-
sumed to be representative of the relationship between
the predictors and UVEry at the point level [26]. This
process was performed for each prediction point each
year, separately for each region.

Data sources and preprocessing: UVEry and ancillary data
UVEry gridded remote sensing images were acquired
from the NASA TOMS and OMI satellite sensors
(Table 1). Monthly average July noon-time UVEry (mW/
m2) images from the TOMS sensor onboard the Earth
Probe satellite from 1998 to 2004 [9] and from the OMI
sensor onboard the Aura satellite from 2006 to 2012
[38] were used for modeling. Our study modeled UVEry

in July as previous epidemiologic studies have examined
July UVEry exposure [14–16, 39], and during July, UVEry

is strongest, aerosols and other noise factors are less in-
fluential, and satellite-based measures (e.g., TOMS) are
in better agreement with ground-based measures [15].
Images from July 1980 and 1990 from the TOMS sensor
onboard the Nimbus-7 satellite, in addition to images

from 2000 to 2010, were used for segmentation de-
scribed later, selected due to our anticipated creation of
an exposure model beginning in 1980. UVEry incorpo-
rates information regarding both the levels of the differ-
ent UV wavelengths and their relative effectiveness to
induce erythema on Caucasian skin using a model pro-
posed by McKinlay and Diffey, adopted as a standard by
the Commission Internationale de l’Eclairage (CIE) [40,
41]. Both UV-A and UV-B radiation are included in the
calculation, although shorter UV-B wavelengths are
weighted more. The algorithm used to calculate UVEry

from UV irradiance entering the atmosphere, ozone, and
reflectivity data from the TOMS and OMI sensors is
identical (personal communication, Nickolay Krotkov,
NASA, 7/16/15). The original spatial resolution of
TOMS and OMI images is 50 × 50 km and 13 × 24 km,
respectively [42]. A gridding algorithm is applied to
combine TOMS and OMI measurements into a fixed
global grid [43], where each grid is approximately
111 km north to south and 75–101 km east to west [16].
TOMS and OMI UVEry products are available at a daily
temporal resolution. The NASA Web Coverage Service
(WCS) was used to download time-averaged (average
July) UVEry products each year (personal communica-
tion, Wenli Yang, NASA, 6/15/15). The OMI OMUVBd
erythemal dose rate product was downloaded for com-
parability with the TOMS TOMSEPL3 and TOMSN7L3
erythemal products, which do not assume a clear sky
and are calculated at local noon (personal communica-
tion, James E. Johnson, NASA, 6/17/15). All rasters were
reprojected to the contiguous U.S. Albers equal area
conic coordinate system (NAD83 datum; USGS version)
in ArcGIS.

Table 1 Data sources used in ATP residual kriging to downscale NASA UVEry in the U.S. (1998–2012)

Variable Unit Spatial resolution Temporal resolution Source

Outcome: UVEry grids mW/m2 Approx. 100 × 100 km Daily NASA TOMS/OMIa

Predictors

Surface albedo 1 70 × 50 km Monthly MERRA

Aerosol optical depth (AOD) 1 70 × 50 km Daily MERRA

Cloud cover 1 70 × 50 km Daily MERRA

Dew point °F 4 × 4 km Monthly PRISM

Elevation m 10 × 10 m Updatedb USGS 3DEP

Latitude km 1 × 1 km n/a Manually created

Ozone Dobson 70 × 50 km Monthly MERRA

Surface incoming shortwave flux (SIS) W/m2 70 × 50 km Monthly MERRA

Sulfur dioxide (SO2) kg/m2 70 × 50 km Monthly MERRA

Abbreviations: 3DEP 3D Elevation Program, MERRA Modern Era Retrospective Analysis for Research and Applications, NASA National Aeronautics and Space
Administration, OMI Ozone Monitoring Instrument, PRISM Parameter elevation Regression on Independent Slopes Model, TOMS Total Ozone Mapping
Spectrometer, USGS U.S. Geological Survey
aFor the TOMS sensor, the following data products were downloaded corresponding to the Nimbus-7 and Earth Probe satellites: TOMSN7L3:Erythemal_timeAver-
aged and TOMSEPL3:Erythemal_timeAveraged. The following data product was downloaded from the OMI sensor (Aura
satellite): OMUVBd:ErythemalDoseRate_timeAveraged
bUSGS 3DEP data are continuously updated as new elevation sources are acquired. Data from August 2015 were acquired for this study
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Ancillary data
Ancillary data, identified from prior research as being
associated with UV and/or used in previous modeling,
were included in UVEry modeling if the data were time-
varying (if applicable) and of a finer spatial resolution
compared to the NASA UVEry grids that were down-
scaled [2, 31–35] (Table 1). The average July value was
downloaded for each dataset (if applicable) to match the
time period of the NASA TOMS and OMI images in
this study. Surface albedo, AOD, cloud cover, ozone, SIS,
and SO2 were acquired from the NASA Modern-Era
Retrospective Analysis for Research and Applications
(MERRA), an atmospheric reanalysis of the satellite era
using the Goddard Earth Observing System Model,
Version 5 (GOES-5) and its Atmospheric Data Assimila-
tion System (ADAS), version 5.2.0 [44]. HDF-EOS files
were converted to rasters and reprojected. Surface al-
bedo refers to the reflectivity of the Earth’s surface, or
the ratio of reflected irradiance to incident irradiance
specifically for horizontal surfaces [2]. AOD is a measure
of the aerosols (e.g., haze) distributed within a column of
air from the Earth’s surface to the top of the atmosphere
[45]. Cloud cover is defined in MERRA as the average
proportion of the pixel associated with clouds. Ozone is
a gas found in trace amounts in the stratosphere, as well
as in the troposphere and at ground level [46]. SIS is the
shortwave radiation flux reaching a horizontal unit of
the Earth’s surface [47]. SO2 is a gas produced from vol-
canoes and anthropogenic activities (e.g., burning fossil
fuels, refineries, metal smelting, and power plants) that
can be found near the Earth’s surface and in the free
troposphere and stratosphere [48].
Elevation data (seamless 1/3 arc-second [10 m] data

for the contiguous U.S.) were acquired from the U.S.
Geological Survey (USGS) 3D Elevation Program (3DEP)
[49]. All 3DEP grids were mosaicked together and repro-
jected. Dew point (°C) was acquired from the Parameter
elevation Regression on Independent Slopes Model
(PRISM) Climate Group [50]. ASCII files were converted
to rasters, reprojected, converted to °F, and rescaled to 1
unit equaling 1 °F. A latitude raster file was created
using a 1 km fishnet grid, where the latitude value was
equivalent to the Y coordinate of the projected coordin-
ate system.

