
BioMed Central

Environmental Health: A Global 
Access Science Source

ss
Open AcceResearch
Immune function biomarkers in children exposed to lead and 
organochlorine compounds: a cross-sectional study
Wilfried Karmaus*1, Kevin R Brooks†1, Thomas Nebe†2, Jutta Witten†3, 
Nadia Obi-Osius†4 and Hermann Kruse†5

Address: 1Department of Epidemiology, Michigan State University, B601 West Fee Hall, East Lansing, MI 48824, USA, 2Central Laboratory, 
University Hospital Mannheim, Germany, 3Ministry of Social Welfare Hesse, Department of Health, Wiesbaden, Germany, 4Epidemiological 
Working Group of the Ministry of Environment and Health and the Institute for Mathematics and Data Management in Medicine, University 
Hospital Hamburg-Eppendorf, Germany and 5Institute of Toxicology, Christian-Albrecht University, Kiel, Germany

Email: Wilfried Karmaus* - karmaus@msu.edu; Kevin R Brooks - brooks52@msu.edu; Thomas Nebe - thomas.nebe@ikc.ma.uni-heidelberg.de; 
Jutta Witten - J.Witten@hsm.hessen.de; Nadia Obi-Osius - osius@uke.uni-hamburg.de; Hermann Kruse - kruse@toxi.uni.kiel.de

* Corresponding author    †Equal contributors

Abstract
Background: Different organochlorines and lead (Pb) have been shown to have
immunomodulating properties. Children are at greater risk for exposure to these environmental
toxicants, but very little data exist on simultaneous exposures to these substances.

Methods: We investigated whether the organochlorine compounds (OC)
dichlorodiphenylethylene (DDE), hexachlorobenzene (HCB), hexachlorocyclohexane (γ-HCH),
the sum of polychlorinated biphenyls (ΣPCBs) and Pb were associated with immune markers such
as immunoglobulin (Ig) levels, white blood cell (WBC), counts of lymphocytes; eosinophils and their
eosinophilic granula as well as IgE count on basophils. The investigation was part of a cross-sectional
environmental study in Hesse, Germany. In 1995, exposure to OC and Pb were determined,
questionnaire data collected and immune markers quantified in 331 children. For the analyses,
exposure (OC and Pb) concentrations were grouped in quartiles (γ-HCH into tertiles). Using linear
regression, controlling for age, gender, passive smoking, serum lipids, and infections in the previous
12 months, we assessed the association between exposures and immune markers. Adjusted
geometric means are provided for the different exposure levels.

Results: Geometric means were: DDE 0.32 µg/L, ΣPCBs 0.50 µg/L, HCB 0.22 µg/L, γ-HCH 0.02
µg/L and Pb 26.8 µg/L. The ΣPCBs was significantly associated with increased IgM levels, whereas
HCB was inversely related to IgM. There was a higher number of NK cells (CD56+) with increased
γ-HCH concentrations. At higher lead concentrations we saw increased IgE levels. DDE showed
the most associations with significant increases in WBC count, in IgE count on basophils, IgE, IgG,
and IgA levels. DDE was also found to significantly decrease eosinophilic granula content.

Conclusion: Low-level exposures to OC and lead (Pb) in children may have immunomodulating
effects. The increased IgE levels, IgE count on basophils, and the reduction of eosinophilic granula
at higher DDE concentrations showed a most consistent pattern, which could be of clinical
importance in the etiology of allergic diseases.
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Background
Environmental toxicants such as organochlorine com-
pounds (OC) and lead (Pb) may alter immune responses.
There is a paucity of studies reporting associations
between organochlorine [1-4] and lead [5-8] exposures
and immune function biomarkers in children.

We conducted a large-scale environmental study of sec-
ond-grade school children in three regions south of the
Federal State of Hesse, Germany in 1995. Two of the
regions are situated in the Rhine Valley with low moun-
tains on both sides. One of these areas with several munic-
ipalities is located within a 10 km radius around an
industrial waste incinerator and other industries, such as
chemical plants. One plant was associated with dichlo-
rodiphenylethylene (DDE), hexachlorobenzene (HCB),
and hexachlorocyclohexane (γ-HCH) pollution [9]. The
other region, also industrial, is 15 km north (downwind)
of the incinerator. Both Rhine valley regions are also
intensively used for the production of vegetables. The
third study region is located in low mountains (about 0.4
km above sea level) that separate it from the industrial
area. Blood concentrations of PCBs were shown to be
higher in children living close to the toxic waste incinera-
tor [10]. Results on PCBs and thyroid hormones, chro-
mium and lymphocytes, DDE and breastfeeding and
asthma have been published elsewhere [4,11-15].

