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Abstract

Background: Few longitudinal studies have examined the association between ultrafine particulate matter (UFP,
particles < 0.1 μm aerodynamic diameter) exposure and cardiovascular disease (CVD) risk factors. We used data from
791 adults participating in the longitudinal Boston Puerto Rican Health Study (Massachusetts, USA) between 2004
and 2015 to assess whether UFP exposure was associated with blood pressure and high sensitivity C-reactive protein
(hsCRP, a biomarker of systemic inflammation).

Methods: Residential annual average UFP exposure (measured as particle number concentration, PNC) was assigned
using a model accounting for spatial and temporal trends. We also adjusted PNC values for participants’ inhalation rate
to obtain the particle inhalation rate (PIR) as a secondary exposure measure. Multilevel linear models with a random
intercept for each participant were used to examine the association of UFP with blood pressure and hsCRP.

Results: Overall, in adjusted models, an inter-quartile range increase in PNC was associated with increased hsCRP (β = 6.8;
95% CI = − 0.3, 14.0%) but not with increased systolic blood pressure (β = 0.96; 95% CI = − 0.33, 2.25 mmHg),
pulse pressure (β = 0.70; 95% CI = − 0.27, 1.67 mmHg), or diastolic blood pressure (β = 0.55; 95% CI = − 0.20, 1.
30 mmHg). There were generally stronger positive associations among women and never smokers. Among
men, there were inverse associations of PNC with systolic blood pressure and pulse pressure. In contrast to
the primary findings, an inter-quartile range increase in the PIR was positively associated with systolic blood
pressure (β= 1.03; 95% CI = 0.00, 2.06 mmHg) and diastolic blood pressure (β= 1.01; 95% CI = 0.36, 1.66 mmHg), but not
with pulse pressure or hsCRP.

Conclusions: We observed that exposure to PNC was associated with increases in measures of CVD risk markers, especially
among certain sub-populations. The exploratory PIR exposure metric should be further developed.
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Background
Long-term exposure to fine particulate matter (PM2.5, < 2.
5 μm aerodynamic diameter) has been associated with car-
diovascular disease (CVD) risk factors, such as increased
blood pressure (BP) and concentrations of biomarkers of
systemic inflammation, as well as increased risk of hyper-
tension [1–6]. Less is known, however, about the impact of
the smallest size fraction of PM, ultrafine PM (UFP, < 0.
1 μm aerodynamic diameter), on these indicators. Com-
pared to larger size fractions, UFP has a larger total depos-
ition fraction, can penetrate more deeply into the lungs, has
greater total surface area with which to interact with epithe-
lial cells, is more likely to cross biological barriers, and can
induce oxidative stress more readily [7–15].
A major source of UFP in urban areas is motor vehicle ex-

haust and there is high spatial and temporal variability of
UFP compared to other sizes of particulate matter, especially
near roadways [16]. Due in part to the challenges of model-
ing UFP [17–22], there is little epidemiological literature on
the health consequences of long-term UFP exposure. In a
cross-sectional study of the health effects of annual average
particle number concentration (PNC) among adults in the
Community Assessment of Freeway Exposure and Health
Study residing in several near-highway and urban back-
ground areas of the greater Boston area, we found positive
associations with high sensitivity C-reactive protein (hsCRP),
a biomarker of systemic inflammation [23]. The few previ-
ously published longitudinal analyses of the long-term
health effects of UFP considered UFP modeled with larger
spatial resolutions (between 200 m and 4 km). One study
found that UFP mass was associated with increased ische-
mic heart disease mortality [24]. Other studies of long-term
exposure to PNC have found that PNC was positively asso-
ciated with sub-clinical markers of atherosclerosis and was
inconsistently associated with biomarkers of inflammation
and with respiratory outcomes [25–27].
Given the small number of studies on the health effects

of long-term UFP exposure, we investigated the relation-
ship between UFP and cardiovascular risk factors in the
prospective Boston Puerto Rican Health Study (BPRHS)
[28]. In this population, proximity to traffic was previously
associated with changes in hsCRP levels over two years
[29]. For the present study, our primary objective was to
assess whether ambient residential UFP number concen-
trations at a fine spatial scale (≤20 m resolution) were as-
sociated with BP and hsCRP levels over six years. We also
explored a novel exposure metric, the particle inhalation
rate (PIR, particles inhaled/time), that may more closely
approximate the biologically-relevant dose of UFP.

