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Abstract

Background: In the last decade unconventional oil and gas (UOG) extraction has rapidly proliferated throughout
the United States (US) and the world. This occurred largely because of the development of directional drilling and
hydraulic fracturing which allows access to fossil fuels from geologic formations that were previously not cost
effective to pursue. This process is known to use greater than 1,000 chemicals such as solvents, surfactants,
detergents, and biocides. In addition, a complex mixture of chemicals, including heavy metals, naturally-occurring
radioactive chemicals, and organic compounds are released from the formations and can enter air and water.
Compounds associated with UOG activity have been linked to adverse reproductive and developmental outcomes
in humans and laboratory animal models, which is possibly due to the presence of endocrine active chemicals.

Methods: Using systematic methods, electronic searches of PubMed and Web of Science were conducted to
identify studies that measured chemicals in air near sites of UOG activity. Records were screened by title and
abstract, relevant articles then underwent full text review, and data were extracted from the studies. A list of
chemicals detected near UOG sites was generated. Then, the potential endocrine activity of the most frequently
detected chemicals was explored via searches of literature from PubMed.

Results: Evaluation of 48 studies that sampled air near sites of UOG activity identified 106 chemicals detected in
two or more studies. Ethane, benzene and n-pentane were the top three most frequently detected. Twenty-one
chemicals have been shown to have endocrine activity including estrogenic and androgenic activity and the ability
to alter steroidogenesis. Literature also suggested that some of the air pollutants may affect reproduction,
development, and neurophysiological function, all endpoints which can be modulated by hormones. These
chemicals included aromatics (i.e., benzene, toluene, ethylbenzene, and xylene), several polycyclic aromatic
hydrocarbons, and mercury.

Conclusion: These results provide a basis for prioritizing future primary studies regarding the endocrine disrupting
properties of UOG air pollutants, including exposure research in wildlife and humans. Further, we recommend
systematic reviews of the health impacts of exposure to specific chemicals, and comprehensive environmental
sampling of a broader array of chemicals.
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Background
Advanced techniques used to develop oil and gas re-
sources, including horizontal drilling and hydraulic frac-
turing (fracking), have unlocked fossil fuels from
formations previously unavailable for extraction, includ-
ing shale and tight sands. Research has found that un-
conventional oil and gas (UOG) development and
production is associated with air pollution [1–7], contam-
ination of surface, ground, and drinking water [8–10], as
well as soil and sediment contamination [11–13]. Con-
taminants released from UOG sites enter the air readily
during well pad development and continue for the life of
the well, impacting both local and regional air quality. In-
dustry wide there are hundreds of different products com-
posed of a mixture of chemicals used during drilling,
fracturing, and the cleaning and maintenance of well pads
and equipment. Many of them are volatile and include
several known carcinogens and hazardous air pollutants
(HAPs) listed under the Clean Air Act [14]. Air pollutants
are released both from the products and mobile and sta-
tionary equipment commonly used during UOG opera-
tions [6, 15, 16]. Further, unprocessed natural gas contains
many volatile compounds that surface with methane and
are released to the environment through venting and flar-
ing and through fugitive emissions from well pipe fittings
and equipment [6, 16–18]. Additionally, open evaporation
pits that contain fracking fluids that return to the surface
(flowback) and water produced from fracturing the forma-
tion (produced water) further impact air quality in these
areas [19–21]. Due to the potential for wide-spread expos-
ure to air pollutants released from UOG activity and the
growing number of oil and gas wells being drilled in close
proximity to neighborhoods, including schools and recre-
ational areas, the health of nearby communities may be at
risk. Indeed, several studies have shown that UOG activity
may adversely impact the health of humans and animals
[22–26] and the environment [27–29].
These concerns have led to a growth in epidemiologic