Considering infection and atopic disorder in children, we
have previously shown an association between DDE
blood levels; asthma and one immunoglobulin (Ig),
namely IgE [4]. However, the potential effects of organo-
chlorines on other Igs and cellular defense were not
reported. Hence, the focus of this paper is to investigate
the impact of organochlorine compounds and Pb on
humoral immune markers and cell-mediated immune
responses. Specifically, for immune responses we focus on
leukocytes, lymphocytes, B-cell, T-cells and their subsets.
Assuming a concurrent effect of OC on immune markers,
we conducted cross-sectional analyses of the data from the
first of three surveys conducted in 1994/1995, 1996, and
1997. Only the first investigation included an extensive
clinical assessment of immune markers.

Methods
Study population
After obtaining approval from the Data Protection Agency
of Hamburg, Germany, the Ministry of Cultural Affairs of
Hesse, Germany, and the local school committees, we
invited the parents of 1,091 second-grade school children
in 18 townships to participate in our study. We obtained
informed consent from all participating parents, accord-
ing to the requirements of the Ethical Committee of the
Board of Physicians, the Helsinki Declaration, and the
Data Protection Agency of the State of Hamburg. We

asked each parent to allow their child to participate in
phlebotomy only when passive smoking in the private
household did not exceeded 10 cigarettes per day during
the previous 12 months.

Questionnaires
We used four self-administered parental questionnaires in
the survey: one regarding the living condition and nutri-
tion of the family, one each for the mother and the father,
and one regarding information on the child. Duration of
breastfeeding was recorded in weeks of total and in weeks
of exclusive nursing. Environmental tobacco smoke (ETS)
was graded as smoking in the child's home in the previous
12 months (no cigarettes, 1–10 cigarettes, 11–20 ciga-
rettes, 21–30 cigarettes, more than 30 cigarettes per day).
We recorded age, gender, and the number of infections,
defined as cold, coughing, and sore throat with or without
fever in the last 12 months (none, less than 5, 5–10, more
than 10).

Laboratory analyses of blood samples
One parent accompanied each child in the medical exam-
ination. For blood sampling, we used the 'Vacutainer Sys-
tem' (Becton, Dickinson & Company, San José,
California,). Approximately 25 mL were drawn and sepa-
rated into different aliquots. Immunoglobulin (Ig) E in
serum was quantified at the Medical, Alimentary and Vet-
erinary Institute for Research Middle Hesse, Division of
Human Medicine, Dillenburg, Germany, using a flores-
cence-immunoassay (CAP, Pharmacia, Uppsala, Sweden).
To determine levels of specific IgE against inhalant aller-
gens (aeroallergens), we incubated serum with immuno-
caps containing a mixture of aeroallergens and
determined the reactivity using a fluorescence measure-
ment (UNICAP Pharmacia, Uppsala, Sweden). Results
from this method were provided in semi-quantitative for-
mat. We also measured IgA, G, and M by laser immunon-
ephelometry (Dade Behring, Liederbach, Germany). The
results for IgA, G and M were provided in mg/dL and for
IgE in kU/L serum. Triglycerides and cholesterol were
measured on a clinical chemistry analyzer according to
IFCC methods (Hitachi 717, Boehringer Mannheim).

Leukocyte subsets
We collected 8 mL of blood in tubes containing EDTA and
mixed them to prevent clotting. This aliquot was trans-
ported to the Central Laboratory of the University Clinic
of Mannheim and analyzed on the same day. We used 200
µL of blood for the automated differential (laser-based
hematology analyzer CD3500, Abbott Diagnostics, Santa
Clara, California), and 100 µL for each of the nine three-
color test tubes analyzed by flow cytometry (FACScan,
Becton, Dickinson, & Company, San José, California,
equipped with a 488 nm air-cooled argon ion laser). Eosi-
nophils were determined according to their specific
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depolarisation characteristics and their eosinophilic gran-
ula content by the intensity of light scatter by flow cytom-
etry. Basophils were identified by their high IgE density on
the cell surface using immunofluorescence with a Phyco-
erythrin (PE) labeled anti-IgE antibody.

