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Abstract

Background: Spatio-temporal models are increasingly being used to predict exposure to ambient outdoor air
pollution at high spatial resolution for inclusion in epidemiological analyses of air pollution and health.
Measurement error in these predictions can nevertheless have impacts on health effect estimation. Using statistical
simulation we aim to investigate the effects of such error within a multi-level model analysis of long and short-term
pollutant exposure and health.

Methods: Our study was based on a theoretical sample of 1000 geographical sites within Greater London.
Simulations of “true” site-specific daily mean and 5-year mean NO2 and PM10 concentrations, incorporating both
temporal variation and spatial covariance, were informed by an analysis of daily measurements over the period
2009–2013 from fixed location urban background monitors in the London area. In the context of a multi-level
single-pollutant Poisson regression analysis of mortality, we investigated scenarios in which we specified: the
Pearson correlation between modelled and “true” data and the ratio of their variances (model versus “true”) and
assumed these parameters were the same spatially and temporally.

Results: In general, health effect estimates associated with both long and short-term exposure were biased
towards the null with the level of bias increasing to over 60% as the correlation coefficient decreased from 0.9 to
0.5 and the variance ratio increased from 0.5 to 2. However, for a combination of high correlation (0.9) and small
variance ratio (0.5) non-trivial bias (> 25%) away from the null was observed. Standard errors of health effect
estimates, though unaffected by changes in the correlation coefficient, appeared to be attenuated for variance
ratios > 1 but inflated for variance ratios < 1.

Conclusion: While our findings suggest that in most cases modelling errors result in attenuation of the effect
estimate towards the null, in some situations a non-trivial bias away from the null may occur. The magnitude and
direction of bias appears to depend on the relationship between modelled and “true” data in terms of their
correlation and the ratio of their variances. These factors should be taken into account when assessing the validity
of modelled air pollution predictions for use in complex epidemiological models.
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Background
The lack of accurate measurements of a subject’s short
(e.g. day to day) or long-term (e.g. year to year) exposure
to ambient outdoor air pollution, leads to estimated
health effects of such exposure in epidemiological stud-
ies that are prone to bias and / or reduced statistical
power with the extent of these problems depending on
the magnitude of the imprecision or measurement error
and its type [1]. In the past most studies estimated
individual-level exposure to air pollutants based on the
nearest monitor(s) to subject residence or an area aver-
age of monitor measurements. However more recently
spatio-temporal models have been used facilitating the
estimation of daily pollutant concentrations at high
spatial resolution. While these models increase the pre-
cision of address-level exposure estimation, they are not
free of measurement error: classical/classical-like error
due to model parameter estimation and Berkson/Berk-
son-like error due to spatial smoothing [2]. While clas-
sical error tends to bias health effect estimates towards
the null, both error types but particularly Berkson error
results in reduced statistical power [3]. Various simula-
tion studies have investigated the effects of measurement
error in different scenarios involving different epidemio-
logical models and evaluating different approaches to
the estimation of ambient air pollution concentrations
[2, 4–13]. In one such study we investigated the use of
outputs from the EMEP-WRF chemistry transport
model in a time-series analysis [5]. In this paper we ex-
tend the methodology previously applied by giving our
“true” pollution data a more representative distribution
spatially (i.e. allowing for the spatial correlation of
long-term pollutant means as well as the spatial correl-
ation of day to day pollutant concentrations) and by in-
vestigating the effects of measurement error in a
multi-level analysis for the joint estimation of the health
effects of both short and long-term pollutant exposure
[14]. We simulate scenarios in which we specify a) the
spatial and the temporal correlation between “true” and
model data and b) the ratio of the variance in model
data to the variance in “true” data (which we also as-
sume is the same both temporally and spatially). For
each scenario we run 500 simulations and report on the
impact in terms of bias in estimation, coverage of 95%
confidence intervals (CIs) and statistical power.

Methods
Data analysis
Our simulation of “true” exposure and outcome data were
informed by an analysis of 63,865 daily mean NO2 mea-
surements and 48,151 daily mean PM10 measurements
from 47 (1 suburban and 46 urban) and 37 (2 suburban
and 35 urban) background monitoring sites respectively,
and covering the period 2009–13. The monitoring data

were sourced from: Air Quality England [15] and the
London Air Quality Network, [16] which included data
from the Automatic Urban and Rural Network (AURN)
[17]. All sites were operated to comparable international
QA/QC standards, [18] and were situated within the con-
fines of the London M25 circular road network.
The mean (variance) of the site-specific 5-year means

was 36.52 μg/m3 (76.200 (μg/m3)2) for NO2 and
20.17 μg/m3 (8.715 (μg/m3)2) for PM10; the average
within-site variance was 274.608 (μg/m3)2 for daily mean
NO2 and 104.815 (μg/m3)2 for daily mean PM10; the
average within-site variance of the 5-year means was
0.237 (μg/m3)2 for NO2 and 0.094 (μg/m3)2 for PM10. A
full description of the analysis for NO2 is given in
Additional file 1.

Simulation set-up
Based on London’s extensive monitoring network we ini-
tially simulated daily “true” concentrations for each pol-
lutant over a period of 5 years in 1000 locations. We
consequently simulated: total mortality data from the
“true” exposure series through previously identified ef-
fect estimates; and then modelled exposure data from
the “true” series under several measurement error sce-
narios. The section below briefly describes the steps in-
volved and these will be illustrated using results from
our NO2 analysis (Additional file 1).

