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Abstract

Background: Cortisol has functions on homeostasis, growth, neurodevelopment, immune function and the stress
response. Secretion follows a diurnal rhythm that mediates these processes. Our objective was to examine the
association between prenatal lead exposure and infant diurnal cortisol rhythms.

Methods: We measured infant cortisol rhythms in saliva collected repeatedly over 2 days at either 12 (n = 255) or
18–24 (n = 150) months of age. Prenatal lead exposure was assessed by measuring maternal pregnancy blood lead
levels and early postnatal maternal bone lead content. We analyzed age-specific basal secretion and the association
between trimester-specific and cumulative lead exposure with a) change in total diurnal cortisol and b) the shape
of the cortisol curve across the length of the day.

Results: Our results showed age related differences in salivary cortisol secretion and an age dependent association
with maternal lead exposure. In age-stratified models we saw an inverse association between lead and cortisol
levels in 12-month-old infants and a positive association for 18–24-month-old infants. For the 12-month-old infants
2nd-trimester-lead ≥10 μg/dL was associated with 40 % lower cortisol levels (95 % CI (−57, −16)) and a significant
change in the shape of the cortisol curve (p = 0.01), compared to infants with low blood lead levels (<5 μg/dL).
Conclusions: Basal cortisol secretion changes with age. Increased early gestation lead exposure alters diurnal cortisol
rhythms and the association is modified by infant age, perhaps representing an early maturation of cortisol homeostasis.
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Background
Endocrine disruption refers to environmental factors that
interfere with hormone metabolism and homeostasis, pro-
cesses that might explain developmental programming by
prenatal chemical exposure [1, 2] ultimately impacting
adult health and disease [3]. Cortisol is a critical metabolic
hormone that mediates several homeostatic processes that

are essential to development and plays a direct role in
neurodevelopment, growth/obesity and immune function.
The hypothalamic-pituitary-adrenal (HPA) axis is the pri-
mary regulator of cortisol metabolism and its basal secre-
tion; it mediates both stable day-to-day physiologic
secretion of cortisol, and the increase in secretion that
arises from environmental stimuli (danger, infection, diet,
etc.) [4]. Understanding how the environment might pro-
gram alterations in cortisol physiology requires measuring
cortisol noninvasively (to avoid the stress of blood draws
that can confound results), and repeatedly (to capture the
diurnal variation in cortisol levels that naturally occurs).
Prenatal lead (Pb) exposure has been consistently asso-

ciated with a number of adverse health effects that
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overlap with cortisol function, including growth [5, 6]
and altered neurodevelopment [7–9]. Research on envir-
onmental chemical toxicants and their effects on infant
or early childhood HPA axis functioning which regulates
cortisol excretion [10–12] remains limited. Studies on
lead exposure and cortisol have mixed results, showing
an increase or no change in cortisol production in 9 year
old children and in occupationally exposed to lead male
workers respectively [13–15]. Nevertheless, studies
examining associations with exposure to other environ-
mental chemicals in early development have suggested
an increase in cortisol production and also suggest that
effects may vary based on developmental stage of expos-
ure and effect measurement of HPA function [16]. The
present study expands upon this prior research by exam-
ining the relationship between prenatal exposure to Pb
and basal HPA axis functioning (rather than the re-
sponse to a stressor), as characterized by infant diurnal
cortisol rhythms measured using timed salivary samples,
in 12–24 month-old infants in a Mexican birth cohort.
We are unaware of any data that establish norms for
basal cortisol rhythms for these ages, and there is rela-
tively little data on the timing of HPA axis maturation
(although there is evidence of the establishment of the
basic cortisol pattern (higher levels in the morning and
lower levels late in the day) by 1 year of age, the current
hypothesis is that it occurs around the 3rd year of life in
humans [17]. Therefore, our main objectives were to in-
vestigate: a) if there is an age-dependent difference in
the association of lead with cortisol rhythms, b) the asso-
ciation between lead and infant diurnal cortisol rhythms,
and we hypothesized that higher prenatal lead exposure
would be associated with increased cortisol production
over the course of the day and c) if a specific window of
prenatal susceptibility to lead could be identified. For
objectives a and c, we hypothesized that there would be
a difference in the association depending on infant age
and that a specific prenatal window of exposure would
be detected, however we preferred not to define a direc-
tion or magnitude of the effect (objective a) or to point
at a specific window (objective c) due to lack of human
studies on this specific theme.