We used monoclonal antibodies directed against specific
cell surface antigens to differentiate cell populations by
multicolour immunofluorescence. Three antibodies were
simultaneously applied with the fluorochrome combina-
tion FITC/PE/PE-Cy5. CD4/CD8/CD3 was used to detect
absolute number of lymphocytes, T-helper cells and cyto-
toxic T-cells; CD19/CD5/IGE was used to differentiate B-
cell subsets and basophils; CD3/CD16 and CD56/CD57
were used for natural killer cells. CD45RO defines mem-
ory T-helper cells. The CD nomenclature assigns the anti-
bodies to clusters of differentiation, according to the
International Workshop on Human Leukocyte Differenti-
ation Antigens [16].

Organochlorine compounds (OC) in blood
OC including eight PCB congeners (101, 118, 138, 153,
170, 180, 183, 187), DDE, HCB, and three HCH conge-
ners (α-, β- and γ) were determined (in µg/L) at the Insti-
tute of Toxicology, University of Kiel, Germany. OC were
analyzed in 5 mL samples of whole blood by high resolu-
tion gas chromatography (HRGC, Model 3400 by Varian
Inc., Palo Alto, California) with a 63Ni-electron-capture-
detector. The detection limit (DL) (two times the signal/
low-noise ratio) was 0.02 µg/L for β- and γ-HCH, DDE
and each PCB congener, and 0.01 µg/L for HCB and α-
HCH. For extraction and clean-up procedures, we used
florisil and n-hexane for elution (9 g florisil were deacti-
vated with 3% H2O and placed in a chromatography col-
umn 22 mm in diameter and 48 mm in length). The
capillary column amounted to 30 mm in length and 0.25
mm in diameter; nitrogen was used as a carrier gas. We
determined the PCB congeners by retention times on the
chromatograms and identified them by comparison with
known standards. Additionally, we tested reliability with
gas chromatography-mass spectroscopy (GC/MS). The
laboratory successfully participated in nationwide quality
assessments for the determination of these OC.

Lead in blood
Lead (Pb) analysis was done at the Institute of Toxicology,
University of Kiel, Germany. The determination in whole
blood samples was by flow injection atomic absorption
spectroscopy (Perkin Elmer) after adding 0.1% Triton-X-
1-solution and 15 mol nitric acid to from a solution. This
solution was then centrifuged at 3000 rpm. The DL for Pb
was 9 µg/L (48 nmol/l; atomic weight: 207.19).

Data analyses
Since the data for leukocytes (WBC) and their subsets
(lymphocytes and eosinophils), immunoglobulins, DDE,
PCB congeners, HCB, γ-HCH and Pb were not normally
distributed, the geometric mean, 5-, 95-percentiles are
provided. In order to obtain a multivariate normal distri-
bution, we log-transformed the number of cells and
immunoglobulins before testing associations with possi-
ble predictors by multiple linear regression models.

All statistical analyses were performed using SAS software
[17]. We calculated the sum of the PCB congeners (ΣPCBs
= sum of seven congeners, the congener PCB101 was not
detected). For descriptive purposes, we substituted values
of OC below detection limit with one half of the detection
limit. The statistical procedure (PROC RANK) was used to
group exposure variables into quartiles (DDE, PCBs, HCB
and Pb) or tertiles (γ-HCH). All observations below the
detection limit were part of the lowest level group (refer-
ence). To account for the influence of lipids on the con-
centration of OC, we controlled for the sum of
triglycerides and cholesterol in the regression analyses.
Further steps were taken to determine whether our results
were different when lipids were represented as sum of trig-
lycerides and cholesterol as opposed to triglycerides and
cholesterol as individual variables.

We used linear regression models (PROC GLM) with
immune markers as dependent variables and all organo-
chlorine compounds and lead as independent variables in
each model. We also controlled for potential confounders
(age, gender, environmental tobacco smoke (ETS),
number of infections during the last 12 months, and lipid
concentration). Information on passive smoking (ETS) in
the child's home in the previous 12 months was divided
into four categories (no cigarettes, 1–10 cigarettes, 11–20
cigarettes, 21 cigarettes per day and more). For the
number of infections we considered four categories
(none, less than 5, 5–10, more than 10). Age of the child
was divided into three groups; 7, 8 and 9–10 years.

From the results of the regression analyses, we calculated
adjusted geometric means for leukocyte subsets and
immunoglobulins for increasing categories of exposure.
T-tests were used to compare the statistical effect of higher
exposure group to the lowest (reference).