research with many studies suggesting a link between
UOG proximity and adverse health impacts. Self-
reported symptoms by Pennsylvania residents living near
UOG operations in the Marcellus Shale include impacts
to the upper respiratory system, irritation of the skin
and sensory organs, and increased headaches [25, 30].
Additional studies also considered well activity or dens-
ity, a method used to estimate exposure to air pollutants.
McKenzie et al., found an increased risk of neurological
and respiratory effects, blood disorders, and adverse devel-
opmental outcomes in Colorado residents living within
one-half mile of natural gas wells [31]. These observations
were more pronounced during well completion activities
[31]. Increased odds of asthma exacerbations [32], nasal
irritation, migraine headaches, and fatigue symptoms were
more often reported by residents living near sites with

higher UOG activity compared to a control population
[33]. Risk of childhood hematologic cancer was also in-
creased with increased density of UOG wells [34]. Further,
retrospective cohort studies have linked UOG activity to
adverse reproductive and developmental outcomes, such
as preterm birth [35, 36], low birth weight [37], congenital
anomalies [38], and infant mortality [36, 39]. These out-
comes suggest a possible relationship between maternal
exposure to endocrine disrupting chemicals and birth out-
comes; however, results across studies are mixed.
In addition to epidemiological studies, recent studies

using in vitro and experimental animal models to assess
the connection between UOG activity and endocrine-
related outcomes have been published. In these initial
studies chemicals detected in water collected near UOG
operations such as spill sites and surface water near
wastewater injection sites were shown to have activity in
estrogen, androgen, progesterone, glucocorticoid, and
thyroid hormone in vitro receptor assays [10, 40]. In la-
boratory experiments exposure has resulted in similar
impacts across several different models. Specifically,
male rodents exposed prenatally to a mixture of chemi-
cals used during hydraulic fracturing were shown to
have increased organ weights of the testes and thymus,
decreased sperm counts, and increased serum testoster-
one levels [41]. Effects in female rodents included hor-
mone suppression, changes in uterine, ovary, heart, and
body weights, and disrupted folliculogenesis [42]. Emer-
ging research in zebrafish embryos found that exposure
to flowback/produced water from UOG increased embryo
deformations and mortality, reduced metabolic rates, and
altered cardio-respiratory gene expression [43, 44]. Fur-
ther, embryonically exposed juveniles demonstrated de-
creased metabolic rates and fitness as judged by swim
performance [45]. In exposed juvenile rainbow trout
mRNA expression was elevated for several genes including
vitellogenin and estrogen receptor alpha 2. Additionally,
expression of oxidative stress and biotranformation genes
in the liver and gills was observed [46]. Finally, exposure
of Daphnia to flowback/produced water resulted in de-
creased reproduction and altered gene expression [47].
The purpose of this evaluation was to employ system-

atic screening-level methods to begin to prioritize air
pollutants associated with UOG that have evidence of
endocrine activity. This work could be used to identify
avenues for primary research to understand endocrine
disrupting properties of air pollutants; provide the
groundwork for in-depth reviews of the health impacts
of exposure to specific chemicals (i.e., systematic or
scoping reviews); offer rationale for further exposure re-
search in wildlife and humans; and lastly, identify re-
search gaps. Specifically, two objectives were completed;
1) identification of the most commonly detected chemi-
cals in the air near UOG activity, as reported in original
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research, and 2) to determine if this subset of air pollut-
ants has been shown to have endocrine activity or have
effects that could be linked to disrupted endocrine
signaling.

Methods
Identification of air pollutants near sites of UOG activity
Comprehensive literature searches were performed in
order to identify studies that measured compounds in
air near or on sites of UOG development in the United
States (US). We used Web of Science and PubMed to
complete electronic searches for all years to June 2016.
The search logic was developed using terms for major
geologic formations in the US where UOG activity oc-
curs and terms that linked the formations to air emis-
sions (Additional file 1: Table S1). The titles and
abstracts of these articles were then screened for rele-
vance using Distiller SR® [48] by two independent re-
viewers. For inclusion, studies had to present primary
findings, be in the English language, and measure air
pollutants near sites of UOG production. Studies that
only measured methane were excluded. Discrepancies
regarding inclusion were discussed and resolved by the
two reviewers. Summary level data from relevant studies
were collected. Parameters included publication date,
chemicals detected, and the location of measurement.
These data were used to develop the list of compounds
detected in air. This initial list was then used to yield a
list of the chemicals detected in greater than 10 UOG
air sampling studies.