Segmentation, grid-level aggregation, and prediction
points
Segmentation was performed to create regions of rela-
tively homogeneous UVEry across the contiguous U.S.
within which to perform stratified kriging. A stratified
kriging approach was implemented as previous studies
have modeled within different strata/areas to satisfy the
kriging assumption of stationarity [36], and to emulate
the adaptive ATP residual kriging approach conducted

in Wang et al. [30]. Specifically, a global regression
model may not adequately address local variation in
UVEry, where the association between the predictors and
UVEry may vary within a study area. The UVEry gridded
raster from 1980 (any year would have been sufficient)
was converted to a polygon layer with the polygon
boundaries defined by the boundaries of each grid. The
USGS state boundaries layer [51] was overlaid with the
grid polygon layer to determine specific grids intersect-
ing the U.S. Grids from the preprocessed UVEry rasters
from July 1980, 1990, 2000, and 2010 within the U.S.
boundary were input into the segmentation procedure.
Segmentation, which uses a watershed delineation
method of merging/growing pixels across input bands
exhibiting minimal variance [52], was performed on the
U.S. grids in IDRISI Selva using the following parame-
ters: window of 3, tolerance of 1 to 10 using intervals of
1, weight mean factor of 0.5, and weight variance factor
of 0.5. Based on a visual comparison of resultant seg-
ments (polygons) from each year with a priori know-
ledge of latitude-driven trends in UVEry, nine regions
were created for modeling (Fig. 1). Each grid was associ-
ated with one region. Separately within each region each
year, all ancillary data were aggregated to the grid level
to calculate a mean grid value (e.g., mean AOD within
each grid in 1998). A 1 km fishnet grid across the con-
tiguous U.S. was created to serve as the prediction
points, which were spatially joined (intersected) with the
polygon grid layer to determine which prediction point
corresponded to which grid. In practice, at least eight
points should discretize each area [53]. All preprocessed,
non-aggregated ancillary data were spatially joined
(intersected) to the prediction points for later calculation
of downscaled UVEry.

Model development and covariate selection
Linear mixed-effects regression was performed separ-
ately for each region using SAS (SAS Institute, Cary,
NC). Random intercepts for each grid accounted for re-
peated measures by biennial year from 1998 to 2012.
We a priori determined that the following established
predictors of UVEry would be included in all regional
models: AOD, elevation, latitude, ozone, and year. Man-
ual backward elimination (variable removal from model
if p > 0.05) and examination of goodness-of-fit (R2) were
used to select final models for each region. Candidate
models were compared based on their ability to
maximize R2, which was calculated using a published
method for random intercept linear mixed-effect regres-
sion models as the proportional reduction in the esti-
mated total residual variance comparing the null model
without covariates with the model of interest [54, 55].
Variables whose removal resulted in ≥10% change in a
predictor(s) effect estimate were kept in the model.

VoPham et al. Environmental Health  (2016) 15:111 Page 4 of 14



Interactions between year and each predictor included
in the final models were examined by including an
interaction term in the model. Statistically significant in-
teractions (p < 0.05), as well as interactions where exam-
ination of the year-specific effect estimates of a predictor
showed relatively high variability, were included in the
final models. Assumptions for linear mixed-effects re-
gression models (linearity, homoscedasticity, and nor-
mality of residuals) were checked using plots, and non-
independence is accounted for through mixed-effects
models considering both between- and within-cluster
variances.

Stratified ATP residual kriging
Simple kriging
At each prediction point, a downscaled residual value
was calculated using the following equation [24, 25, 37]:

z unð Þ ¼
XK

i¼1

wi unð Þz við Þ

where z(un) is the downscaled residual value at predic-
tion point un for the nth discretizing point, K is the
number of grids neighboring the prediction point un,
and wi(un) is the simple kriging weight assigned to the
residual value z(vi) of grid (vi) for the ith grid neighbor-
ing the prediction point un. The neighborhood was de-
fined by the 16-nearest neighbors. Sensitivity analyses
using the 8-nearest neighbors showed similar results

(results not shown). The kriging weights were calcu-
lated by solving for the following simple kriging sys-
tem [24, 26]:

XK

i¼1

wi unð ÞC vj; vi
� � ¼ C un; vj

� �
j ¼ 1;…;K ;

where C vj; ; vi
� �

is the ATA covariance and C un; ; vj
� �

is
the ATP covariance for the ith and jth grids. As an ex-
ample to illustrate ATA and ATP covariance, an ATA
covariance matrix A is comprised of elements Aij with
row i and column j, where i and j correspond to the
grids within each neighborhood. Element A2,1 is the
average of the covariance values between any two points
discretizing grids 1 and 2 within the neighborhood for a
given prediction point. An ATP covariance vector b is
comprised of elements bn with n rows, where n corre-
sponds to the grids neighboring the prediction point.
Element b1 is the average of the covariance values be-
tween the prediction point and any point discretizing
grid 1 within the neighborhood of the prediction point.
ATA and ATP covariances are estimated using a point
support variogram of the residuals, which is calculated
from the grid-level (i.e., area-level) variogram of the
residuals discussed in the next section. A variogram
depicts the spatial structure or correlation of a
phenomenon of interest, showing semivariance (mean of
the squared differences of all pairs of points, e.g., grid
centroids, a particular distance apart) vs. distance [56].

Fig. 1 Regions used for ATP residual kriging and UVMRP monitoring stations. Top left: Nine regions created using segmentation within which ATP
residual kriging was conducted. Bottom left: Region 1, northwest; 2, Pacific mid-west; 3, southwest; 4, north central; 5, mid-central; 6, south central;
7, northeast; 8, mid-Atlantic; 9, southeast. Right: U.S. Department of Agriculture (USDA) UV-B Monitoring and Research Program (UVMRP) monitor-
ing stations (n = 31) used as the gold standard in model validation
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Covariance is calculated by subtracting the semivariance
from the sill [57]. Kriging was performed in SpaceStat.

Variogram deconvolution
Variogram deconvolution was used to estimate the point
support variogram from the grid-level variogram through
an iterative process in SpaceStat based on Goovaerts [37].
Variogram deconvolution determines the optimal point
support variogram whose regularized (i.e., averaged) vario-
gram most closely approximates the grid-level variogram.
The grid-level variogram is first designated as the optimal
point support variogram. A regularized variogram is cal-
culated from the optimal point support variogram using
the following equation [37, 53]:

γv hð Þ ¼ γ hð Þ−γ v; vð Þ

where γv(h) is the regularized variogram value at dis-
tance lag h, γ(h) is the point support variogram at dis-
tance lag h used in practice to approximate the ATA
variogram value γ v; vhð Þ (at very large distances where
h > distance across the grid, the ATA variogram approxi-
mately equals the point variogram [58]), and γ v; vð Þ is
the within-area (i.e., within-grid) variogram value. The
within-area variance is calculated using the discretizing
points and the optimal point support variogram. As all
grids are the same size and shape in this study, the
within-area variance is constant. A difference statistic is
calculated as the average relative difference between the
two curves of the regularized and grid-level variograms
over the distance lags. A rescaled point support vario-
gram is then calculated by multiplying the optimal point
support variogram by a weight that incorporates infor-
mation from the grid-level and regularized variogram.
Rescaling serves to minimize the difference statistic. This
process is performed iteratively until the difference stat-
istic value is sufficiently small, the maximum number of
iterations has been reached, or a small decrease in the
difference statistic is recorded a given number of times.

Prediction of downscaled UVEry and model validation
The downscaled UVEry value at each prediction point
was calculated by adding the downscaled residual value
to the final region-specific random intercept linear
mixed-effects regression model. Model validation com-
pared UVEry predicted using ATP residual kriging and
values from the NASA TOMS and OMI grids to UVEry

observed at U.S. Department of Agriculture (USDA)
UV-B Monitoring and Research Program (UVMRP)
monitoring stations across the U.S. (the gold standard)
(Fig. 1). The UVMRP is a national network of stations
designed to monitor and examine UV-B at the Earth’s
surface and to study the interaction between UV-B radi-
ation, agriculture, forests, ecosystems, and climate [59].