Methods
Study population
The BPRHS is a prospective cohort study of 1499 individ-
uals designed to investigate the risk factors for chronic

disease among Puerto Ricans living in eastern Massachu-
setts [28]. Briefly, participants were recruited through
door-to-door enumeration and through community ap-
proaches from census tracts in the greater Boston area
with at least 10 Hispanics aged 45–75 years. Individuals
were eligible for inclusion in the BPRHS if they were 45–
75 years old at baseline, were able to answer questions in
English or Spanish, and self-identified as being Puerto
Rican. Participants were excluded if they had plans to
move within two years or if they had low cognitive func-
tion as measured by the Mini Mental State Examination
(scores ≤10). We restricted our analyses to those partici-
pants who lived within a 1000 m buffer of our air pollu-
tion monitoring area at any study visit (n = 791, Fig. 1).
This study was approved by the Institutional Review

Boards at Tufts Medical Center, Northeastern Univer-
sity, and the University of Massachusetts Lowell. All par-
ticipants provided written informed consent.

Health data
Participants were visited up to three times over approxi-
mately six years (visit one between 2004 and 2009, visit two
between 2006 and 2011, and visit three between 2011 and
2015). The mean time between visit one and visit two was
2.2 years while the mean time between visit two and visit
three was 4.1 years. Trained Spanish-English bilingual inter-
viewers administered questionnaires in participants’ homes.
Educational attainment was analyzed as a dichotomous
variable (>8th grade/≤8th grade), based on the distribution
of educational attainment in this population. Smoking sta-
tus was assessed as current, former, or never (< 100 ciga-
rettes smoked). Poverty status was determined by
comparing participants’ total self-reported annual house-
hold income to the U.S. Census Bureau annual thresholds
[30]. Medication use (prescription and over-the-counter)
was assessed by visual inspection of medications. Physical
activity was assessed using a modified Paffenbarger ques-
tionnaire of the Harvard Alumni Activity Survey which has
been previously validated in an elderly Puerto Rican popu-
lation [31, 32]. Validated scales were used to assess psycho-
logical acculturation and perceived stress [33, 34].
Participants were considered depressed if they reported tak-
ing medication for depression or if they scored ≥16 on the
Center for Epidemiology Studies Depression Scale [35–37].
Height and weight were measured in duplicate. Body

mass index (BMI) was calculated as kg/m2. A trained
interviewer measured participants’ seated systolic blood
pressure (SBP) and diastolic blood pressure (DBP) with an
electronic sphygmomanometer (Dinamap™ Model 8260,
Critikon, Tampa, FL), in duplicate, three times. The second
and third sets of readings were averaged [28]. Participants
were considered hypertensive if they had a SBP
≥140 mmHg, a DBP ≥90 mmHg, self-reported a diagnosis
of hypertension, or if they were taking medication for
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hypertension. Pulse pressure (PP) was calculated as the dif-
ference between SBP and DBP.
A phlebotomist obtained blood samples after each

study visit (> 81% had fasting samples at each visit; visits
generally occurred in the morning). Cholesterol, triglyc-
erides, serum glucose, and hsCRP concentrations were
measured as described previously [28]. We excluded the
top 1% of hsCRP values (≥47 mg/L) since extremely high
hsCRP values are associated with acute infections [38].
Triglyceride and hsCRP concentrations were natural log
transformed due to their skewed distributions. Partici-
pants were considered diabetic if their glucose concen-
tration was ≥126 mg/dL, they were taking medications
for diabetes, or they self-reported diabetes.