Determination of endocrine activity of UOG related air
pollutants
The list of air pollutants associated with UOG produc-
tion ascertained from peer-reviewed literature was cross-
referenced with the Endocrine Disruption Exchange
(TEDX) List of Potential Endocrine Disruptors (http://
endocrinedisruption.org/interactive-tools/tedx-list-of-potential-
endocrine-disruptors/search-the-tedx-list: accessed October
2016) to determine if any of the chemicals had been
characterized as having endocrine activity [49]. The
TEDX List of Potential Endocrine Disruptors is a data-
base that contains expert verified citations illustrating
evidence of endocrine disruptive properties of a variety
of chemicals; this database is continually updated as new
evidence about chemicals becomes available [49]. Cross-
referencing yielded the initial list of chemicals with evi-
dence of endocrine activity. For this initial list, citations
from the TEDX List of Potential Endocrine Disruptors
were used as evidence of endocrine activity. We then
performed searches in PubMed using the chemical name
and CAS number for the remaining chemicals detected
in greater than 10 UOG air sampling studies to deter-
mine whether or not those chemicals had evidence

documented in the peer-reviewed literature regarding
their potential endocrine activity (for the individual
chemical search terms see Additional file 1: Table S2).
The following 15 chemicals were searched in PubMed:
ethane, n-pentane, propane, n-butane, isopentane, iso-
butane, m,p-xylene, o-xylene, ethylene, methylcyclohex-
ane, n-heptane, acetylene, n-octane, propylene, and
cyclohexane. The PubMed records were imported into
Sciome Workbench for Interactive computer-Facilitated
Text-mining (SWIFT)-Review [50] and filtered using
search terms (modified from [51, 52]) intended to iden-
tify articles that assessed the endocrine activity of the
compounds (see Additional file 1: Table S3). Though xy-
lenes (the isomeric mixture) is listed on the TEDX List
of Potential Endocrine Disruptors we performed
searches for the compounds as represented in the air
sampling studies (i.e., m,p-xylene and o-xylene). In
addition, studies that evaluated the effects of exposure
to m-xylene and p-xylene separately and citations from
the TEDX List of Potential Endocrine Disruptors that
assessed the xylenes were included.

Results
Our search of the literature from PubMed and Web of
Science yielded 1366 and 2907 potential records, re-
spectively (including any duplicate records). Screening of
titles and abstracts by two reviewers identified 97 rele-
vant articles. Full text review of the articles yielded 43
inclusions and 54 exclusions (30 duplicates, five that did
not assess specific chemicals, 10 reviews, four confer-
ence abstracts, and five categorized as other [e.g.,
methods development]). In addition, hand searching
yielded five other studies that met inclusion criteria,
resulting in a total of 48 included studies.
Table 1 lists the 48 citations of the articles that mea-

sured air pollutants on or near sites of UOG production.
A distribution of the studies measuring UOG air pollut-
ants in sites across the US is shown in Fig. 1. The major-
ity of studies were done on the Barnett Shale in Texas
(11 studies). The least studied were Eagle Ford Shale in
Texas, Haynesville Shale in Louisiana, Arkansas, and
Texas, Fayetteville Shale in Arkansas, and Powder River
Basin in Montana and Wyoming, all with only one study
each. One hundred six chemicals were detected in two
or more of the 48 studies that measured air pollutants
near UOG sites and another 115 were detected only
once (see Additional file 1: Table S4 for full list of de-
tected chemicals). These chemicals represented a variety
of classes including alkanes, alkenes, alkynes, aromatics,
aldehydes and polycyclic aromatic hydrocarbons (PAHs).
Twenty chemicals were detected in 10 or more studies
with ethane and benzene being the most detected, appear-
ing in 56% and 54% of studies, respectively. Fifty-four
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Table 1 List of citations for UOG air papers