There were 31 monitoring stations in the contiguous
U.S. used in this study (Fig. 1), each operational during
different years (Additional file 1: Table S1). UVEry is cal-
culated using UV-B irradiance acquired from broadband
UVB-1 pyranometers weighted by the McKinlay and
Diffey model [40, 59]. Mean absolute errors (MAEs) and
root mean square errors (RMSEs) were calculated using
UVEry predicted from ATP residual kriging or NASA
grids and UVEry observed at the UVMRP monitoring
stations. The percent relative improvement in MAE and
RMSE was calculated by comparing ATP residual kriging
to NASA grids.

Supplemental analyses: coherence property and grid-level
UVEry temporal variability
ATP residual kriging satisfies the coherence (i.e., pycno-
phylactic or mass-preserving) property, where the aver-
age of the predicted UVEry values of the prediction
points discretizing a given NASA grid should equal the
UVEry value of the NASA grid. Point-level predicted
UVEry values within each NASA grid were averaged and
compared to the NASA grid UVEry value using Spear-
man rank correlation coefficients. To examine temporal
variation in inter-annual UVEry, we compared average
July NASA TOMS and OMI grid-level UVEry every year
from 1998 to 2012 using repeated-measures analysis of
variance (ANOVA). Yearly TOMS and OMI UVEry im-
ages were converted to point layers and intersected with
the USGS state boundaries layer to determine inclusion
into the analysis.

Results
Final random intercept linear mixed-effects regression
models for each region are shown in Additional file 1:
Tables S2–S10. Between n = 38 and 155 grids were in-
cluded in the models for each of the 8 years in the study
time period from 1998 to 2012. Overall, directions of
effect were consistent with previous research such as an
inverse association between latitude and UVEry. Several
grid-level regression models were associated with low to
moderate R2 values (e.g., Pacific mid-west R2 0.53)
(Additional file 1: Table S11). The point support vario-
grams calculated from variogram deconvolution were
characterized by higher sills compared to the associated
grid-level variograms (the semivariance value after which
points are no longer spatially correlated), which is ex-
pected as any areal datum (e.g., a NASA grid) is defined
as the average of all point support values within the
datum (data not shown).
Figure 2 shows downscaled average July UVEry predicted

from ATP residual kriging separately performed within
nine regions across the U.S. biennially from 1998 to 2012.
Predicted values ranged between <0 to 390.7 mW/m2

(Fig. 3). Temporal variability in UVEry can be observed in
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the different geographic distributions of predicted UVEry

values across the U.S. year-to-year. As expected, there is a
pattern of increasing UVEry values in each year with de-
creasing latitude moving south towards the Equator. A
closer examination of 2006 (Fig. 4) allows for visualization
of the spatial variability in predicted UVEry values within
the original NASA grids, produced as a result of down-
scaling from the grid- to finer point-level spatial reso-
lution. Table 2 shows results of the validation comparing
UVEry predicted from ATP residual kriging or from NASA

grids vs. UVEry observed at UVMRP monitoring stations
(Additional file 1: Tables S12–S14 provide detailed valid-
ation results by UVMRP station). On average from 1998
to 2012, using ATP residual kriging was associated with a
22.0% relative improvement in MAE and a 16.8% relative
improvement in RMSE compared to using NASA grids to
predict UVEry observed at the UVMRP monitoring sta-
tions. Although the NASA grids provided more accurate
UVEry estimates in 2010, MAE and RMSE values were
relatively similar when using ATP residual kriging or

Fig. 2 Downscaled average July UVEry from ATP residual kriging models in the contiguous U.S. (1998–2012)
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NASA grids to predict UVEry. There were also re-
gional differences in model predictive performance,
where ATP residual kriging provided positive percent
relative improvements with respect to MAE and
RMSE in each region (Table 3). The largest percent
relative improvement in using ATP residual kriging
vs. NASA grids to predict UVEry at the UVMRP mon-
itoring stations was observed in the southeast, while
the lowest (positive) percent relative improvement
was observed in the mid-Atlantic.

The coherence property was satisfied in each year,
demonstrated by the very strong correlations between
the original NASA UVEry grid values and the average of
the predicted UVEry values at points discretizing each
grid (rs ranging between 0.82 and 0.93) (Additional
file 1: Table S15). At the regional level, the coherence
property was satisfied in the mid-Atlantic, mid-central,
north central, Pacific mid-west, south central, and south-
west (Additional file 1: Table S16). Analysis of the tem-
poral variation in inter-annual UVEry showed a statistically
significant difference in NASA grid-level average July
UVEry values across the U.S. each year from 1998 to 2012
(p < 0.0001) (n = 782 grids intersecting the contiguous
U.S.). Yearly median NASA grid-level average July UVEry

values ranged between 214.5 and 237.1 mW/m2

(Additional file 1: Table S17).

Discussion
ATP residual kriging was used to create a validated
spatially and temporally varying exposure model of aver-
age July UVEry across the contiguous U.S biennially from
1998 to 2012. A stratified kriging approach was
conducted to build separate random intercept linear
mixed-effects regression models within nine U.S. re-
gions. Predictors in the final regional models included
AOD, cloud cover, elevation, latitude, ozone, year, as well
as interactions such as between year and AOD. The

Fig. 3 Boxplots of downscaled average July UVEry from ATP residual
kriging in the contiguous U.S. (1998–2012)

Fig. 4 Downscaled average July UVEry from ATP residual kriging models in the contiguous U.S. in 2006

VoPham et al. Environmental Health  (2016) 15:111 Page 8 of 14



Table 2 Validation of UVEry from ATPRK vs. NASA grids using UVMRP stations by year (1998–2012)

% relative improvement

Year Prediction model MAE RMSE MAE RMSE

1998 NASA 17.4 20.1 – –

ATPRK 13.7 16.6 21.6 17.5

2000 NASA 26.5 30.9 – –

ATPRK 13.8 17.9 48.1 42.0

2002 NASA 26.9 31.2 – –

ATPRK 19.2 28.3 28.5 9.3

2004 NASA 23.5 31.0 – –

ATPRK 13.9 19.2 40.6 38.1

2006 NASA 15.4 20.4 – –

ATPRK 13.8 19.3 10.4 5.2

2008 NASA 17.2 20.7 – –

ATPRK 12.7 16.2 26.2 21.6

2010 NASA 13.9 18.8 – –

ATPRK 17.2 23.7 −23.8 −26.4

2012 NASA 21.7 31.3 – –

ATPRK 22.4 28.7 −3.4 8.1

Average 1998–2012 NASA 20.3 25.5 – –

ATPRK 15.8 21.3 22.0 16.8

Abbreviations: ATPRK area-to-point residual kriging, MAE mean absolute error, NASA National Aeronautics and Space Administration, RMSE root mean square error

Table 3 Validation of UVEry from ATPRK vs. NASA grids using UVMRP stations by region (1998–2012)