Methods
Study population
This study was conducted in the Programming Research
in Obesity, Growth, Environment and Social Stressors
(PROGRESS) birth cohort in Mexico City, previously de-
scribed in more detail [18]. Briefly, women were invited
to participate during their prenatal care visits at 4 clinics
belonging to the Mexican Social Security System (Insti-
tuto Mexicano del Seguro Social [IMSS]) and were con-
sented in a face-to-face interview and enrolled in their
2nd trimester of pregnancy. Between 2007 and 2011, 948

live infants were born and 760 (80 %) mother-infant pairs
returned for follow-up visits between 6 and 24 months of
age. The saliva collection kit was provided to all partici-
pants in follow-up (between 12 and 24 months) and the
protocol was completed by 411 children of which 405
were included in the analyses. Participant characteristics
did not differ significantly to those of non-participants
(p > 0.05 for all comparison tests of covariates between
non-participants and participants) as shown in Table 1.
Study protocols were approved by the institutional review
boards of the Icahn School of Medicine at Mount Sinai,
Harvard T. H. Chan School of Public Health, the National
Institute of Public Health Mexico, the Mexican Social
Security System, and the National Institute of Perinat-
ology, Mexico. At each visit the study protocol was
explained to women, who provided informed consent
before any procedure was carried out.

Maternal lead in blood
Venous blood from women was drawn into royal blue
trace metal vacutainer (Becton-Dickinson and Company,
Franklin Lakes, New Jersey) tubes containing EDTA. Sam-
ples were collected from women in the second trimester
(2 T) between 16 and 20 weeks of gestation and the third
trimester (3 T) between 30 and 34 weeks. Samples were
kept at 4 °C until analyzed. BPb concentrations were mea-
sured using a dynamic reaction cell inductively-coupled
plasma mass spectrometer (Elan 6100; PerkinElmer, Nor-
walk, CT). Five replicate measurements of each sample
were taken and averaged. The recovery of the analysis
quality control standards and spike samples was 90–110 %,
and the limit of detection for the procedure was 0.02 μg/dL.

Maternal bone lead
To assess cumulative Pb exposure in mothers we used
tibia bone Pb levels (half-life of approximately 10 years
[19]) during the 1 month postpartum visit. Previous re-
search demonstrates that pre-pregnancy bone lead levels
are highly correlated with 1 month postpartum levels
[20, 21]. Maternal bone Pb was measured in the mid-
tibial shaft using a K-shell X-ray fluorescence instrument
(KXRF) [22]. Each leg was measured for 30 min, and the
results from both legs were averaged, weighted by the
inverse of the measurement variance. Negative bone Pb
values were replaced by sampling from a uniform distri-
bution over the range of 0 to the DL (2 μg/g), as previ-
ously described [21, 23, 24].

Infant saliva collection
The saliva collection protocol (illustrated with photo-
graphs) was explained to mothers during the 12 month
study visit. The collection material, an information diary
and a printed copy of the protocol was provided to all
participants who attended their study visit. If a mother
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did not participate in the saliva collection following this
visit, we inquired about participation at both 18 and
24 months as well. A total of 411 children provided sal-
iva for cortisol at only one of these three visit dates
(54 % completion rate).
Mothers were asked to collect 4 saliva samples per day

from their child at home (early morning: after the infant
woke up and had a diaper change but before breakfast,
mid-morning: between 11:00 am and 1:00 pm, mid-after-
noon: between 3:00 and 5:00 pm and night: at least
30 min after dinner, before bed time) for 2 days (8 sam-
ples total), and instructed that: collection days did not
have to be consecutive but no more than a week apart,
to wait at least 30 min before collecting the sample if
the infant had been fed (including breastmilk), to collect
samples on “typical” days (not days that were foreseen to
be particularly stressful or busy), not to collect the sam-
ples if the infant was ill, taking medicine or had an aller-
gic reaction to any food or insect bite.
Saliva was collected using a cotton braid which the in-

fant was allowed to bite and suck between 10 and 30 s.
Saliva was then extracted using a needleless syringe to
previously labeled collecting tubes on which the exact
collection time was registered by the mother.
In the diary provided mothers were asked to record