Since one major route of exposure to the pollutants ana-
lyzed is breast feeding [18-21] and breastfeeding provides
passive immunity [22-24], immune markers and pollut-
ants could be spuriously correlated if breast feeding is not
controlled for. However, this triangle (Figure 1) cannot be
tested with linear regression models, as intervening varia-
bles do not qualify as confounders [25]. Controlling will
reduce the initial association between the risk factor and
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the marker, as one causal chain is split into two associa-
tions. Thus, we explored the relationship between child-
hood breastfeeding (total duration of breastfeeding in

weeks), the concentration of OC, and immune response
by path analysis [26], using the CALIS procedure SAS
Institute [17].

Results
The proportion of participation was 61.5 % (671 of
1091). We obtained blood samples from 350 children,
conducted OC and Pb analyses on 343 samples, and
quantified immunoglobulins in 340. Overall, informa-
tion (i.e., questionnaires, exposure biomarkers, and
immune markers) was available for 331 children. Fewer
girls than boys participated in phlebotomy; and 96 % of
the children were 7 to 8 years of age (Table 1). Due to the
inclusion criterion for blood sampling (passive smoking
of less than 10 cigarettes in the child's home), the preva-
lence of passive smoking was also lower in the group with
phlebotomy than in the total group (Table 1). Neverthe-
less, the fact that parents were separated or divorced and
shared cohabitation for their child, resulted in a re-assess-
ment of the passive smoking status after phlebotomy. Eli-
gibility was determined on the information provided by

Table 1: Descriptive characteristics of the study cohort.

Total group Subgroup with OC and immune 
markers

(N = 671) (n = 331)

% %

Boys 53.1 56.8
Age 7 years 45.8 46.2

8 years 50.2 50.2
9–10 years 4.1 3.6

Passive smoking in the child's home during the last 12 months 
(cigarettes per day)

None 52.2 66.5
1–10 23.4 24.8
11–20 14.3 5.3
more than 30 10.1 2.4

Number of infections during the last 12 months
None 6.0 5.7
1 to < 5 74.7 74.8
5 to 10 17.2 17.4
more than 10 2.1 2.1

Duration of total breastfeeding (weeks)
0 19.1 15.1
1 to < 5 7.9 15.4
5 – 8 12.5 12.1
9–12 10.6 11.8
more than 12 34.7 41.1
Missing 5.2 4.5

Serum cholesterol concentration
(mean, 5–95%-value, mg/dL) 186 (143–235)
Triglyceride concentration
(mean, 5–95%-value, mg/dL) 130 (53–262)

Diagramatic representation of the breastfeeding, childhood exposures and immune markers associationsFigure 1
Diagramatic representation of the breastfeeding, childhood 
exposures and immune markers associations
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one parent (mother or father) for their household. In the
case of separate dwellings, we re-assessed the exposure by
taking the average number of cigarettes smoked in both
homes. As a consequence, 26 (7.9%) children who were
exposed to more than 10 cigarettes per day at home had a
phlebotomy and were included in the analyses.

For γ-HCH, 27.7 % of the observations were below the
detection limit, 2.9% for Pb, whereas none for DDE and
HCB. At least one of seven PCB congeners was detected in
each sample. Whole blood concentration for the sum of
PCB congeners (118, 138, 153, 170, 180, 183, 187), HCB
and of Pb showed a decline with increasing age (Table 2).
DDE, PCB, and HCB concentrations were lower in chil-
dren with higher passive smoking exposure. Regarding
infections, lead concentration was higher in children with
more than 10 infections during the last 12 months,
whereas DDE concentration was lower in this group
(Table 2).

The concentrations of DDE, ΣPCBs (sum of PCBs), and
HCB were all correlated (Table 3). However, we used cat-
egorized levels of OC, which were then only marginally
correlated; the highest rank correlation was for the PCB
and HCB groups (rSpearman = 0.46). These correlations did
not result in multicollinearity since the tolerance (vari-
ance of OC not explained by other predictors) was at least
53%. The volume-based organochlorine concentrations
were only marginally correlated with the lipid serum lev-
els. To adjust for lipid concentrations, we included lipid
concentrations as a confounder in the explanatory models

for leukocyte subsets and immunoglobulins. Results
derived from models using the sum of triglycerides and
cholesterol compared to triglycerides and cholesterol as
individual variables did not reveal any substantial differ-
ence (data not shown). We therefore reported results from
models using the sum of triglycerides and cholesterol.