% relative improvement

Region Prediction model MAE RMSE MAE RMSE

Northwest NASA 10.8 10.8 – –

ATPRK 9.9 9.9 8.7 8.7

Pacific mid-west NASA 15.6 16.8 – –

ATPRK 11.6 12.2 25.5 27.4

Southwest NASA 23.6 26.4 – –

ATPRK 18.0 22.4 23.8 15.3

North central NASA 13.4 15.1 – –

ATPRK 9.8 11.5 27.4 23.7

Mid-central NASA 21.3 23.7 – –

ATPRK 17.2 20.0 19.3 15.8

South central NASA 19.6 22.9 – –

ATPRK 16.7 19.4 14.6 15.5

Northeast NASA 17.4 19.2 – –

ATPRK 13.9 16.5 19.7 14.1

Mid-Atlantic NASA 14.9 16.4 – –

ATPRK 14.8 15.8 0.6 3.6

Southeast NASA 36.9 43.3 – –

ATPRK 25.3 30.6 31.5 29.4

Abbreviations: ATPRK area-to-point residual kriging, MAE mean absolute error, NASA National Aeronautics and Space Administration, RMSE root mean square error
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validation, through comparing MAE and RMSE, showed
that on average, UVEry estimated using ATP residual kri-
ging more accurately predicted UVEry observed at USDA
UVMRP monitoring stations compared to using NASA
grids. Usage of ATP residual kriging also provided posi-
tive percent relative improvements with respect to MAE
and RMSE compared to using NASA grids within each
of the nine U.S. regions. To the best of our knowledge,
this is the first application of ATP residual kriging to UV
exposure modeling.
ATP residual kriging is considered a relatively new

method that has been thus far used to downscale imagery
and environmental variables [30]. Several important con-
siderations in modeling UVEry were given careful attention
in this study. In particular, it was essential to create a
time-varying exposure model to address climate change
and related issues that have and will continue to have an
impact on the amount of UV reaching the Earth’s surface.
Although authors of an existing UV model noted no sta-
tistically significant difference in GHI measured between
three 10-year intervals from 1961 to 1990, surface UV ra-
diation has been observed to exhibit high variability [11],
especially given changes in ozone layer depletion over
time [33]. The most important determinant of surface
UV-B is ozone, a greenhouse gas that absorbs UV and is
subject to high year-to-year variability due to variation in
atmospheric circulation [60]. There were observed de-
creases in ozone between the 1960s and 1990s, although
there is evidence to suggest that the global ozone layer is
beginning to recover since 2000 [60]. Furthermore, cli-
mate change due to increasing concentrations of green-
house gases and variability in UV-absorbing tropospheric
gases, aerosols, and clouds may also have indirect impacts
on surface UV. Increasing greenhouse gases will increase
large-scale transport and overturning of the upper atmos-
phere, which is predicted to lead to increases in ozone
outside of the tropics. Importantly, in our study, we ob-
served a statistically significant difference in average July
UVEry each year from 1998 to 2012 using NASA grids,
further demonstrating the need to account for temporal
variability in modeling UVEry.
The current model improves on the spatial and spec-

tral resolution of previous models. Our model’s target
scale was 1 km, providing greater spatial resolution in
UV estimates compared to the NASA TOMS and OMI
grids as well as the state level [10]. In addition, rather
than modeling UV exposure across all wavelengths, we
specifically modeled UVEry, internationally recognized as
the preferred method of reporting UV-B exposure, espe-
cially as different studies have used different wavelength
ranges to define UV-B [61]. We were also able to incorp-
orate other important predictors of UVEry in model cre-
ation beyond the variables used in previous exposure
models (e.g., AOD and ozone), which improved our

model’s predictive performance by explaining more of
the variance in UVEry.
It is important to note that although UVEry has been

used in previous epidemiologic studies addressing
vitamin D-related research questions [14–17, 19, 20, 22],
vitamin D-weighted UV, calculated using the MacLaugh-
lin et al. [62] CIE action spectrum for previtamin D3

synthesis in human skin, is a method that specifically
considers the effectiveness of UV wavelengths in produ-
cing previtamin D3 (optimum wavelengths 295–
300 nm). The relevance of UVEry to previtamin D3 syn-
thesis is also tied to the wavelengths beyond 295–
300 nm included in the UVEry calculation, and the extent
to which these wavelengths are affected by factors such
as solar zenith angle (SZA) and altitude. UV radiation is
attenuated at lower SZAs due to the longer distance
photons have to travel through the ozone layer, increas-
ing the probability of absorption [63]. At higher alti-
tudes, UV radiation is higher as there is a shorter path
through which UV travels and less scattering molecules
above elevated surfaces [2, 64].
Our UVEry exposure model can be applied to exposure

assessment in epidemiologic studies. UVEry is a biologic-
ally relevant exposure that has been used in previous ep-
idemiologic studies examining human health outcomes
[14–20], addressing research questions related to DNA
damage [21] and the effects of vitamin D [14–17, 19, 20,
22]. Updated geocoded residential locations can be
overlaid with this predicted UVEry surface to calculate
time-varying exposures, and can be used as a proxy for
vitamin D status along with other information. In par-
ticular, our UVEry spatiotemporal exposure model repre-
sents an improvement over using surrogate measures
such as latitude and season. Lifetime vitamin D status is
ideally captured through a combination of baseline blood
25-hydroxyvitamin D concentrations and questionnaires
collecting lifetime dietary, supplemental, and sunlight
exposure [65]. Serum 25-hydroxyvitamin D is used for
short-term vitamin D status, while long-term dietary and
supplemental intake and sunlight exposure is most feas-
ible for lifetime vitamin D assessment. Latitude and sea-
son have been used as proxies for vitamin D exposure as
the majority of vitamin D is produced from the skin’s syn-
thesis after solar UV-B exposure. However, maps depicting
our validated UVEry exposure model in this study show
variability of predicted UVEry within a given latitude. The
presented ATP residual kriging UVEry exposure model can
be used to reduce measurement error in geospatial proxies
for vitamin D exposure, providing a valuable means to
measure ambient UVEry levels relevant to UV-B exposure.
Additional individual-level information should also be
ascertained, including work location, time spent indoors,
skin pigmentation, sunscreen use, amount of skin ex-
posed, and clothing type [66, 67].
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The final random intercept linear mixed-effects regres-
sion models selected for each region differed according
to which variables were included and often times the dir-
ection and magnitude of the associations between the
predictors and UVEry. Apart from AOD, elevation, lati-
tude, ozone, and year, which were a priori included in
each regional model, variables selected for inclusion into
final models included surface albedo, cloud cover, dew
point, SIS, and SO2. Several interactions with year were
included in the models, including with surface albedo,
AOD, cloud cover, dew point, elevation, SO2, and
latitude. Different geographic regions across the U.S. are
characterized by different climates, and thus different
physical, meteorological, and climatological variables
may exert varying impacts on surface UVEry at different
locations and at different points in time [68]. For ex-
ample, total ozone is not uniformly distributed across
the Earth, but rather varies with latitude, season, and
natural air motions [69]. AOD as well as UV-absorbing
aerosols including SO2 exhibit spatial and temporal
variations across the globe, especially as air pollution is
associated with large urban centers [70–72]. Thus,
allowing for varying regional models that include differ-
ent predictors and interactions with time directly ad-
dresses the adaptive ATP residual kriging methods
employed in a previous study and accounts for the po-
tential local-level relationships between the predictors
and UVEry [30].
Overall, the directions of effect associated with the