Author Title Sampling Location (Geologic Formation)

Brantley, HL. et al., 2015 [70] Assessment of volatile organic compound and
hazardous air pollutant emissions from oil and
natural gas well pads using mobile remote
and on-site direct measurements

Denver-Julesburg

Colborn, T. et al., 2014 [1] An exploratory study of air quality near natural
gas operations

Piceance

Eapi, GR. et al., 2014 [71] Mobile measurement of methane and
hydrogen sulfide at natural gas production
site fence lines in the Texas Barnett Shale

Barnett

Eisele, AP. et al., 2016 [72] Volatile organic compounds at two oil and
natural gas production well pads in Colorado
and Texas using passive samplers

Barnett; Denver-Julesburg

Esswein, EJ. et al., 2014 [73] Evaluation of some potential chemical
exposure risks during flowback operations in
unconventional oil and gas extraction:
Preliminary results

Denver-Julesburg; Green River; Piceance

Field, RA. et al., 2015 [20] Influence of oil and gas field operations on
spatial and temporal distributions of
atmospheric non-methane hydrocarbons and
their effect on ozone formation in winter

Green River

Field, RA. et al., 2015 [74] Distributions of air pollutants associated with
oil and natural gas development measured in
the Upper Green River Basin of Wyoming

Green River

Gilman, JB. et al., 2013 [2] Source signature of volatile organic
compounds from oil and natural gas
operations in northeastern Colorado

Denver-Julesburg

Goetz, JD. et al., 2015 [75] Atmospheric emission characterization of
Marcellus Shale natural gas development sites

Marcellus

Helmig, D. et al., 2014 [3] Highly elevated atmospheric levels of volatile
organic compounds in the Uintah Basin, Utah

Uintah

Katzenstein, AS. et al., 2003 [76] Extensive regional atmospheric hydrocarbon
pollution in the southwestern United States

Not reported

Koss, AR. et al., 2015 [77] Photochemical aging of volatile organic
compounds associated with oil and natural
gas extraction in the Uintah Basin, UT, during
a wintertime ozone formation event

Uintah

Lan, X. et al., 2015 [78] Atmospheric Mercury in the Barnett Shale
Area, Texas: Implications for emissions from oil
and gas processing

Barnett

Lee, L. et al., 2015 [79] Particulate organic nitrates observed in an oil
and natural gas production region during
wintertime

Uintah

Li, C. et al., 2016 [80] Satellite observation of pollutant emissions
from gas flaring activities near the Arctic

Bakken

Li, R. et al., 2014 [81] Measurements of hydrogen sulfide (H2S)
using PTR-MS: Calibration, humidity depend-
ence, inter-comparison and results from field
studies in an oil and gas production region

Uintah

Lyman, S. and Tran, T., 2015 [82] Inversion structure and winter ozone
distribution in the Uintah Basin, Utah, USA

Uintah

Macey, GP. et al., 2014 [4] Air concentrations of volatile compounds near
oil and gas production: a community-based
exploratory study

Denver-Julesburg; Fayetteville; Green River;
Marcellus; Powder River; Utica

McKenzie, LM. et al., 2012 [31] Human health risk assessment of air emissions
from development of unconventional natural
gas resources

Piceance
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Table 1 List of citations for UOG air papers (Continued)

Author Title Sampling Location (Geologic Formation)

Olaguer, EP. et al., 2015 [83] Updated methods for assessing the impacts
of nearby gas drilling and production on
neighborhood air quality and human health

Eagle Ford

Oltmans, S. et al., 2014 [84] Anatomy of wintertime ozone associated with
oil and natural gas extraction activity in
Wyoming and Utah

Green River; Uintah

Omara, M. et al., 2016 [85] Methane emissions from conventional and
unconventional natural gas production sites in
the Marcellus Shale basin