the specifics of collection for each sample, namely: the
date for each collection day and times for the collection
of each sample as well as for infant wake up, breakfast,
dinner and bedtime. In all 8 times were recorded regard-
ing the samples. Information on the child’s sleep
(whether the child slept enough (as usual) and if any

naps were taken during the day registering the time of
day and duration), and health (illness, medication name
and time administered) particular to the sample collec-
tion day were also recoded.
Samples were stored in the participant's refrigerator

until they were collected by our staff and then frozen at
−70 °C until shipment to the laboratory of the Technical
University of Dresden, Germany for cortisol analysis.
Saliva samples were analyzed in duplicate using a chemi-
luminescence-assay with a sensitivity of ~0.16 ng/ml
(IBL; Hamburg, Germany, Clemens Kirschbaum). Con-
trol samples covering at least three levels of cortisol
were run for each day. The intra- and inter-assay coeffi-
cients of variation were less than 8 %.
We examined all the participants cortisol curves care-

fully, looking for any aberrant pattern. If we detected
any irregularities, we consulted the diary for information
on feeding, sleep or illness and excluded the sample(s)
from our analyses if considered it relevant. Samples were
also excluded if cortisol levels were greater than 3 SD
above or below the mean, when fever was reported and
those for a 35 months-old infant. Only sampling days
with at least 3 samples and with the wake up time regis-
tered were considered for the analyses. Our final sample
included 3,110 cortisol samples (96 % of total collected
samples) from 405 infants.

Covariates
Demographic information was obtained through stan-
dardized questionnaires. Potential covariates were identi-
fied based on the existing literature on Pb and cortisol

Table 1 Comparison of Non-Participants and Participants

Non-participants 12 month-old infants 18–24 month-old infants

n = 355 n = 255 n = 150

Mother

Age at delivery (years) 26.7 ± 5.5 27.1 ± 5.6 27.5 ± 5.1

Education (total years) 11.8 ± 2.8 11.9 ± 2.8 11.6 ± 2.8

Pre-pregnancy BMI (kg/m2) 24.9 ± 4.1 25.8 ± 4.4* 24.7 ± 3.9

2nd trimester blood lead (μg/dL)a 3.6 ± 2.5 3.5 ± 2.5 3.9 ± 2.8

3rd trimester blood lead (μg/dL)b 3.8 ± 2.7 3.7 ± 2.9 4.2 ± 3.4

Tibia lead (μg/g)c 4.7 ± 5.4 5.6 ± 5.8 4.9 ± 5.0

Infant

Sex (male) n (%) 182 (51) 129 (51) 90 (60)

Ever breastfed n (%)d 303 (85) 224 (88) 139 (93)

Gestational Age, weeks 38.3 ± 1.9 38.3 ± 1.5 38.5 ± 1.6

Birth Weight, kg 3.0 ± 0.5 3.1 ± 0.4 3.2 ± 0.4*

For all analyses the imputed values for missing blood and tibia lead were used
anon-participant n = 354, 18–24 month-old infants n = 149
bnon-participant n = 301, 12 month-old infants n = 229, 18–24 month-old infants n = 139
cnon-participant n = 270, 12 month-old infants n = 199, 18–24 month-old infants n = 117
dnon-participant n = 329, 12 month-old infants n=, 18–24 month-old infants n = 145
*Unless noted p > 0.05 for all comparison tests of covariates between non-participants and each age group
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response [25] as well as prior studies of cortisol
rhythms performed in non-environmental health aims
[17, 26, 27]: child’s sex, gestational age, birth weight
and breast-feeding (ever/never), maternal age at deliv-
ery, education (total years of school), pre-pregnancy
BMI (self-reported weight and use of 2 T height), and
weekday vs. weekend sample collection. Covariates
were left out of the analyses if they were not associ-
ated with the exposure or outcome (p > 0.1) in bivari-
ate models or if the cortisol effect estimates were not
changed by more than 10 %. All models were ad-
justed for child’s sex and maternal age at delivery,
education and pre-pregnancy BMI.