predictors included in the final models were expected
(e.g., inverse associations between UV and AOD,
latitude, and ozone). However, apart from the models
where a priori-determined variables were included (e.g.,
ozone and elevation) irrespective of statistical signifi-
cance and where the main effects were accompanied by
an interaction term with year, there were several models
characterized by unexpected associations. For example,
regional models for the mid-central, northeast, south
central, and southeast showed statistically significant in-
verse associations between surface albedo and UVEry.
Surfaces can return radiation up towards the atmos-
phere, which is partially scattered back to the ground
[2]. It is possible that differences in surface albedo as
well as surface UV in urban vs. rural areas within these
four regions may be driving this inverse association. For
example, urban areas are generally characterized by
higher surface albedos compared to rural areas [73]. If
there are positive associations between surface albedo
and UV in both rural and urban areas, but UV values
observed in urban areas are relatively lower compared to
rural areas (due to differences in reflectivity of incident
irradiance on non-horizontal surfaces, e.g., buildings
[74]), this would result in a negative association. The ex-
tent to which rural- and urban-specific surface albedos

should be considered in modeling should be explored
[75]. In the southeast, there was a statistically significant
inverse relationship between elevation and UVEry.
Higher elevations are generally associated with less scat-
tering aerosols, and thus higher UV [2]. However, the
southeast is a coastal region that is largely characterized
by low elevations at or below sea level [76], which as a
result of dominating the landscape, may have driven the
inverse association. It is possible that aggregation of the
ancillary data to the grid level resulted in unexpected as-
sociations related to the modifiable areal unit problem
(MAUP), or different observed patterns and relation-
ships based on how data are aggregated [56]. However,
as the validation demonstrated, despite these unexpected
associations, ATP residual kriging was still able to
achieve more accurate predictions of UVEry at UVMRP
monitoring locations compared to using NASA grids,
and coherence was achieved across all years.
Strengths of this study include the high spatial and

temporal resolution of the UVEry exposure model com-
pared to several previous models. In particular, our
model’s 1 km spatial resolution is finer than the Scotto
et al. [10] state-based model. The results of the valid-
ation showed that UVEry exhibits spatial variability
within the NASA grids, which are generally smaller in
size than most states. We created a time-varying expos-
ure model with predictions for each year (biennially)
from 1998 to 2012, which is an improvement over previ-
ous models that aggregated UV exposure values over
many years [10, 11]. This method can be readily adapted
to historical exposure assessment, important to consider
in studying chronic health outcomes associated with la-
tency periods. We were able to include many important
predictors of UVEry that have not been considered in
previous UV exposure modeling efforts such as AOD
and ozone. We also incorporated the paradigm of con-
sidering local-level variation in ATP residual kriging pio-
neered in a recent study [30]. We implemented a
stratified kriging approach, which did not rely on a sin-
gle global regression model to describe the relationship
between the predictors and UVEry, but rather addressed
potential regional differences in their relationships.
Limitations include the reliance of ATP residual

kriging on the spatial resolution of the ancillary data. Al-
though all ancillary data were of a finer spatial resolution
compared to the NASA grids being downscaled, pixel
sizes ranged between 0.1 and 3500 km2. The spatial
resolution of our ATP residual kriging model is 1 km
(downscaled from approximately 100 × 100 km NASA
grids), which improves on several coarser resolution
models, but significant variation in UVEry within a
1 km pixel may still exist. Use of discretization geog-
raphy finer than the 1 km level should be explored. Al-
though we did not adjust for the UV predictors of snow
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cover and SZA, we did consider surface albedo (snow is
associated with high surface albedo), and accounted for
latitude while holding constant time of day (noon-time)
and season (summer) in our modeling, the three deter-
minants of SZA [2]. There were relatively few UVMRP
monitoring stations available for the validation. As these
stations were designed to be located in more rural areas
to address the agricultural aims of the UVMRP, and the
purpose of this model is for use in epidemiologic expos-
ure assessment, it would be informative to understand
the extent to which the ATP residual kriging model pre-
dicts UV in more highly populated non-rural areas [77].
NASA achieved better model predictive performance in
2010 with respect to MAE and RMSE, and in 2012 with
respect to MAE. It should be noted that 2010 has been
described as an aberrant year associated with unusually
high values of total ozone [60]. However, despite the lack
of improvement in using ATP residual kriging to predict
UVEry in these years, the absolute differences in MAE
and RMSE between the two models are not substantially
large. As the NASA grids are a major input into the
ATP residual kriging process, specifically used as the
outcome variable in creating the regression models, it
would be expected that if ATP residual kriging does not
improve prediction, it would provide results similar to
when using the original source units. Although the
majority of regions and all years achieved coherence,
predicted point-level UVEry values were not highly corre-
lated with original NASA grid UVEry values in the south-
east, northeast, and northwest. The stratified modeling
approach is also subject to edge effects as we imposed
artificial boundaries within which to conduct modeling
for the purposes of achieving stationarity and addressing
local-level variation in predictor-UVEry relationships
[56]. Points near the edges of each region may have
neighboring grids outside of the region that were not
considered when calculating the kriging weights. Future
modeling efforts could include grids and prediction
points outside of but adjacent to a given region during
interpolation, and subsequently clip the prediction sur-
face to the original region [78]. Finally, this method is
time- and resource-intensive, especially due to applying
variogram deconvolution and simple kriging separately
for each year to create a temporally varying exposure
model. Researchers should consider the computational
burden of conducting ATP residual kriging, minimizing
the study area size, and/or determining if fewer time
points can be included.

Conclusions
ATP residual kriging was used to create a validated 1 km
resolution spatiotemporal exposure model of average
July UVEry across the contiguous U.S. biennially from
1998 to 2012. On average, ATP residual kriging was able

to more accurately predict UVEry observed at USDA
UVMRP monitoring stations compared to using coarser
NASA grids. To the best of our knowledge, this study
represents the first application of this method to
exposure modeling of UV, adding to a growing body of
literature modeling environmental variables using ATP
residual kriging. This spatially and temporally varying
UVEry exposure model can be used in individual-level
exposure assessment to conduct epidemiologic studies
clarifying the role ambient UV-B may play in human
health outcomes.