Marcellus

Paulik, LB. et al., 2016 [59] Emissions of polycyclic aromatic hydrocarbons
from natural gas extraction into air

Utica

Peischl, J. et al., 2015 [86] Quantifying atmospheric methane emissions
from oil and natural gas production in the
Bakken Shale region of North Dakota

Fayetteville; Haynesville; Marcellus

Pekney, NJ. et al., 2014 [87] Measurement of atmospheric pollutants
associated with oil and natural gas exploration
and production activity in Pennsylvania's
Allegheny National Forest

Marcellus

Petron, G. et al., 2012 [88] Hydrocarbon emissions characterization in the
Colorado Front Range: A pilot study

Denver-Julesburg

Petron, G. et al., 2014 [89] A new look at methane and nonmethane
hydrocarbon emissions from oil and natural
gas operations in the Colorado Denver-
Julesburg Basin

Denver-Julesburg

Prenni, AJ. et al., 2016 [90] Oil and gas impacts on air quality in federal
lands in the Bakken region: An overview of
the Bakken Air Quality Study and first results

Bakken

Rappengluck, B. et al., 2014 [5] Strong wintertime ozone events in the Upper
Green River basin, Wyoming

Green River

Rich, A. et al., 2014 [16] An exploratory study of air emissions
associated with shale gas development and
production in the Barnett Shale

Barnett

Rich, AL. and Orimoloye, HT., 2016 [91] Elevated atmospheric levels of benzene and
benzene-related compounds from unconven-
tional shale extraction and processing: Human
health concern for residential communities

Barnett

Roscioli, JR. et al., 2015 [15] Measurements of methane emissions from
natural gas gathering facilities and processing
plants: Measurement methods

Not reported

Rutter, AP. et al., 2015 [92] Sources of air pollution in a region of oil and
gas exploration downwind of a large city

Barnett

Schnell, RC. et al., 2009 [93] Rapid photochemical production of ozone at
high concentrations in a rural site during
winter

Green River

Schwarz, JP. et al., 2015 [94] Black carbon emissions from the Bakken oil
and gas development region

Bakken

Smith, ML. et al., 2015 [95] Airborne ethane observations in the Barnett
Shale: Quantification of ethane flux and
attribution of methane emissions

Barnett

Swarthout, RF. et al., 2013 [96] Volatile organic compound distributions
during the NACHTT campaign at the Boulder
Atmospheric Observatory: Influence of urban
and natural gas sources

Denver-Julesburg

Swarthout, RF. et al., 2015 [97] Impact of Marcellus Shale natural gas
development in southwest Pennsylvania on
volatile organic compound emissions and
regional air quality

Marcellus
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chemicals were detected in 3-9 studies and 147 were de-
tected in 2 or fewer.
The list of chemicals detected near UOG activity was

cross-referenced with the TEDX List of Potential Endo-
crine Disruptors. Twenty-six were already identified and
listed in the TEDX List of Potential Endocrine Disrup-
tors [49]. There were 15 additional chemicals that were
reported as being detected in 10 or more UOG studies,
but that were not currently included in the TEDX List of
Potential Endocrine Disruptors that were searched. A
chemical’s absence on the TEDX List of Potential Endo-
crine Disruptors does not necessarily mean there is no
evidence for endocrine activity. Rather, it is possible that
the literature available for that chemical has not yet been
investigated for endocrine activity. The searches of
PubMed for the 15 frequently detected chemicals yielded
eight with evidence from the literature indicating at least
one study had shown the chemicals to be endocrine ac-
tive (including findings related to potential endocrine ac-
tivity). Those chemicals were m-xylene, p-xylene, o-
xylene, methylcyclohexane, n-heptane, isopentane, pro-
pane, propylene. There were no studies that evaluated
the endocrine activity of ethane, n-butane, isobutane,