Geolocation of participants’ residences
Participants’ residential addresses at each study visit
were geocoded using ArcMap [39]. Addresses that
could not be parcel-matched using the Boston parcel
data were geocoded using Google Earth and publicly
accessible site maps of housing developments. We
geocoded 97% of participants’ residential locations at
their second study visit (41% matched automatically)
and 96% at their third study visit (39% matched auto-
matically). A randomly selected subset of 12% of the
geocoded locations for participants who moved was
independently checked. All addresses were geocoded
to the same parcel and the mean difference in pos-
ition was less than 10 m.

Fig. 1 Spatial distribution of modeled annual average PNC and PIR. a) particle number concentration (PNC) and b) particle inhalation rate (PIR; by quintiles)
at participant residences at baseline (n= 754). Data from mobile monitoring, a central monitor at a U.S. Environmental Protection Agency Speciation Trends
Network (EPA-STN) site, and residential monitors were used to build and validate the PNC model
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Exposure assessment
Exposure to UFP was estimated using a land-use regres-
sion model based on a previously published model [40].
Details on model development and validation are pro-
vided in the Additional file 1 (Part 1; see Table S1 for
the full model). Briefly, the model was built using mea-
sured PNC from mobile and stationary platforms (Fig. 1)
[41], meteorological data, and distances from specific
roadways and bus routes (model-adjusted r2 = 0.37; see
Additional file 1, Part 1) [42, 43]. The r2 is similar to
other hourly PNC models specific to metropolitan
Boston [44]. The model predicted hourly ambient PNC
at each participant’s address with ≤20 m resolution. For
all PNC estimates before 2012, the hourly model was
back-extrapolated using meteorological data collected dur-
ing the time period of interest. This was possible because
PNC regression models are largely stable over time [45]
and models of traffic-related air pollutants, including
PNC, perform reasonably well when back-extrapolated
[46, 47]. Each participant was then assigned an ambient
annual average PNC corresponding to the 365 days imme-
diately preceding each of their study visits.

Calculation of particle inhalation rate
The particle inhalation rate (PIR, number of particles in-
haled/h) was estimated for each participant as the prod-
uct of the annual average PNC estimate (particles/L) and
the hourly respiratory volume (tidal volume * breaths/h
= L of air inhaled/h). We used published estimates for
age- and sex-specific minute respiratory volume (L of air
inhaled/min-kg) adjusted for weight and physical activity
[48] together with data on how many hours per typical
weekday and weekend day participants engaged in vari-
ous levels of physical activity (lying down, sitting, light
activity, moderate activity, and vigorous activity; for al-
gorithm see Additional file 1, Part 2).

Statistical analysis
For each outcome (SBP, DBP, PP, ln(hsCRP)), we developed
two different multilevel linear models to consider the longi-
tudinal associations of 1) PNC and 2) PIR with the levels of
the outcomes across study visits. All models controlled for
age, included a random intercept for each participant, and
used data from every completed visit. All modeling was
performed in Stata v14 [49]. To facilitate direct compari-
sons between the PNC and PIR models, we scaled results
to the inter-quartile range (IQR; 4.6 thousand particles/mL
and 6.2 billion particles inhaled/h, respectively).
We used a multi-stage process to select covariates.

From an initial set of potential covariates identified by a
literature review, we first included variables in the
models if they were 1) associated with the outcome (p <
0.15) in bivariate analysis, and 2) either associated with
the air pollution measure (p < 0.15) or changed the effect

estimate for the air pollution measure by ≥10% in
models that included only the air pollution measure and
the potential covariate. Variables were retained if they
were associated with the outcome in the multivariate
model (p < 0.15) and if they did not introduce problems
with collinearity based on variance inflation factors and
correlation coefficients. We then assessed the effect of
adding other variables that were considered potentially
important based on the literature but had not met our ini-
tial inclusion criteria. If these variables were not associated
with the outcome (p < 0.15) and did not materially change
the effect estimates for PNC or PIR, they were excluded.
Model residuals and model fit statistics were examined
after the addition of each new covariate. Time varying pre-
dictors considered during the covariate selection process
included age, BMI, high-density lipoprotein (HDL) choles-
terol, low-density lipoprotein (LDL) cholesterol, ln(trigly-
cerides), diabetes, hypertension medication, smoking,
anxiety medication, perceived stress, psychological accul-
turation, marital status, and physical activity. Time invari-
ant predictors considered included sex, educational
attainment, and year of baseline visit. Year of baseline visit
was included if it was a significant predictor to account
for annual trends not captured within the PNC model.
Physical activity and sex were not considered as con-
founders in the PIR models, as they were used in the cal-
culation of the exposure. Variables assessed only at the
third study visit (e.g., secondhand smoke exposure, family
history of hypertension) were included only in sensitivity
analyses and were assumed to be time-invariant. For each
model, we checked collinearity and intra-class correla-
tions. We also checked the normality and homoscedastic-
ity of the residual errors.
Based on evidence from previous studies [1], we exam-