Regarding lead in whole blood, we found weak correla-
tions with whole blood levels of OC (DDE: r = 0.15, n =
331, p < 0.01; HCB: r = 0.14, n = 331, p < 0.01; γ-HCH: r
= -0.02, n = 331, p < 0.70; ΣPCBs: r = 0.14, n = 331, p <
0.01)

Increased white blood cell count (WBC; total leukocytes)
was evident in the group with highest DDE level, whereas
Pb, at the second, along with PCB at the highest level was
associated with a reduction in WBC count. An increase in
the number of eosinophils – a leukocyte subset – was
identified in the highest DDE category, but not statisti-
cally significant, (see Additional file 3). However, eosi-
nophilic granula content was significantly reduced at the
upper DDE levels. In addition, IgE count on basophils was
increased at higher DDE exposure, being statistically sig-
nificant for the 0.3–0.43 µg/L category.

Regarding lymphocytes and specific lymphocyte subsets
(B-cells, T-cells), the number of T-cells (CD3+), cytotoxic
T-cells (CD8+) and B-cells (CD19+) were all significantly
reduced in the median Pb category (see Additional file 1).
Both natural killer (NK) cells (CD56+) and a NK cells sub-
set (CD57+) were significantly associated with γ-HCH.

Table 2: Geometric mean and 5-, 95% values for whole blood OC and Pb by covariates.

Category (n) DDE (µg/L) Sum of PCBs (µg/
L)

HCB (µg/L) γ-HCH (µg/L) Pb (µg/L)

Gender Girls (143) 0.32 (0.13 – 1.07) 0.43 (0.16 – 1.39) 0.21 (0.11 – 0.48) 0.02 (0.01 – 0.06) 25.4 (11.0 – 4 3.8)
Boy (188) 0.31 (0.13 – 0.96) 0.54 (0.19 – 1.66) 0.23 (0.11 – 0.54) 0.02 (0.01 – 0.04) 27.8 (14.8 – 48.2)

Age-groups 7 years (153) 0.32 (0.13 – 0.97) 0.54 (0.18 – 1.90) 0.23 (0.11 – 0.56) 0.02 (0.01 – 0.06) 27.3 (13.9 – 48.2)
8 years (166) 0.31 (0.13 – 0.98) 0.47 (0.18 – 1.29) 0.21 (0.11 – 0.48) 0.02 (0.01 – 0.05) 26.4 (10.7 – 47.8)

9–10 years (12) 0.31 (0.20 – 0.84) 0.33 (0.10 – 0.99) 0.17 (0.10 – 0.46) 0.02 (0.01 – 0.06) 25.4 (16.6 – 39.4)
Passive smoking in 
the child's home 
during the last 12 
months (cigarettes 
per day)

None (220) 0.35 (0.14 – 1.08) 0.57 (0.21 – 1.70) 0.24 (0.11 – 0.55) 0.02 (0.01 – 0.06) 26.5 (10.1 – 47.4)

1 – 10 (84) 0.26 (0.12 – 0.88) 0.39 (0.17 – 1.02) 0.19 (0.11 – 0.45) 0.02 (0.01 – 0.05) 26.0 (16.0 – 43.0)
11 – 20 (18) 0.27 (0.09 – 0.69) 0.40 (0.13 – 1.29) 0.18 (0.10 – 0.49) 0.02 (0.01 – 0.04) 33.5 (18.9 – 113.7)
21 – 30 (8) 0.23 (0.13 – 1.11) 0.27 (0.18 – 0.34) 0.15 (0.11 – 0.21) 0.02 (0.01 – 0.04) 30.1 (19.4 – 47.3)

Number of 
infections during 
the last 12 months

None (19) 0.60 (0.16 – 4.02) 0.49 (0.10 – 2.24) 0.21 (0.10 – 0.58) 0.02 (0.01 – 0.08) 28.8 (15.9 – 58.7)

1 to < 5 (247) 0.31 (0.13 – 0.94) 0.49 (0.18 – 1.39) 0.22 (0.11 – 0.48) 0.02 (0.01 – 0.06) 26.2 (10.7 – 46.7)
5–10 (57) 0.29 (0.13 – 0.79) 0.53 (0.19 – 2.21) 0.23 (0.11 – 0.70) 0.02 (0.01 – 0.04) 27.9 (16.0 – 47.8)
>10 (7) 0.25 (0.16 – 0.43) 0.56 (0.34 – 0.87) 0.21 (0.15 – 0.27) 0.02 (0.01 – 0.05) 33.4 (26.2 – 48.5)
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However, these associations did not reveal dose-depend-
ency.