ethylene, cyclohexane and acetylene found in our
searches. In studies identified by our search that assessed
the effects of n-pentane [53] and n-octane [54] endo-
crine activity was not shown. Table 2 characterizes pos-
sible endocrine activities for the individual chemicals.
The studies listed in this table tested more direct indica-
tors of endocrine activity such as estrogenic, androgenic,
thyroidogenic, progestrogenic, glucocorticodogenic, and
steroidogenic activities. In Table 3, chemicals identified
as having evidence of physiological activity that may be
linked to endocrine disruption are shown. This includes
evaluations of reproduction, aryl hydrocarbon signaling,
development, neurophysiology, and other endocrine re-
lated effects. Notably, a few of these air pollutants (e.g.,
benzene, n-hexane, and isopentane) may impact less
commonly evaluated endocrine related endpoints such
as insulin signaling and adrenal physiology (see Table 3).
Roughly half of the chemicals in Tables 2 and 3 are PAHs,
although it should be noted that few studies detected PAHs
near UOG (see Fig. 2). Single ring aromatics such as ben-
zene, toluene, ethylbenzene, xylene, and styrene are also
shown in Tables 2 and 3 with evidence suggesting possible
estrogenic, androgenic, reproductive, and developmental

Table 1 List of citations for UOG air papers (Continued)
Author Title Sampling Location (Geologic Formation)

Thompson, CR. et al., 2014 [98] Influence of oil and gas emissions on ambient
atmospheric non-methane hydrocarbons in
residential areas of Northeastern Colorado

Denver-Julesburg

Townsend-Small, A. et al., 2015 [99] Integrating source apportionment tracers into
a bottom-up inventory of methane emissions
in the Barnett Shale hydraulic fracturing
region

Barnett

Vinciguerra, T. et al., 2015 [100] Regional air quality impacts of hydraulic
fracturing and shale natural gas activity:
Evidence from ambient VOC observations

Marcellus

Warneke, C. et al., 2014 [6] Volatile organic compound emissions from
the oil and natural gas industry in the Uintah
Basin, Utah: Oil and gas well pad emissions
compared to ambient air composition

Uintah

Warneke, C. et al., 2015 [101] PTR-QMS versus PTR-TOF comparison in a re-
gion with oil and natural gas extraction indus-
try in the Uintah Basin in 2013

Uintah

Weyant, CL. et al., 2016 [102] Black carbon emissions from associated
natural gas flaring

Bakken

Yacovitch, TI. et al., 2015 [103] Mobile laboratory observations of methane
emissions in the Barnett Shale region

Barnett

Yuan, B. et al., 2015 [104] Airborne flux measurements of methane and
volatile organic compounds over the
Haynesville and Marcellus Shale gas
production regions

Haynesville; Marcellus

Zavala-Araiza, D. et al., 2014 [105] Atmospheric hydrocarbon emissions and
concentrations in the Barnett Shale natural
gas production region

Barnett

Zielinska, B. et al., 2014 [7] Impact of emissions from natural gas
production facilities on ambient air quality in
the Barnett Shale area: A pilot study

Barnett
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effects. Styrene seems to be of particular concern because
in addition to the aforementioned evidence of endocrine
activity it also appears to have evidence for glucocorticodo-
genic, thyroidogenic, and progestrogenic, activity and alter-
ations of steroidgenesis.
In Fig. 2, the air sampling data (Table 1) was combined

with the data that assessed possible endocrine activity
(Tables 2 and 3). The chemicals identified as potentially
endocrine active are listed along with the number of
studies that detected them in air near sites of UOG ac-
tivity. This list included 34 chemicals with m-xylene and
p-xylene counted separately, however they are combined
(i.e., m,p-xylene) for the number of papers that detected
them in the air to be consistent with how they are re-
ported in that literature. In total, this list includes the 26
chemicals that were already on the TEDX List of Poten-
tial Endocrine Disruptors and the eight frequently de-
tected UOG associated air pollutants that were found to
have potential endocrine activity. Benzene, toluene,
ethylbenzene, and xylenes (BTEX) were detected more
frequently than PAHs and heavy metals such as
mercury.