ined effect modification by sex, medication use, family
history of hypertension (for BP), family history of CVD
(for hsCRP), diabetes, smoking, employment status at
baseline, physical activity, age, and BMI. To account for
the high prevalence of baseline hypertension and cardio-
vascular disease, we also considered the effect of using
the baseline measure of the outcome as a covariate in
models that only used outcome data from the second
and third study visits. Additionally, we conducted sensi-
tivity analyses of the main models excluding participants
who did not complete all three study visits, including
participants with hsCRP values >99th percentile and ex-
cluding participants who, at baseline, self-reported at
least one previous heart attack or stroke, had hyperten-
sion, had high baseline hsCRP (> 3 mg/L), or who died
before their third study visit (n = 50).

Results
Sixty-nine percent of participants were female and about
half had attained more than an eighth grade education
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(Table 1). At each study visit, more than 70% of partici-
pants reported a household income below 120% of the
federal poverty line [50] and only 22.1% of participants
were employed at baseline. At baseline, 44.4% of partici-
pants reported never smoking, 23.7% were current
smokers, and 31.9% were former smokers. Although the
mean age at baseline was 57.1 years (standard deviation
= 7.4; Table 1), 11.2% of participants had suffered at least
one heart attack or stroke, 72.3% had hypertension, 46.
0% had diabetes, 37.3% took antilipidemic (statin) medi-
cations, and 65.7% showed depressive symptomology.
The participants included in the present analysis were
similar to the larger BPRHS population [28].
Exposure distributions are summarized in Table 2 and

spatial distributions are shown in Fig. 1. The distribu-
tions of both PNC and PIR were fairly stable across
study visits (Table 2). PNC and PIR values were signifi-
cantly correlated (r = 0.356, p < 0.001).
Overall, long-term exposure to PNC was not associ-

ated with SBP (β = 0.96; 95% CI = − 0.33, 2.25 mmHg per
4600 particles/mL; Fig. 2). Sex modified the effect of
PNC on SBP. Among females, PNC was positively asso-
ciated with SBP (β = 1.84; 95% CI = 0.21, 3.48 mmHg)
while for males, PNC was inversely but not significantly
associated with SBP (β = − 1.09; 95% CI = − 3.16, 0.
98 mmHg). Additionally, PNC was positively associated

with SBP among never smokers (β = 2.20; 95% CI = 0.04,
4.37 mmHg), but not among current or former smokers
(Additional file 1: Table S2). When controlling for the
baseline level of SBP, PNC was associated with changes
in SBP (β = 1.66; 95% CI = 0.17, 3.14 mmHg). When
using the PIR in place of PNC, exposure was associ-
ated with SBP (β = 1.03; 95% CI = 0.00, 2.06 mmHg
per 6.2 billion particles inhaled/h). These associations
were stronger among generally healthier participants
(Additional file 1: Table S3). The associations between
PIR and BP were attenuated when people with hyper-
tension at baseline and, separately, people who
dropped out before their third study visit were ex-
cluded (β = 1.12, 95% CI = − 0.49, 2.73 mmHg; β = 0.
36, 95% CI = − 0.93, 1.64 mmHg, respectively).
There was no association overall between PNC and