Additional file

Additional file 1: Supplemental tables for UVMRP monitoring stations,
regional linear mixed-effects regression models, model goodness-of-fit,
validation results by UVMRP station, coherence property analysis, and
yearly NASA grid-level July UVEry descriptive statistics. (DOCX 81 kb)

Abbreviations
3DEP: 3D elevation program; ADAS: Atmospheric data assimilation system;
ANOVA: Analysis of variance; AOD: Aerosol optical depth; ATA: Area-to-area;
ATP: Area-to-point; ATPRK: Area-to-point residual kriging; CIE: Commission
Internationale de l’Eclairage; DNA: Deoxyribonucleic acid; GHI: Global
horizontal irradiance; GIS: Geographic information system; GOES-5: Goddard
earth observing system model, version 5; IARC: International agency for
research on cancer; IQR: Interquartile range; MAE: Mean absolute error;
MAUP: Modifiable areal unit problem; MERRA: Modern era retrospective
analysis for research and applications; MODIS: Moderate resolution imaging
spectroradiometer; NASA: National Aeronautics and Space Administration;
OMI: Ozone monitoring instrument; PRISM: Parameter elevation regression
on independent slopes model; RMSE: Root mean square error; SD: Standard
deviation; SIS: Surface incoming shortwave flux; SO2: Sulfur dioxide;
SZA: Solar zenith angle; TOMS: Total ozone mapping spectrometer;
USDA: United States Department of Agriculture; USGS: United States
Geological Survey; UV: Ultraviolet radiation; UV-A: Ultraviolet A radiation;
UV-B: Ultraviolet B radiation; UV-C: Ultraviolet C radiation; UVEry: Erythemal
ultraviolet radiation; UVMRP: UV-B monitoring and research program;
WCS: Web coverage service

Acknowledgements
The authors would like to acknowledge NASA, USGS, USDA UVMRP, and the
PRISM Climate Group for providing the publically available data used in this
study; Dr. Nickolay Krotkov, Dr. Wenli Yang, and James E. Johnson from
NASA, and Dr. Antti Arola from the Finnish Meteorological Institute for their
expertise and guidance in using NASA TOMS and OMI data products; and
the Harvard Spatial and Contextual Exposure and Epidemiology Laboratory
(SCEEL) led by Drs. Francine Laden and Jaime E. Hart for their contributions
to this study.

Funding
This work was supported by the National Institutes of Health (NIH) National
Cancer Institute (NCI) Training Program in Cancer Epidemiology (T32
CA009001) and Susan G. Komen for the Cure® (IIR13264020).

Availability of data and material
All data and materials are publically available. The code from the current
study is available from the corresponding author on reasonable request.

Authors’ contributions
TV, FL, and JEH were responsible for the inception of this study. TV was
responsible for data acquisition, model creation, execution of the validation
and analyses, interpretation of the results, and production of the manuscript.
JEH and ZS contributed to model creation and validation. JEH, KAB, ZS, RMT,
and FL contributed to the interpretation of results and provided revisions to
the final manuscript. All authors read and approved the final manuscript.

VoPham et al. Environmental Health  (2016) 15:111 Page 12 of 14

dx.doi.org/10.1186/s12940-016-0197-x


Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Epidemiology, Harvard T.H. Chan School of Public Health,
Boston, MA, USA. 2Channing Division of Network Medicine, Department of
Medicine, Brigham and Women’s Hospital and Harvard Medical School,
Boston, MA, USA. 3Exposure, Epidemiology, and Risk Program, Department of
Environmental Health, Harvard T.H. Chan School of Public Health, Boston,
MA, USA. 4Slone Epidemiology Center at Boston University, Boston, MA, USA.
5U.S. Department of Agriculture UV-B Monitoring and Research Program,
Colorado State University, Fort Collins, CO, USA.

Received: 21 October 2016 Accepted: 19 November 2016

References
1. El Ghissassi F, Baan R, Straif K, Grosse Y, Secretan B, Bouvard V, Benbrahim-

Tallaa L, Guha N, Freeman C, Galichet L. A review of human carcinogens—part
D: radiation. Lancet Oncol. 2009;10(8):751–2.

2. Kerr J, Fioletov V. Surface ultraviolet radiation. Atmos Ocean. 2008;46(1):159–84.
3. National Toxicology Program. Report on Carcinogens, Thirteenth Edition.

http://ntp.niehs.nih.gov. Accessed 1 June 2016.
4. Grant WB, Holick MF. Benefits and requirements of vitamin D for optimal

health: a review. Altern Med Rev. 2005;10(2):94–111.
5. Holick MF. Vitamin D, deficiency. N Engl J Med. 2007;357(3):266–81.
6. Nair R, Maseeh A. Vitamin D: The “sunshine” vitamin. J Pharmacol

Pharmacother. 2012;3(2):118.
7. Grant WB. The role of geographical ecological studies in identifying

diseases linked to UVB exposure and/or vitamin D. Dermatoendocrinol.
2016;8(1):e1137400.

8. Fioletov V, McArthur L, Mathews T, Marrett L. Estimated ultraviolet exposure
levels for a sufficient vitamin D status in North America. J Photochem
Photobiol B Biol. 2010;100(2):57–66.

9. NASA. TOMS (Total Ozone Mapping Spectrometer) Missions. https://directory.
eoportal.org/web/eoportal/satellite-missions/t/toms. Accessed 1 June 2015.

10. Scotto J, Fears TR, Fraumeni Jr J. Solar Radiation. In: Schottenfeld D,
Fraumeni Jr J, editors. Cancer Epidemiology and Prevention. 2nd ed. New
York: Oxford University Press; 1996. p. 355–73.

11. Tatalovich Z, Wilson JP, Cockburn M. A comparison of thiessen polygon,
kriging, and spline models of potential UV exposure. Cartogr Geogr Inf Sci.
2006;33(3):217–31.

12. Wilcox S. National Solar Radiation Database 1991–2010 Update: User’s
Manual. ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/documentation-2010/
NSRDB_UserManual_r20120906.pdf. Accessed 1 June 2015.

13. Roberts Y, Pilewskie P, Kindel B, Feldman D, Collins W. Quantitative
comparison of the variability in observed and simulated shortwave
reflectance. Atmos Chem Phys. 2013;13(6):3133–47.

14. Freedman DM, Rajaraman P, Fuhrman B, Hoffbeck R, Alexander BH. Sunlight,
hormone replacement status and colorectal cancer risk in postmenopausal
women. Int J Cancer. 2010;126(8):1997–2001.

15. Lin S-W, Wheeler DC, Park Y, Spriggs M, Hollenbeck AR, Freedman DM,
Abnet CC. Prospective study of ultraviolet radiation exposure and mortality
risk in the United States. Am J Epidemiol. 2013;178:521–33.

16. Lin SW, Wheeler DC, Park Y, Cahoon EK, Hollenbeck AR, Freedman DM,
Abnet CC. Prospective study of ultraviolet radiation exposure and risk of
cancer in the United States. Int J Cancer. 2012;131(6):E1015–23.

17. Boscoe FP, Schymura MJ. Solar ultraviolet-B exposure and cancer incidence
and mortality in the United States, 1993–2002. BMC Cancer. 2006;6(1):1.

18. Solomon CC, White E, Kristal AR, Vaughan T. Melanoma and lifetime UV
radiation. Cancer Causes Control. 2004;15(9):893–902.

19. Hughes AM, Lucas RM, Ponsonby AL, Chapman C, Coulthard A, Dear K,
Dwyer T, Kilpatrick TJ, McMichael AJ, Pender MP. The role of latitude,
ultraviolet radiation exposure and vitamin D in childhood asthma and

hayfever: an Australian multicenter study. Pediatr Allergy Immunol.
2011;22(3):327–33.

20. Sloka S, Grant M, Newhook LA. The geospatial relation between UV
solar radiation and type 1 diabetes in Newfoundland. Acta Diabetol.
2010;47(1):73–8.

21. Chang N-B, Feng R, Gao Z, Gao W. Skin cancer incidence is highly
associated with ultraviolet-B radiation history. Int J Hyg Environ Health.
2010;213(5):359–68.