Statistical analysis
We used longitudinal functional mixed effects regression
models with penalized splines as described by Sanchez
and colleagues [28]. This modeling framework accounts
for the non-linearity of cortisol rhythms over the course
of a day and addresses the multilevel structure in the
data, whereby repeated measurements are taken within a
day and measurements from multiple days are recorded
for each participant [28]. The resulting models reflect
how the association between exposure and cortisol levels
varies as a function of “time since awakening” linked to
a given cortisol measurement. Models can be run that
assume that this association is constant across the
course of the day “constant effect model” (CE), which im-
plies that exposure is associated with a shift (increase or
decrease) in the overall mean cortisol curve while main-
taining the curve’s shape. Alternatively, the model can
assume that the association between exposure and corti-
sol level depends on the time since awakening “time-
varying-effect model” (TVE), which allows changes in the
shape of the cortisol curve. For the TVE model, results
are illustrated graphically to present how the curve
changes shape as a function of exposure. More details
can be found in the Additional file 1. Cortisol concentra-
tions were skewed to the left therefore we log-transformed
them to better satisfy the normality assumption of the
models.
In line with our aims, our initial analysis considered

age as primary predictor of cortisol rhythms and this
was statistically significant (p > 0.001). We then plotted
the unadjusted cortisol curves for 12, 18 and 24 month
old infants separately. Those of the 18- and 24-month
old infants were very similar in shape and concentra-
tions and not statistically different. Average cortisol
levels in the 12-month old group were 21 % higher
(95 % CI (9, 34)) than those of the 18–24-month infants
(Fig. 1). Next, we ran models with an interaction term
Pb x exact-age-at-collection (we calculated the child’s
age in days using the difference between the birth date
and the date when the saliva was sampled) which was

statistically significant. Therefore, we subsequently ran
separate prediction models for infants at 12 months and
grouped 18–24 month old infants.
We defined cut-points to assess nonlinear relation-

ships and whether an exposure threshold for Pb may
be driving the associations. For bone Pb, we used
tertiles and for BPb, we carried out analyses based
on the updated CDC reference level for BPb of
5 μg/dL and the former level of 10 μg/dL, which is
the current reference level in Mexico according to
the health norm NOM-199-SSA1-2000. We defined 3
categories of BPb exposure (“Lower” (Reference): <5 μg/dL;
“Moderate”: 5 ≤ Pb <10 μg/dL; and “Higher”: Pb ≥10 μg/dL).
In order to determine a prenatal window of suscepti-

bility for Pb we regressed cortisol on 2 different BPb in-
dicators (2nd trimester -2 T BPb and 3rd trimester-3 T
BPb) and an indicator of cumulative Pb exposure (ma-
ternal tibia bone Pb levels).
To account for missing Pb indicator data (see Table 1

for number of samples for each indicator), we used mul-
tiple imputation. We generated 10 data sets, which we
used to run each of the models. For each model, the re-
sults of 10 imputations were averaged to give the final
effect estimates. Standard errors were calculated using
the methods that combine the within and between-
imputation uncertainty. We ran all our models with and
without imputation and the results for the imputed
models were consistent with the direction and magni-
tude of the associations. For the statistical analyses we
used SAS 9.3 (SAS Institute, Inc., Cary, North Carolina,

Fig. 1 “Unadjusted Basal Cortisol Rhythms for 12- and 18–24 month-old
infants”. Mixed effects regression model with penalized splines using age
group as a main predictor
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proc MI with the MCMC method for multiple imput-
ation) and R version 3.0.2 with the gamm () function from
the mgcv package for the functional mixed models [28].

Results
Age-dependent cortisol levels were confirmed by the re-
sults from the mixed effects regression model with penal-
ized splines using age group (12- and 18–24-month-olds)
as a main predictor. As reported above, younger children
had higher basal cortisol levels throughout the day (Fig. 1).
We found no statistically significant difference in saliva
collection times between age groups. More information
on cortisol concentrations by sample and for saliva collec-
tion times can be found in Table 1 of the Additional file 1.
Results from Constant Effect Models (lead exposure