DBP (β = 0.55; 95% CI = − 0.20, 1.30 mmHg per 4600 par-
ticles/mL), except among never smokers (β = 1.32; 95% CI
= 0.19, 2.46 mmHg; Fig. 2). Additionally, excluding people
taking respiratory medications made the association be-
tween PNC and DBP levels significant (β = 1.03, 95% CI =
0.16, 1.89 mmHg). Nevertheless, controlling for the base-
line level of DBP did not substantially affect the effect esti-
mates (β = 0.15; 95% CI = − 0.72, 1.02 mmHg). In contrast,
the PIR was associated with DBP (β = 1.01; 95% CI = 0.36,
1.66 mmHg per 6.2 billion particles inhaled/h). The

Table 1 Participant characteristics by study visit

Visit One Visit Two Visit Three

N Mean (s) or % N Mean (s) or % N Mean (s) or %

SBP (mmHg) 731 134.6 (18.8) 600 136.8 (19.2) 423 135.0 (18.4)

DBP (mmHg) 730 80.9 (10.6) 600 80.4 (10.6) 423 75.4 (10.4)

PP (mmHg) 730 53.7 (14.6) 600 56.4 (15.8) 423 59.7 (16.3)

hsCRP (mg/L) 727 6.25 (9.02) 576 6.48 (11.04) 387 7.04 (9.49)

Age 754 57.1 (7.4) 605 59.2 (7.5) 431 63.1 (7.3)

BMI (kg/m2) 747 31.7 (6.3) 585 31.6 (6.5) 395 31.0 (6.7)

HDL (mg/dL) 737 44.2 (12.3) 594 46.5 (12.6) 395 47.3 (15.7)

LDL (mg/dL) 721 107.5 (35.5) 585 109.7 (35.5) 392 105.5 (35.1)

Triglycerides (mg/dL) 737 164 (114) 594 154 (93) 395 146 (109)

Physical activity score 751 31.8 (5.0) 603 31.3 (4.5) 429 31.7 (6.2)

Perceived stress 751 22.9 (9.6) 603 22.5 (9.0) 424 28.2 (7.2)

Distance from nearest interstate highway (m)a 754 1800 (1120) 605 1770 (1100) 409 1710 (1070)

Distance from nearest major road (m)b 754 240 (230) 605 240 (230) 409 250 (240)

Inhalation rate (L/h) 747 580 (220) 588 560 (200) 395 570 (230)

Female (%) 515 68.3 428 70.7 307 71.6

>8th grade education (%) 396 52.9 314 52.1 216 50.6

Household income < 120% poverty line (%) 504 71.3 427 75.2 291 77.6

Current smoker (%) 178 23.7 133 22.0 78 18.8

Former smoker (%) 240 31.9 199 33.0 158 38.1
aInterstate highways 90 or 93
bMajor roads are defined as carrying ≥10,000 vehicles per day
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positive associations between PIR and DBP were strongest
among males, participants employed at baseline, and older
participants (Additional file 1: Table S3). The associations
between PIR and DBP were attenuated when excluding
people with hypertension at baseline and, separately, ex-
cluding people who dropped out before their third study
visit (β = 1.01, 95% CI = − 0.05, 2.07 mmHg; β = 0.64, 95%
CI = − 0.18, 1.46 mmHg, respectively).

Similarly to the trends for SBP, PNC was not associated
with PP overall (β = 0.70; 95% CI = − 0.27, 1.67 mmHg per
4600 particles/mL) but there was effect modification by
sex (Fig. 2). Among females, PNC was positively associ-
ated with PP (β = 1.73; 95% CI = 0.52, 2.93 mmHg) while
for males, PNC was inversely associated with PP (β = − 1.
62; 95% CI = − 3.18, − 0.05 mmHg). The positive associa-
tions between PNC and PP were generally stronger among

Table 2 Exposure distributions for PNC and PIR

PNC (1000 particles/mL) PIR (1 billion inhaled/h)