22. Chen W, Clements M, Rahman B, Zhang S, Qiao Y, Armstrong BK.
Relationship between cancer mortality/incidence and ambient ultraviolet B
irradiance in China. Cancer Causes Control. 2010;21(10):1701–9.

23. NASA. Erythemal Exposure. http://disc.sci.gsfc.nasa.gov/data-holdings/PIP/
erythemal_uv_irradiance.shtml. Accessed 1 June 2015.

24. Kyriakidis PC. A Geostatistical Framework for Area‐to‐Point Spatial
Interpolation. Geogr Anal. 2004;36(3):259–89.

25. Kyriakidis PC, Yoo EH. Geostatistical prediction and simulation of point
values from areal data. Geogr Anal. 2005;37(2):124–51.

26. Park N-W. Spatial downscaling of TRMM precipitation using geostatistics
and fine scale environmental variables. Adv Meteorol. 2013;2013(11):1–9.

27. Liu X, Kyriakidis PC, Goodchild MF. Population‐density estimation
using regression and area‐to‐point residual kriging. Int J Geogr Inf Sci.
2008;22(4):431–47.

28. Kerry R, Goovaerts P, Rawlins BG, Marchant BP. Disaggregation of legacy soil
data using area to point kriging for mapping soil organic carbon at the
regional scale. Geoderma. 2012;170:347–58.

29. Wang Q, Shi W, Atkinson PM, Zhao Y. Downscaling MODIS images with
area-to-point regression kriging. Remote Sens Environ. 2015;166:191–204.

30. Wang Q, Shi W, Atkinson PM. Area-to-point regression kriging for pan-
sharpening. ISPRS J Photogramm Remote Sens. 2016;114:151–65.

31. Estupiñán JG, Raman S, Crescenti GH, Streicher JJ, Barnard WF. Effects of clouds
and haze on UV‐B radiation. J Geophys Res Atmos. 1996;101(D11):16807–16.

32. Allaart M, van Weele M, Fortuin P, Kelder H. An empirical model to predict
the UV‐index based on solar zenith angles and total ozone. Meteorol Appl.
2004;11(1):59–65.

33. McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M. Changes in biologically-
active ultraviolet radiation reaching the Earth’s surface. Photochem
Photobiol Sci. 2007;6(3):218–31.

34. Kerr J, Seckmeyer G, Bais A, Bernhard G, Blumthaler M, Diaz S, Krotkov N,
Lubin D, McKenzie R, Sabziparvar A: Surface ultraviolet radiation: Past and
future. In: Ajavon A-LN, Albritton DL, Mégie G, Watson RT, editors. Scientific
assessment of ozone depletion. 2003. p. 5.1–5.46.

35. Walawender J, Ustrnul Z. Spatial interpolation of biologically effective UV
radiation over Poland. In: 10th European Conference on Applications of
Meteorology (ECAM). 2010. p. 703.

36. Shi W, Fisher P, Goodchild MF. Spatial data quality. New York: CRC Press;
2003.

37. Goovaerts P. Kriging and semivariogram deconvolution in the presence of
irregular geographical units. Math Geosci. 2008;40(1):101–28.

38. NASA. Aura atmospheric chemistry. https://aura.gsfc.nasa.gov/about.html.
Accessed 1 June 2015.

39. Grant WB. An estimate of premature cancer mortality in the US due to
inadequate doses of solar ultraviolet‐B radiation. Cancer. 2002;94(6):1867–75.

40. McKinlay A, Diffey B. A reference action spectrum for ultraviolet induced
erythema in human skin. CIE J. 1987;6(1):17–22.

41. NASA. Erythemal Exposure Data Product. http://ozoneaq.gsfc.nasa.gov/
media/docs/erynotes.pdf. Accessed 1 June 2015.

42. McClure BK. OMI Tropospheric Sulfur Dioxide Retreival: Validation and Analysis.
http://drum.lib.umd.edu/handle/1903/7376?show=full. Accessed 1 Sept 2016.

43. McPeters R, Bhartia P, Krueger A, Herman J, Wellemeyer C, Seftor C, Jaross G,
Torres O, Moy L, Labow G. Earth probe total ozone mapping spectrometer
(TOMS) data product user’s guide. ftp://toms.gsfc.nasa.gov/pub/eptoms/
EARTHPROBE_USERGUIDE.PDF. Accessed 1 June 2015.

44. NASA. MERRA File Specification Documents. http://disc.sci.gsfc.nasa.gov/
mdisc/documentation. Accessed 1 June 2015.

45. NASA. Aerosol Optical Depth. http://aeronet.gsfc.nasa.gov/new_web/
Documents/Aerosol_Optical_Depth.pdf. Accessed 1 Sept 2016.

46. NASA. What is Ozone? http://ozonewatch.gsfc.nasa.gov/facts/SH.html.
Accessed 1 Sept 2016.

47. CM SAF. Surface Radiation. http://www.cmsaf.eu/EN/Overview/Products/
Surface%20Radiation%20Products/Surface_Radiation_Products_node.html.
Accessed 1 Sept 2016.

VoPham et al. Environmental Health  (2016) 15:111 Page 13 of 14

http://ntp.niehs.nih.gov
https://directory.eoportal.org/web/eoportal/satellite-missions/t/toms
https://directory.eoportal.org/web/eoportal/satellite-missions/t/toms
ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/documentation-2010/NSRDB_UserManual_r20120906.pdf
ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/documentation-2010/NSRDB_UserManual_r20120906.pdf
http://disc.sci.gsfc.nasa.gov/data-holdings/PIP/erythemal_uv_irradiance.shtml
http://disc.sci.gsfc.nasa.gov/data-holdings/PIP/erythemal_uv_irradiance.shtml
https://aura.gsfc.nasa.gov/about.html
http://ozoneaq.gsfc.nasa.gov/media/docs/erynotes.pdf
http://ozoneaq.gsfc.nasa.gov/media/docs/erynotes.pdf
http://drum.lib.umd.edu/handle/1903/7376?show=full
ftp://toms.gsfc.nasa.gov/pub/eptoms/EARTHPROBE_USERGUIDE.PDF
ftp://toms.gsfc.nasa.gov/pub/eptoms/EARTHPROBE_USERGUIDE.PDF
http://disc.sci.gsfc.nasa.gov/mdisc/documentation
http://disc.sci.gsfc.nasa.gov/mdisc/documentation
http://aeronet.gsfc.nasa.gov/new_web/Documents/Aerosol_Optical_Depth.pdf
http://aeronet.gsfc.nasa.gov/new_web/Documents/Aerosol_Optical_Depth.pdf
http://ozonewatch.gsfc.nasa.gov/facts/SH.html
http://www.cmsaf.eu/EN/Overview/Products/Surface%20Radiation%20Products/Surface_Radiation_Products_node.html
http://www.cmsaf.eu/EN/Overview/Products/Surface%20Radiation%20Products/Surface_Radiation_Products_node.html


48. NASA. Multi-Decadal Sulfur Dioxide Climatology from Satellite Instruments.
https://earthdata.nasa.gov/community/community-data-system-programs/
measures-projects/multi-decadal-sulfur-dioxide-climatology-from-satellite-
instruments. Accessed 1 Sept 2016.