All four immunoglobulins were associated in a virtually
dose dependent fashion to either DDE, HCB or PCBs (see
Additional file 2). IgM serum levels increased with the
concentration of PCBs (F-test, p < 0.01) but decreased
with increasing concentration of HCB (F-test, p < 0.01). In
the two upper quartiles of DDE exposures, IgA levels were
significantly higher, but lower in the upper quartile of
HCB. DDE was not associated in a dose-response mode
with IgG (F-test, p = 0.14), however, compared to the ref-
erence, the highest DDE exposure group showed a signif-
icantly elevated IgG level (t-test, p = 0.04). IgE levels more
than doubled as DDE concentration increased (F-test, p =
0.02). The Pb serum levels were related to a significant dif-
ferences in IgE (F-test: p = 0.028), but not in a dose
dependent fashion (see Additional file 2).

Figure 2 shows that both DDE and lead were associated
with higher serum IgE levels in children. In groups with
lower DDE blood concentrations, Pb concentrations
above the median (28 µg/L) were related to increase IgE
levels. In groups with higher DDE, there was no
additional effect of Pb. Statistically, the combined effect of
DDE and Pb on IgE was not significant.

In order to determine whether breastfeeding confounded
the associations identified in linear regression models
(Figure 1), we repeated our analyses using structural
model (path analysis) for exposures determined as
significant in linear regressions. Inclusion of breast feed-
ing did not substantially change our findings.

Discussion
In 331 school children, age 7–10 years, we demonstrated
significant relationships between OC and Pb whole blood
concentration and cellular and humoral immune mark-
ers. First, modest associations were found between NK
cells (CD3-CD16+CD56+) and a subset of natural killer
cells (CD3-CD16+CD56+CD57+) and γ-HCH (see Addi-
tional file 1). Second, HCB was inversely related to IgM.

Table 3: Spearman correlation coefficients between organochlorine compounds (wet-based and lipid-based, n = 331) and their 
geometric means.

ΣPCBs HCB γ-HCH Lipids ψ Lipids § DDE/lipid ΣPCBs/lipid HCB/lipid γ-HCH/lipid Geo-metric 
mean

DDE (µg/L) 0.61 p < 0.01 0.55 p < 0.01 0.16 p < 0.01 0.08 p = 0.09 0.06 p = 0.25 0.86 p < 0.01 0.51 p < 0.01 0.46 p < 0.01 0.14 p < 0.01 0.32
ΣPCBs (µg/L) 0.76 p < 0.01 0.04 p = 0.40 0.04 p = 0.65 0.05 p = 0.34 0.59 p < 0.01 0.90 p < 0.01 0.70 p < 0.01 0.09 p = 0.11 0.50
HCB (µg/L) 0.07 p = 0.19 0.03 p = 0.63 0.04 p = 0.47 0.54 p < 0.01 0.74 p < 0.01 0.83 p < 0.01 0.09 p = 0.11 0.22
γ-HCH (µg/L) 0.15 p = 0.01 0.11 p < 0.05 0.13 p = 0.02 0.05 p = 0.34 0.03 p = 0.64 0.88 p < 0.01 0.02
DDE, lipid-
based Ψ (ng/g)

0.63 p < 0.01 0.63 p < 0.01 0.23 P < 0.01 103.03

ΣPCBs, lipid-
based Ψ (ng/g)

0.81 p < 0.01 0.14 p = 0.01 164.99

HCB, lipid-
based Ψ (ng/g)

0.16 p < 0.01 70.72

HCH, Lipid-
based Ψ (ng/g)

6.65

Ψ total lipids calculated as sum of cholesterol and triglycerides
§total lipids calculated using formula 2 of Phillips et al.[28].
rank correlation between total lipids from both formulae was (rSpearman = 0.95).
ΣPCBs sum of PCB congeners 101, 118, 138, 153, 170, 180, 183, 187

The combined effect of increasing DDE and lead (Pb) on IgE serum levelsFigure 2
The combined effect of increasing DDE and lead (Pb) on IgE 
serum levels
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Third, ΣPCBs were directly related to IgM. Fourth, our data
showed that Pb decreased the count of T-cells (CD3+),
cytotoxic T-cells (CD3+CD8+), and B-cells (CD3+CD5+
CD19+). This reduction was most evident at the 22.1 –
28.3 µg/L Pb concentration, though not in a dose
response fashion. Lastly, DDE was inversely related to all
immunoglobulins, except IgM (see Additional file 2).
However, DDE was not associated with total serum pro-
tein (data not shown). The DDE effect was strongest for
IgE – more than twofold increase – which also corre-
sponded to an increased count of IgE on basophils. We
did not detect a significant relationship between DDE and
eosinophils, nevertheless, the number of eosinophils was
positively correlated with IgE (rSpearman = 0.4, p < 0.01).
However, high DDE levels were found to be significantly
associated with lower eosinophilic granula content. The
granula contains basic proteins which are cytotoxic and
part of the inflammatory response [27].