Total Visit 1 Visit 2 Visit 3 Total Visit 1 Visit 2 Visit 3

Observations 1790 754 605 431 1730 747 588 395

Mean 23 24 23 23 13 14 13 13

Standard deviation 3.4 3.5 3.1 3.5 5.5 5.6 5.0 6.0

Minimum 8.1 11 10 8.1 3.7 3.7 3.9 4.0

25th percentile 21 21 22 21 9.5 9.9 9.4 8.8

Median 24 24 24 24 12 13 12 12

75th percentile 26 26 26 26 16 16 15 15

Maximum 32 32 31 30 54 54 37 39

Range 24 21 20 22 51 51 33 35

IQR 4.6 5.0 4.2 5.0 6.2 6.3 6.0 6.6

Fig. 2 Associations between PNC and PIR with blood pressure and high sensitivity C-reactive protein. a) Change in blood pressure (mmHg) and b)
percent change in C-reactive protein (mg/L) with an inter-quartile increase in PNC or PIR. All models control for age. Models additionally adjusted for:
* Systolic blood pressure (SBP): education, sex, BMI, high-density lipoprotein (HDL) cholesterol, ln(triglycerides), hypertension medication, anxiety
medication, marital status, and year of baseline visit; Diastolic blood pressure (DBP): sex, BMI, low-density lipoprotein (LDL) cholesterol,
HDL cholesterol, ln(triglycerides), diabetes, marital status, and year of baseline visit; Pulse pressure (PP): education, LDL cholesterol, hypertension medication,
diabetes, marital status, and smoking; High sensitivity C-reactive protein (hsCRP): education, sex, BMI, LDL cholesterol, HDL cholesterol, diabetes, anxiety
medication, and smoking. ** SBP: education, BMI, LDL cholesterol, HDL cholesterol, ln(triglycerides), hypertension medication, anxiety medication, marital
status, and year of baseline visit; DBP: BMI, LDL cholesterol, HDL cholesterol, ln(triglycerides), marital status, smoking, and year of baseline visit; PP: education,
LDL cholesterol, hypertension medication, diabetes, marital status, and smoking; hsCRP: education, BMI, LDL cholesterol, HDL cholesterol, ln(triglycerides),
diabetes, and anxiety medication. *** The same covariates are used as in the main models with PNC but only outcome data from the second and third
study visits are included
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never smokers, participants who were not employed at
baseline, the least physically active participants, older par-
ticipants, non-diabetics, and participants with a family his-
tory of hypertension (Additional file 1: Table S2). When
controlling for the baseline level of PP, PNC was associ-
ated with changes in PP (β = 1.69; 95% CI = 0.66, 2.
72 mmHg). When using the PIR in place of PNC,
however, exposure was not associated with PP (β = 0.
14; 95% CI = − 0.62, 0.90 mmHg per 6.2 billion parti-
cles inhaled/h).
In contrast to the blood pressure measures, exposure

to PNC was associated with 6.8% higher hsCRP overall
(95% CI = − 0.3, 14.0% per 4600 particles/mL; Fig. 2).
The associations were strongest among never smokers,
people without a family history of CVD, and people tak-
ing statins (Additional file 1: Table S2). Including indi-
viduals with a hsCRP value ≥47, excluding individuals
with a baseline hsCRP value of ≥3 mg/L, excluding indi-
viduals with a non-fasting baseline blood draw, or ex-
cluding individuals who dropped out before their third
study visit all attenuated the association between PNC
and levels of hsCRP (β = 6.3%, 95% CI = − 1.3, 14.0%; β =
2.8%, 95% CI = − 5.8, 11.4%; β = 5.6%, 95% CI = − 2.1, 13.
4%; β = 5.0%, 95% CI = − 3.7, 13.6%, respectively). Add-
itionally, in models controlling for the baseline level of
hsCRP, PNC was not associated with changes in hsCRP
(β = − 1.7; 95% CI = − 9.9, 6.5%). The PIR was also not
associated with hsCRP overall (β = − 4.0; 95% CI = − 9.4,
1.3% per 6.2 billion particles inhaled/h), although there
was an inverse association between PIR and hsCRP
among diabetics, participants without a family history of
CVD, and participants who were not taking statins
(Additional file 1: Table S3).
Sensitivity analyses excluding people who died or ex-

cluding those who had a previous heart attack or stroke
did not materially change the results (data not shown).
Excluding hypertension medication as a covariate from
the models did not materially change any of the results
(data not shown).