Discussion
Our study revealed more than 200 air chemicals in asso-
ciation with UOG activity at sites in the US. We identi-
fied 26 as being on the TEDX list, which identifies
chemicals with endocrine activity, and an additional

eight of the most frequently detected air pollutants were
identified as having potential endocrine activity. Endo-
crine activities included estrogenicity, androgenicity and
altered steroidogenesis. In addition, we included evi-
dence from studies assessing endpoints related to devel-
opmental, neurophysiological and reproductive changes
commonly mediated by hormones [55].
The BTEX compounds were among the top 10 most

detected chemicals across the studies in our sample.
This is likely due to the existence of less expensive de-
tection methods and their recognition as HAPs accord-
ing to the United States Environmental Protection
Agency (US EPA) [56]. The toxicity of the BTEX chemi-
cals has been extensively studied with respect to respira-
tory, cardiovascular, neurological, and carcinogenic
impacts, yet according to recent studies it is becoming
apparent that they may also have impacts on endocrine
function [41, 57]. Styrene, a structurally related com-
pound, was also frequently detected and appears to have
the ability to interfere with several endocrine pathways
potentially resulting in alterations in development and
neurophysiology. This compound has been studied ex-
tensively for cancer related outcomes and is “reasonably
anticipated to be a carcinogen,” according to the
National Toxicology Program [58]. Likewise, naphtha-
lene is a possible carcinogen as well as a HAP [14] and
appears to affect several different endocrine pathways.
Few studies measured PAHs near UOG. One study that

Fig. 1 Number of UOG air sampling studies by geologic formation. Air sampling has been performed in various UOG sites in the US. The most
commonly sampled site in studies identified by our search was the Barnett Shale located in TX. The least frequently studied were Eagle Ford
Shale, Fayetteville Shale, Haynesville Shale, and Powder River Basin. TX, Texas; AR, Arkansas; OK, Oklahoma; LA, Louisiana; MT, Montana; WY,
Wyoming; NY, New York; MD, Maryland; PA, Pennsylvania; WV, West Virginia; OH, Ohio; VA, Virginia; KY, Kentucky; TN, Tennessee; CO, Colorado;
ND, North Dakota; UT, Utah; KS, Kansas; NE, Nebraska; UOG, unconventional oil and gas
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measured a wide array of PAHs in the air near UOG
found increased concentrations at sites closest to active
wells. These levels did not exceed EPA’s acceptable risk
level for cancer, the only health effect addressed in the
study [59]. In addition to carcinogenic properties, low
level exposure to PAHs during prenatal development has
been associated with delayed mental development, de-
creases in intelligence quotient (IQ), and childhood
obesity [60–63]. Thus it is important to determine if
they are pollutants commonly associated with UOG.
This study does not present a comprehensive review

of research on the endocrine activity of compounds de-
tected in the air near UOG. Rather, it serves to flag
endocrine active compounds in order to inform future
research on the potential health impacts of UOG. Fur-
ther, some of the endocrine pathways have not been
studied extensively and have not been replicated across
models. In addition, some of the chemicals were not
tested as inhalants in the studies we used to document
endocrine disruption though this is the suspected pri-
mary route of exposure for the air pollutants evaluated.
Our study only surveyed studies performed in the US,

therefore it is possible that had we included studies from
other countries the patterns of chemical detections may
have differed. We also excluded foreign language studies,
for lack of interpretive resources.
The review is limited by the fact that the primary stud-

ies routinely used standardized protocols (e.g., EPA
Method TO-12, American Standard Test Method
[ASTM] D-1357-95) that were likely informed by the US
EPA’s HAPs list, which would lead to a bias in terms of
which chemicals are tested for and thus detected. In
other words, there may be more chemicals present near
UOG, particularly proprietary chemicals used in drilling
and hydraulic fracturing, that have not been assessed
near well pads or other facilities. Therefore, the present
review is also limited in identifying other potentially
endocrine active chemicals that have not yet been quan-
tified or have been detected less frequently.
The published literature suggests a relationship be-

tween proximity to and/or density of UOG development
and adverse health impacts in humans and wildlife, in-
cluding outcomes that are a result of exposure to endo-
crine active compounds [10, 35–38, 40, 64]. Our survey