49. USGS. 3D Elevation Program (3DEP). http://nationalmap.gov/3DEP/.
Accessed 1 June 2015.

50. PRISM Climate Group. PRISM Climate Data. http://prism.nacse.org/.
Accessed 1 June 2015.

51. USGS. USGS Small-scale Dataset - State Boundaries of the United
States 200506 Shapefile. https://catalog.data.gov/dataset/usgs-small-
scale-dataset-state-boundaries-of-the-united-states-200506-shapefile.
Accessed 1 June 2015.

52. VoPham T, Wilson JP, Ruddell D, Rashed T, Brooks MM, Yuan J-M, Talbott
EO, Chang C-CH, Weissfeld JL. Linking pesticides and human health: A
geographic information system (GIS) and Landsat remote sensing method
to estimate agricultural pesticide exposure. Appl Geogr. 2015;62:171–81.

53. Zhang J, Atkinson P, Goodchild MF. Scale in spatial information and analysis.
Boca Raton: CRC Press; 2014.

54. Rabe-Hesketh S, Skrondal A. Multilevel and longitudinal modeling using
Stata. College Station: STATA press; 2008.

55. Snijders TA, Bosker RJ. Multilevel Analysis: An Introduction to Basic and
Advanced Multilevel Modeling. 2nd ed. London: SAGE Publications; 2012.

56. O’Sullivan D, Unwin D. Geographic information analysis. Hoboken: Wiley; 2014.
57. Acevedo MF. Data Analysis and Statistics for Geography, Environmental

Science, and Engineering: Boca Raton: CRC Press; 2012.
58. Stewart BA. Advances in Soil Science, vol. 3. New York: Springer; 1985.
59. USDA UVMRP. UV-B Monitoring and Research Program. http://uvb.nrel.

colostate.edu/UVB/index.jsf. Accessed 1 June 2015.
60. McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M, Madronich S. Ozone

depletion and climate change: impacts on UV radiation. Photochem
Photobiol Sci. 2011;10(2):182–98.

61. McKenzie R, Smale D, Kotkamp M. Relationship between UVB and
erythemally weighted radiation. Photochem Photobiol Sci. 2004;3(3):252–6.

62. MacLaughlin JA, Anderson R, Holick MF. Spectral character of sunlight
modulates photosynthesis of previtamin D3 and its photoisomers in human
skin. Science. 1982;216(4549):1001–3.

63. Engelsen O. The relationship between ultraviolet radiation exposure and
vitamin D status. Nutrients. 2010;2(5):482–95.

64. Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for
health. Dermatoendocrinol. 2013;5(1):51–108.

65. Millen AE, Bodnar LM. Vitamin D assessment in population-based studies: a
review of the issues. Am J Clin Nutr. 2008;87(4):1102S–5S.

66. McCarty CA. Sunlight exposure assessment: can we accurately assess
vitamin D exposure from sunlight questionnaires? Am J Clin Nutr. 2008;
87(4):1097S–101S.

67. Ross AC, Taylor CL, Yaktine AL, Del Valle HB. Institute of Medicine (US)
Committee to Review Dietary Reference Intakes for Vitamin D and Calcium.
https://www.ncbi.nlm.nih.gov/books/NBK56070/. Accessed 1 June 2016.

68. NOAA. U.S. Climate Regions. https://www.ncdc.noaa.gov/monitoring-
references/maps/us-climate-regions.php. Accessed 1 Sept 2016.

69. NOAA. Twenty Questions and Answers About the Ozone Layer: 2010
Update. http://www.esrl.noaa.gov/csd/assessments/ozone/2010/
twentyquestions/. Accessed 1 Sept 2016.

70. Mao K, Ma Y, Xia L, Chen WY, Shen X, He T, Xu T. Global aerosol change in the
last decade: An analysis based on MODIS data. Atmos Environ. 2014;94:680–6.

71. Herman J, Bhartia P, Torres O, Hsu C, Seftor C, Celarier E. Global distribution
of UV‐absorbing aerosols from Nimbus 7/TOMS data. J Geophys Res Atmos.
1997;102(D14):16911–22.

72. Mage D, Ozolins G, Peterson P, Webster A, Orthofer R, Vandeweerd V,
Gwynne M. Urban air pollution in megacities of the world. Atmos Environ.
1996;30(5):681–6.

73. Taha H. Urban climates and heat islands: albedo, evapotranspiration, and
anthropogenic heat. Energ Buildings. 1997;25(2):99–103.

74. Turner J, Parisi A, Turnbull D. Reflected solar radiation from horizontal,
vertical and inclined surfaces: Ultraviolet and visible spectral and broadband
behaviour due to solar zenith angle, orientation and surface type.
J Photochem Photobiol B Biol. 2008;92(1):29–37.

75. Grant WB, Garland CF. The association of solar ultraviolet B (UVB) with
reducing risk of cancer: multifactorial ecologic analysis of geographic
variation in age-adjusted cancer mortality rates. Anticancer Res. 2006;
26(4A):2687–99.

76. NASA. Elevation of Southern Florida. http://earthobservatory.nasa.gov/IOTD/
view.php?id=4818. Accessed 1 Sept 2016.

77. U.S. Census Bureau. Population Trends in Incorporated Places: 2000 to
2013. http://www.census.gov/content/dam/Census/library/publications/
2015/demo/p25-1142.pdf. Accessed 1 Sept 2016

78. Zhu X. GIS for Environmental Applications: A Practical Approach. New York:
Routledge; 2016.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

VoPham et al. Environmental Health  (2016) 15:111 Page 14 of 14

https://earthdata.nasa.gov/community/community-data-system-programs/measures-projects/multi-decadal-sulfur-dioxide-climatology-from-satellite-instruments
https://earthdata.nasa.gov/community/community-data-system-programs/measures-projects/multi-decadal-sulfur-dioxide-climatology-from-satellite-instruments
https://earthdata.nasa.gov/community/community-data-system-programs/measures-projects/multi-decadal-sulfur-dioxide-climatology-from-satellite-instruments
http://nationalmap.gov/3DEP/
http://prism.nacse.org/
https://catalog.data.gov/dataset/usgs-small-scale-dataset-state-boundaries-of-the-united-states-200506-shapefile
https://catalog.data.gov/dataset/usgs-small-scale-dataset-state-boundaries-of-the-united-states-200506-shapefile
http://uvb.nrel.colostate.edu/UVB/index.jsf
http://uvb.nrel.colostate.edu/UVB/index.jsf
https://www.ncbi.nlm.nih.gov/books/NBK56070/
https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
http://www.esrl.noaa.gov/csd/assessments/ozone/2010/twentyquestions/
http://www.esrl.noaa.gov/csd/assessments/ozone/2010/twentyquestions/
http://earthobservatory.nasa.gov/IOTD/view.php?id=4818
http://earthobservatory.nasa.gov/IOTD/view.php?id=4818
http://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1142.pdf
http://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1142.pdf

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Overview of exposure modeling methodology
	Data sources and preprocessing: UVEry and ancillary data
	Ancillary data
	Segmentation, grid-level aggregation, and prediction points
	Model development and covariate selection
	Stratified ATP residual kriging
	Simple kriging

	Variogram deconvolution
	Prediction of downscaled UVEry and model validation
	Supplemental analyses: coherence property and grid-level UVEry temporal variability

	Results
	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and material
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