not influencing the shape of the cortisol curve through-
out the day) showed that among the 12-month old in-
fants, mean cortisol levels for the moderate (5 ≤ Pb
<10 μg/dL) and higher (Pb ≥10 μg/dL) Pb exposure
groups were lower compared to those in the referent
category of <5 μg/dL across BPb indicators (Table 2).
The mean cortisol level for the higher-2 T-BPb was esti-
mated to be 40 % lower (95 % CI −57 %, −16 %) than
the mean cortisol level for the 2 T-BPb referent group.
Moderate-3 T-BPb was marginally associated with a
13 % lower mean cortisol level (95 % CI −27 %, 3 %)
compared to the mean cortisol level for the 3 T-BPb ref-
erent group. This was contrary to our hypothesis that
lead would be associated high higher cortisol levels.
However, among the 18–24 month olds the associations
between Pb exposure and cortisol were generally posi-
tive, although not statistically significant. Our results are
clearer when presented graphically. As an example, Fig. 2
shows the results for the categorical 2 T-BPb models
stratified by age group. The adjusted natural log cortisol
(lncortisol) curves illustrate the direction and magnitude

of the associations with respect to the mean cortisol
curve for each exposure category and for each age
group.
Figure 3 shows the results for the Time Varying Effect

(TVE)-models stratified by age, using the indicator for
2 T-BPb. These models allow for lead exposure to influ-
ence the cortisol level at any time point throughout the
day, resulting in a change in the shape of the curve. The
curves in Fig. 3 illustrate the estimated differences in
mean (lncortisol) curves for the moderate-Pb and high-
Pb exposure groups, each relative to the low-Pb expos-
ure group. For infants in both age groups, the mean
curves associated with moderate-2 T-BPb exposure are
the same shape as that for the corresponding low expos-
ure group (no departure from the 0-change line). How-
ever, for both age groups the shape of the mean curve
associated with high-2 T-BPb exposure is modified rela-
tive to that for the low exposure group, with smaller dif-
ferences occurring at the beginning of the day and larger
differences occurring later in the day. This difference is
significant (p < 0.05) among the 12-month-olds around
midday (5–10 h post awakening). As in CE-models,
these associations are inverse for the 12-month-olds and
positive for the 18–24-month-olds. The results from
models based on the other maternal Pb indicators were
similar (data not shown).
Lastly, we confirmed that there might be a relevant

window of susceptibility to lead and HPA axis develop-
ment. The stronger and statistically significant associ-
ation seen with 2 T BPb, specifically with higher BPb
levels point at the susceptibility of this gestational stage
for subsequent cortisol metabolism in infants.

Discussion
In this prospective birth-cohort study we found higher
basal cortisol levels in 12 month-olds relative to 18–24

Table 2 Categorical analyses of the change on total diurnal infant (ln) cortisol level stratified by infant age group

Lower Lead (<5 μg/dL) Moderate Lead (5≤ Pb < 10 μg/dL) Higher Lead (≥10 μg/dL)

β % change β % change

12-Month Infantsa

2nd trimester Ref −0.07 (−0.24, 0.10) −7 (−22, 10) −0.51 (−0.85, −0.18)* −40 (−57, −16)*

3rd trimester Ref −0.14 (−0.31, 0.03) −13 (−27, 3) −0.02 (−0.31, 0.26) −2 (−26, 30)

Tibiac Ref 0.02 (−0.14, 0.19) 2 (−13, 20) −0.03 (−0.21, 0.14) −3 (−19, 15)

18- & 24-Month Infantsb

Second Trimester Ref 0.11 (−0.08, 0.30) 12 (−8, 35) 0.23 (−0.19, 0.65) 26 (−18, 92)

Third Trimester Ref 0.01 (−0.17, 0.20) 1 (−16, 22) −0.05 (−0.51, 0.41) −5 (−40, 51)

Tibia Ref 0.10 (−0.13, 0.32) 10 (−12, 38) 0.14 (−0.08, 0.35) 14 (−8, 42)

Effect estimates: β (95 % CI), % change and (95 % CI). All models are adjusted for child’s gender and maternal age at delivery, pre-pregnancy BMI and total
school years
an = 255
bn = 150
ctertiles were used for tibia bone (μg/g)
*p < 0.05, remained significant (p < 0.025) after Bonferroni correction for multiple comparisons
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month-olds which most likely represents the normal de-
velopment of the HPA axis [17]. This information alone
will be critical in planning future research on cortisol
homeostasis as investigators should consider age at col-
lection. Our results show that Pb exposure in pregnancy
is associated with the infant cortisol curve differently
based on the age at which the rhythm is measured. BPb
was associated with a downshift in the cortisol curve at
12 months but with an upward shift in the cortisol curve
at 18–24 months. Keeping in mind that the normal age
trend from 12- to 18–24 months is a downshift, Pb ex-
posure appears to produce a cortisol rhythm pattern in
12 month olds that is similar to the pattern seen in 18–24
month olds. This would be biologically-consistent with Pb
driving a premature maturation of cortisol rhythm. Also, it
appears that among 12-month-olds, higher prenatal BPb
exposure modifies the shape of the cortisol rhythm.
Among lower exposed children an age-dependent shift in
the cortisol profile is seen and is likely a normal transition,
but this shift is different if prenatal BPb is above 10 μg/dL.
Cortisol is critical to neurogenesis and given Pb’s well-