Fig. 2 Potentially endocrine active chemicals and the number of studies that identified them near UOG sites. The figure shows the 34 chemicals
(with m-xylene and p-xylene counted separately) that were identified as having evidence of endocrine active properties and the number of times
they were detected in the air sampling papers included in this study. The graph show that the BTEX compounds (benzene, toluene, ethylbenzene,
xylenes) were among the most frequently detected, and the polycyclic aromatic hydrocarbons (PAHs) were less frequently detected in air samples
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of the literature, while limited, supports these observa-
tions given that some of the air pollutants identified near
sites of UOG activity are potentially endocrine active.
Due to the types and hazards of the chemicals identified,
there is a need to pursue additional long-term studies in
humans and wildlife that investigate endocrine mediated
health outcomes in order to understand whether or not
exposure to endocrine active air pollutants results in dis-
ease. However, these studies are time-consuming, and a
delay in action may be considered unethical since it is
already known that 28 chemicals identified in our study
are HAPs (i.e., “are known to cause cancer or other ser-
ious health impacts [56]”) and several others have been
studied thoroughly and identified as harmful to humans
[65–68]. It was recently estimated that 17.6 million
people in the US live within a mile of a well [69]. Thus,
these populations may be exposed to air pollutants that
have been linked to health impacts. It may be prudent to
implement precautions similar to other industries that
reduce exposure to air pollutants known to be health
hazards.
For chemicals with sufficient bodies of literature but

undefined hazard classifications, strategic execution of
systematic reviews should follow as needed. These re-
views would provide for a comprehensive analysis of the
bodies of literature in order to determine confidence in
the findings and/or potentially identify research gaps
that might be addressed by more primary research. In
addition, comprehensive environmental sampling of a
broader array of chemicals (i.e., beyond HAPs) using
novel laboratory techniques is necessary to establish if
other air pollutants of concern are being emitted that
are not included in standard testing protocols. Lastly,
periodic updates to reviews, such as the present study,
that assimilate new data are useful in characterizing the
changing research landscape and can be used to redirect
primary research efforts and policy actions as needed.

Conclusions
The results of this study provide a basis for directing fu-
ture primary research about the endocrine disrupting
properties of air pollutants near UOG sites including ex-
posure research in wildlife and humans. In addition,
thoughtfully designed systematic reviews of the health
impacts of specific chemicals should be conducted. En-
vironmental testing for emerging chemicals of concern
is also recommended.
In closing, there is evidence that individual air pollut-

ants associated with UOG activity are endocrine active.
Endocrine disruptors can have actions at low exposure
concentrations, and exposures can lead to aberrant tra-
jectories resulting in suboptimal developmental, behav-
ioral, reproductive, and metabolic conditions. Yet, the
magnitude of exposures specific to UOG, and the

possible long-term health impacts, are not well under-
stood. Further, several of the chemicals we identified are
already designated by the US EPA as suspected or
known carcinogens, are known to cause adverse devel-
opmental or reproductive effects, and are known for
other toxicities (e.g., hearing loss, and nerve damage).
Given the potential for health impacts and the lack of
safety recommendations for many of the chemicals we
identified, there is an urgent need to address these re-
leases near human and wildlife populations.

Additional file

Additional file 1: Table S1. Search terms used to identify air pollutants
associated with UOG production. Table S2. PubMed search logic for
chemicals with 10 or more detections from air studies that were not
found on the TEDX List of Potential Endocrine Disruptors. Table S3.
SWIFT search logic used to identify primary articles potentially describing
ED activity. Table S4. List of chemicals reported as detected in air from 48
papers measuring air pollutants attributed to UOG activity. (DOCX 50 kb)
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