The cross-sectional nature of the study limits conclusions
on whether exposure occurred before immune responses.
We can assume that organochlorine concentrations do
not vary substantially in childhood, post breastfeeding.
There is a decline of PCBs and HCB with age (Table 2),
however the assumption of the stability is supported by a
follow-up of the same children and OC determined in
1997. The Spearman rank correlation between the two
successive measurements were high, with the exception of
γ-HCH: DDE: r = 0.86, n = 274, p < 0.01; HCB: r = 0.74, n
= 274, p < 0.01; γ-HCH: r = 0.1, n = 270, p = 0.11; ΣPCBs:
r = 0.82, n = 274, p < 0.01.

The reported concentrations for OC were not lipid-based.
In this cohort, there is a high correlation between lipid-
and non lipid-based concentrations for OC (Table 3).
Thus, our findings are independent of lipid- or wet
weight-based determinations. In our models we control-
led for lipids instead of dividing the concentration of OC
by the lipid concentration for three reasons. First, a simple
division assumes a monotonous linear relation between
lipids and organochlorines. Although Phillips and co-
workers reported for 20 adults that division by lipids
reduces the difference between fasting and non-fasting
concentration of OC [28], there is no data to justify a lin-
ear relation. Our data in children showed only weak cor-
relations between OC and the sum of cholesterol and
triglycerides (Table 3). This correlation did not increase
when the sum of lipids were derived by using the 2nd for-
mula proposed by Phillips et al. [28]. Second, there is no
standard approach to adjust concentrations below the
limit of detection for lipids. In particular, the probability
of detection may be influenced by the individual lipid
concentration of a child. Third, division by lipids does not
take into account that they may confound the organo-
chlorine – immune response relationships. Confounding

is likely since lipids and OC are correlated, plus lipids are,
for example, associated with the count of lymphocytes
[29,30].

There is evidence that breast milk is a significant source of
OC, Pb [18-21], and passive immunity [22-24]. Path ana-
lytical techniques (Figure 1) were used to verify whether
breastfeeding as an intervening variable confounded our
associations. The inclusion of breastfeeding in the path
analysis did not reveal results different from the linear
regression models. Hence, the associations between pol-
lutants and immune markers were independent of
breastfeeding.

We found whole blood concentrations of OC in our
cohort comparable to similar children in Germany [31].
Compared to children in the United States, age 12–19
years (NHANES – 1999–2000) [32], our DDE values were
lower though still within the 95% confidence interval.
However, when comparing our results (in whole blood)
with those of NHANES (in serum), we have to consider
differences between serum and whole blood concentra-
tions. Mes et al. reported that DDE was higher in sera and
plasma than in whole blood samples [33]. Conversely,
PCBs were higher in whole blood samples. No other com-
parison with NHANES data was possible as the values for
PCB congeners and other OC were below the limit of
detection.

Regarding lead (Pb), the geometric mean of 27 µg/L in our
investigation was similar to the 33 µg/L found in a study
of 797 East-German children 5–14 years of age [34].
Against that, the 1999–2000 NHANES study showed a
lower geometric mean (15.1 µg/L) in 905 children 6–11
years of age [32]. However other studies in areas of higher
exposure, reported average concentrations above the
NHANES value: 40 µg/L for children, 6 to 15 years of age
in four communities with mining and smelting opera-
tions and two control groups in the United States [6], and
95 µg/L in Chinese children 3–6 years old [8].

We selected a subgroup for blood analyses due to budget
constraints. The group having a lower ETS exposure in
their homes was selected to reduce the potentially con-
founding effect of ETS. This group did not significantly
differ from other participating children (Table 1). Parents
did not know the individual results of the blood analyses,
when they provided information on their children, thus
reducing recall bias.

The inverse association between DDE and the number of
infections 12 months prior to the interview is surprising
(Table 2). However, in a logistic regression model the
number of infections reported did not show a significant
protective effect of DDE. Additionally, when infection was
Page 7 of 10
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eliminated from the models, there were no major changes
in the OC – immune markers association.