Discussion
Our study is one of only a few longitudinal studies to
consider the health effects of long-term exposure to
UFP, and it is the first to do so with UFP measured at
high spatial and temporal resolution. Our primary find-
ing is that annual average PNC exposure was positively
associated with hsCRP but was not associated with the
blood pressure measures overall. Sex and smoking status
modified the associations of PNC and the outcomes with
generally stronger positive associations among women
and never smokers. In sub-populations where PNC af-
fected blood pressure, the effect estimates were modest
in terms of clinical significance. An IQR increase in

PNC exposure was associated with increases in blood
pressure approximately equivalent to the increase of
blood pressure seen with an additional year of age [51].
The association between PNC and hsCRP was some-

what stronger than the associations with blood pressure
despite the fact that 56% of participants had hsCRP
values > 3 mg/L at baseline (indicative of high cardiovas-
cular risk) [52]. Each IQR increase in PNC was associ-
ated with a 7% higher mean hsCRP concentration (95%
CI = − 0.3, 14.0%). This positive association is consistent
with the only other longitudinal study examining the as-
sociation between PNC and hsCRP [26]. Similarly, a
cross-sectional study among a different population in
the Boston metropolitan area found positive associations
between annual average PNC exposure and hsCRP [23].
Furthermore, our finding that the associations of PNC
with hsCRP and with blood pressure were stronger
among never smokers compared to current or former
smokers is consistent with the PM literature [53]. This
might be explained by the constant low-grade inflamma-
tion that smokers experience [54].
Although toxicological evidence suggests that UFP may

exert cardiovascular effects, likely through mechanisms
mediated by oxidative stress, inflammation, and endothe-
lial dysfunction [55–57], the epidemiologic evidence is less
clear regarding associations between UFP and cardiovas-
cular risk factors. The vast majority of the previous epi-
demiological literature has only considered acute health
effects or short-term exposure to UFP and the results have
been inconsistent [58–66]. Our reported results do not ac-
count for potential acute changes in the outcome mea-
sures due to changes in short-term exposures. While it is
possible that there are modest acute effects, a recent lon-
gitudinal study suggested that short-term effects did not
substantially change the effect estimates for long-term ex-
posures to PNC [26]. Moreover, within our data, including
short-term effects could affect the performance of the
models due to the high correlation between the short- and
long-term exposures. Furthermore, if short-term effects
aggregate to the long-term effects, including the short-
term effects may not be conceptually valid as the short-
term effects would be on the causal pathway [67].
One of the innovations of our study was the use of an

exploratory exposure metric, the PIR. We developed an
algorithm to calculate PIR in a longitudinal study based
on an established framework [68] and using validated
age-, sex-, weight- and physical activity level-specific
estimates for hourly respiratory volume [48]. In a pre-
vious study, PIR was calculated by multiplying PNC
by the amount of air inhaled per minute [68]. That
study found different exposure trends compared to
studies that did not account for inhalation [69, 70].
Neglecting inhalation rate may thus introduce expos-
ure misclassification.
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Nevertheless, there are fundamental differences in
what PNC and PIR attempt to quantify. For 3% of obser-
vations, participants had a high PIR (>75th percentile)
but low PNC exposure (<25th percentile) and a high
average inhalation rate (>75th percentile). For these
people, the particle deposition fraction and clearance
rate may be the most relevant factors in relation to
health effects [7, 71]. This is particularly important for
certain sub-populations who have higher inhalation
rates, such as males and those with greater physical ac-
tivity. In our study, we found some evidence that associ-
ations between the PIR and CVD risk factors were
stronger among males than females. Additionally, as
may be expected if there were a true association between
UFP and DBP levels, the association between the PIR
and DBP in males was stronger than the association be-
tween PNC and DBP in males.
We might expect people who inhale more particles per