known effects on brain development, these results would
be consistent with cortisol disruption being a mechan-
ism mediating Pb’s neurotoxicity, a hypothesis that has
been studied in animal models. Corticosterone levels in
rodent pups were altered by prenatal exposure to Pb in

early pregnancy [29–32], but not when Pb exposure
occurred in later gestational stages [33]; Pb accelerated
age-related reductions in pre-stressor corticosterone
levels in adult animals [29]; and there was a dose-
response relationship of prenatal Pb with cortisol levels
[29]. Two other human studies have examined the adre-
nocortical response to stress in the context of Pb expos-
ure, rather than basal cortisol rhythms and generally
included older participants with presumably mature
HPA axis function [13, 15]. In Gump et al. [14], investi-
gators examined the association between prenatal and
early childhood exposure to Pb and the cortisol response
to an acute physical stressor in 9 year-old children. Both
cord blood Pb and 2-year-old BPb measures were associ-
ated with an increased cortisol response to a cold
immersion stress. Fortin et al. [13] examined the re-
sponse to a psychological stressor among occupationally
Pb exposed adult men. They found that higher Pb expo-
sures were associated with lower basal cortisol levels
[13]. Our results complement these findings, despite
their methodologic differences, when taken as a whole,
all indicate an association between Pb exposure and
HPA axis disruption.
Our findings are in line with previous studies suggest-

ing that Pb toxicity includes endocrine disruption. Given
the role of cortisol in so many physiologic systems, the

Fig. 2 “Effect of 2nd pregnancy trimester blood lead in categories on diurnal ln(cortisol) curves stratified by age group (12 and 18–24-month-old)”. All
models were adjusted for child’s gender and maternal age at delivery, pre-pregnancy BMI and total school years
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pleiotropic effect of Pb on other developmental pro-
cesses, such as growth, cardiovascular and immunologic
function, may also be related to disruptions of HPA axis
function or maturation. Of note, the hippocampus, a
well-known target of Pb toxicity and a central anatomic
mediator of memory formation, has the highest concen-
tration of glucocorticoid receptors in the central nervous
system.

Limitations
We cannot rule out that infants might have experienced
some stress during the sample collection however, any
bias introduced by this however would be independent
of prenatal Pb exposure which occurred 1–2 years earl-
ier and therefore could not confound our results. Our

results are consistent with a maladaptive effect of pre-
natal Pb exposure on the HPA axis maturation but the
implications of this must still be assessed. Our study
considered only one cortisol rhythm measure, and longi-
tudinal measures of salivary cortisol rhythms beyond
2 years of age may shed further light on this develop-
mental trajectory.

Conclusions
To our knowledge, this is the first human study to look
at the association of prenatal Pb exposure and infant
basal diurnal cortisol rhythms as an index of HPA axis
functioning. We found that age predicts lower basal cor-
tisol secretion and that early prenatal Pb exposure is as-
sociated with dysregulated infant HPA axis function

Fig. 3 “Change in ln(cortisol) throughout the day associated with moderate (5≤ Pb < 10 μg/dL) and high (≥10 μg/dL) 2nd trimester blood lead by
age group”. All models were adjusted for child’s gender and maternal age at delivery, pre-pregnancy BMI and total school years
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perhaps representing premature HPA axis maturation.
More research is needed to confirm these findings.
Long-term follow-up of these PROGRESS infants will
allow additional insights into the possible health effects
resulting from prenatal exposure to Pb and subsequent
HPA axis disruption.

Additional file

Additional file 1: Details for statistical analysis method and Additional
file 1: Table S1 "Salivary cortisol geometric means and sample
characteristics by age group". (DOCX 18 kb)
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