The few existing studies estimating the immunotoxicity of
lead (Pb) in children, measured by immune markers, are
inconsistent in their findings. Regarding immunoglobu-
lins, our positive relation between Pb and IgE was consist-
ent with that of Lutz et al. [7]. However, Sun and co-
workers had different results [8]. Concerning lym-
phocytes, we found that the number of B-cells was signif-
icantly reduced with increased Pb concentration.
Conversely, Sarasua et al. reported an increase in the
number of B-cells for children less than 3 years old [6].

Studies assessing the relation between organochlorine
and immune markers, determined in our study, also
showed conflicting results and focused mostly on adults
[35-37]. In comparison with these adult studies, Vine et
al. reported similar modest findings for immunoglobulins
and DDE. However, only results for IgA showed statistical
significance [35]. Our findings regarding IgE and eosi-
nophilic granula suggest that DDE shifts the immune
response into a T helper (Th) 2 direction [38]. Mechanis-
tically, immune responses have been polarized into Th1
and Th2 reactions. Th1 responses lead to the secretion of
immunoglobulin G (IgG) and removal of the allergen.
The allergic Th2 phenotype is characterized by secretion of
cytokines that promote immunoglobulin E (IgE) produc-
tion resulting in allergies. This suggestion is in agreement
with findings of Daniel and co-workers, who reported an
association between DDE and interleukin-4, a Th2
cytokine [39]. In addition, our interpretation that DDE
may be associated with an allergy-like response is sup-
ported by the distribution of aeroallergen-specific IgE
results over the four DDE exposure levels. In the lowest
DDE exposure group 11.3% of the children showed a pos-
itive specific IgE, 10.9% and 12.2% in the two intermedi-
ate groups, but 23.0% in the highest DDE exposure group
(p = 0.03).

Interestingly, the effects of lead (Pb) and DDE on IgE
seems to be competitive. At lower DDE exposure, Pb
seems to increase IgE concentrations (Figure 2). There was
no additional effect of the other pollutant if one is high;
therefore it is possible that both pollutants are involved in
the same mechanism. Indeed, studies have surmised that
Pb may also shift the immune responses in a Th2 direc-
tion [40-42].

There are only few studies on OC blood/serum concentra-
tion and immune responses in children. Weisglas-Kupe-
rus et al. reported that prenatal PCB exposure was
associated with an increase in the T-cell markers
CD3CD8+ and CD4+CD45RO+ [2]. Our data did not
support these findings. In another study with prenatal

exposures to PCBs, HCB, and DDE, Dewailly et al. did not
identify significant associations with immune markers
including CD3+, CD4+, CD8+ lymphocytes nor with IgA,
IgG, and IgM [3]. However, we found significant relation-
ships between PCBs and HCB with IgM (see Additional
file 2). Reichrtova et al. have shown that in utero exposure
to DDE is positively correlated with cord serum IgE [43].
No other study of children has investigated the relation-
ship between DDE determined postnatally and Th2 mark-
ers such as IgE and eosinophilic granula. This is the
second publication showing an association between DDE
and serum IgE [4] and the first to report associations
between Pb, and DDE and IgE count on basophils and
eosinophilic granula.

Conclusion
In conclusion, our study suggests a non-linear association
between IgE and Pb concentration. Regarding OC, our
data indicated an increase of IgE related to DDE serum
concentrations. A parallel association between DDE, IgE
count on basophils, and reduction of eosinophilic gran-
ula contents further supports a potential stimulation of a
Th2 response related to DDE exposure.

Prospective studies should determine more than one OC
in a scenario with multiple exposures in order to prevent
spurious correlations and include repeated determina-
tions of immune responses to determine changes in
immune development during childhood. Furthermore,
studies are warranted that determine allergic susceptibili-
ties following DDE and Pb exposure in children.

List of abbreviations
DDE, dichlorodiphenyl dichloroethene

EDTA, ethylene diamine tetra acetate

ETS, environmental tobacco smoke

FACS, Fluorescence-activated Cell Sorter

FITC, fluorescein isothiocyanate

GC/MS, gas chromatography-mass spectroscopy

HCB, hexachlorobenzene

HCH, hexachlorocyclohexane

HRGC, high resolution gas chromatography

Ig, immunoglobulin

NK-cells, natural killer cells
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OC, organochlorine compounds

PCB, polychlorinated biphenyls

PE, Phyoerythrin

PE-Cy5, tandem fluorochrome of PE and cyanine 5

Th1, T-helper 1 cells

Th2, T-helper 2 cells

WBC, white blood cells
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