hour to have increased susceptibility to high ambient con-
centrations of air pollutants, especially if individuals are
exercising in highly polluted areas [72]. It is also possible
that these people may be less vulnerable to health effects
from air pollution if the higher PIR is due to greater levels
of physical activity since exercise is associated with better
cardiovascular health and the beneficial effect of exercise
tends to outweigh the negative effect of exposure to air
pollution [72, 73]. This was partially supported as the ef-
fect estimates for PNC and PIR were slightly stronger
among the most sedentary participants in certain models.
This trend was not entirely consistent, however, and in
some cases, healthier individuals in our study appeared to
be more susceptible. It is also possible that it was easier
for us to observe associations among people who are not
taking medications, such as statins, that could counteract
the negative effects of PM exposure [74, 75].
Further work is needed to refine our PIR algorithm. In

particular, it would be useful to refine the metric based
on indoor measurements of UFP concentrations or
based on an accounting of how much time participants
spend in different indoor and outdoor micro-
environments. Additionally, we may be over-accounting
for weight or physical activity since including BMI as a
covariate in the models for hsCRP changed the direction
of the associations. This trend was not apparent in the
BP models. Finally, it might be interesting to see if using
age-, sex-, weight- and physical activity level estimates
for hourly respiratory volume specific to this population
(rather than from the EPA Exposure Factors Handbook)
changes the results. While this may be expected if the
health status of our participants differs substantially
from that of the reference population, limiting our ana-
lyses to only those participants who were not taking re-
spiratory medications and who did not have extremely
high physical activity levels did not substantially change

the effect estimates for the PIR. We believe that further
developing the PIR metric is worthwhile since it ad-
dresses a critical step on the exposure pathway and may
reduce exposure misclassification.
Our study had several limitations. One was the temporal

mismatch between our exposure monitoring and partici-
pant visits. Participant visits occurred between 2004 and
2015 while we monitored UFP concentrations from De-
cember 2011 through November 2013. During this time,
UFP emissions could have changed. Nevertheless, much
of the temporal variability in PNC exposure is explained
by meteorological conditions and we have historical data
for these parameters [76, 77]. Additionally, modeled esti-
mates compared reasonably well to PNC measurements at
a stationary site for the years in which the model was
back-extrapolated (see Additional file 1, Part 1). Annual
trends were also accounted for in the health association
models if the term for the year participants started the
study was a significant predictor.
Other limitations of our exposure assessment include

our assumptions that spatial variability was constant
with time, that the model is valid up to 1000 m from the
monitoring area, and that participants’ residential annual
average PNC was representative of their overall personal
exposure. Although we do not have time-activity data
available in the BPRHS, we have shown in previous work
that accounting for time-activity could reduce exposure
misclassification [78]. We also assumed that observed
associations were due to long-term UFP exposure with-
out accounting for potential interactions with, or inde-
pendent effects of, other traffic-related pollutants or
traffic-related noise. It was not possible to account for
other traffic-related pollutants because we do not cur-
rently have exposure models for any other pollutants.
Additionally, while our assumption that a one year aver-
aging period represents a biologically relevant time-frame
is in accordance with much of the related literature on
long-term exposure to traffic-related air pollutants [2, 4],
it is possible that we did not capture the critical averaging
window for UFP. It is also possible that short-term effects
would change the effect estimates for the long-term expo-
sures in this study even though they did not in a previous
longitudinal study [26].
Limitations also included the substantial attrition and

resulting potential for selection bias. While only 49% of
the 791 participants contributed data at all three time
points, the baseline characteristics of participants who
stayed in the study were similar to those who dropped
out and most of the results were not substantially af-
fected by excluding individuals who completed fewer
than three study visits. Furthermore, our results may not
be generalizable to healthier populations. All of our
study participants were Puerto Rican, most had low so-
cioeconomic status, and most had at least one chronic
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health condition at baseline. Other potential limitations
of our analysis include the large number of comparisons
and resulting possibility that some significant findings
are due to chance, relatively low exposure contrast
across the study population possibly limiting our ability
to find true associations, the potential for misclassifica-
tion of covariates such as diabetes, and the potential for
residual confounding.

Conclusions
We found that both PNC and PIR were associated with
biomarkers of CVD risk over six years, although the
trends were not entirely consistent. The PIR is a novel
exposure metric that accounts for differential inhalation
rate. As our study is among the first to address these
questions, future work is needed to validate these
findings.
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increase in PIR (6.2 billion particles inhaled/h). (DOCX 62 kb)
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