Step 1
Our simulation study sample consisted of 1000 sites. Each
site was assumed to represent the centroid of a Lower
Super Output Area (LSOA) and was defined by a pair of
easting (E) and northing (N) co-ordinates. An LSOA is a
small area with an average population of approximately
1500 subjects [19]. The co-ordinate variables E and N (i.e.
(ei, ni), i = 1, …, 1000) were sampled at random from a
multivariate normal distribution with means (528, 182),
variances (172.544, 51.260) and covariance (9.097).

Step 2
For each site i (i = 1,…, 1000) and each day t (t = 1,…1826)
we simulated “true” mean daily concentrations xi,t as
follows:

xi;t ¼ ui þ ξ i þ εi;t ð1Þ

ξ i � MVN O; Sð Þ ð2Þ

εi;t � MVN 0;Λð Þ ð3Þ

The systematic component of spatial variation ui in (1)
was estimated from modelling the long-term average
pollutant measurements as a function of co-ordinates
e.g. for NO2
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ui ¼ −5111:573þ 14:749� eið Þ þ 14:135� nið Þ
− 0:039� ni

2
� �þ 0:014� ei

2
� �

The spatial variance covariance matrix S in (2) was esti-
mated by fitting a model with exponential covariance
function to a semivariogram of the residuals e.g. for NO2

S i; jð Þ ¼ 76:200−0:237− var uið Þð Þ � exp −0:797� di; j
� �

where di,j is the Euclidian distance between sites i.e.

di; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ei−e j
� �2 þ ni−nj

� �2q

The temporal variance covariance matrix Λ in (3) was
informed by the mean of the within-site variances and a
linear regression line linking Pearson correlations
over-time between site-pairs (i, j) with their correspond-
ing Euclidean between-site distances (di,j) e.g. for NO2.
Λ (i, j) = 274.608 × (0.7999 − (0.0016 × di,j)).

Step 3
We simulated outcome data yi,t for site i on day t from the
“true” pollutant data xi,t based on the average crude death
rate per day in a London LSOA in 2011 (i.e. 0.0264),
which we estimated using data from the Office of National
Statistics, [20, 21] and pre-specified concentration re-
sponse functions (CRF) for deaths associated with both
short-term and long-term exposure, as follows:

φi;t ¼ expð−3:634þ β1 � ðxi;t−�xiÞ þ β2 � �xi þ eiÞ ð4Þ

yi;t � Poisson φi;t
� �

where �xi is the average site-specific “true” concentration
over the 5-year study period, β1 is the short-term esti-
mate, β2 the long-term estimate and ei ~N(0, 1).
For NO2, we assumed a short-term CRF (β1in eq. (4)) of

loge(1.0071)/10 = 0.000707 per 1 μg/m3, [22] and a
long-term CRF (β2 in equation (4)) of loge(1.023)/10 =
0.00227 per 1 μg/m3, [23] (personal communication) and
for PM10 short and long-term CRFs of loge(1.0051)/10 =
0.000509 per 1 μg/m3, [24] and loge(1.07)/10 = 0.00677 per
1 μg/m3, [23] respectively.

Step 4
Next we simulated “pseudo” model data zi,t from the
“true” pollutant data setting the temporal correlation be-
tween “true” and model data to αt; the spatial correlation
between “true” and model 5-year means to αs; the ratio
of model versus “true” variances temporally (variance of
daily data within site) to γt; and the ratio of model versus
“true” variances spatially (variance of 5-year means
across sites) to γs.
The following formula is an extension of that used in

Butland et al., [5] and has its origins in an approach by

Reeves et al., [25] and a generalisation of second-order
regression as outlined in Cox and Hinkley [26]. Our
choice of a constant term here was arbitrary (we used
3.5 μg/m3 for both NO2 and PM10). Further details are
contained in Additional file 2.

�zi ¼ constant þ �xþ ðαs � ffiffiffiffiffi
γs

p Þ � ð�xi−�xÞ þ εi

zi;t ¼ �zi þ ðαt � ffiffiffiffiffi
γt

p Þ � ðxi;t−�xiÞ þ κi;t ð5Þ
εi � N 0; σ2

� �
; σ2 ¼ var xið Þγs 1−αs2

� � ð6Þ
κi;t � N 0; ν2

� �
; ν2 ¼ ϵ2γt 1−αt2

� � ð7Þ
In the above, ϵ2 represents the variance of “true” daily

data within-site which is assumed to be the same across
all sites. Thus for NO2: varðxiÞ ¼ 76:200−0:237 ¼75.963
and ϵ2 = 274.608 × 0.7999 = 219.659.

Step 5
Finally we analysed the association between outcomes
yi,t and modelled short (zi,t) and long-term ðziÞ exposures
using a simplified version of the statistical model pro-
posed by Kloog et al., [14] i.e.

ϖ i;t ¼ exp constant þ β1 zi;t−zi
� �þ β2 zi þ ζ i

� �
; ζ i � N 0; ς2

� �
ð8Þ

yi;t � Poisson ϖ i;t
� �

The aim, to obtain coefficient estimates and their

standard errors i.e., β1̂, seðβ1̂ Þ; β2̂ , seðβ2̂Þ.

Step 6
Steps 2–5 were then repeated 500 times and summary
statistics calculated for the coefficient estimates and
their standard errors.

Defining the different scenarios
We simplified our scenarios by setting γt = γs=λ and αt
= αs = τ but allowed λ to take values (2, 1.25, 1, 0.75, 0.5)
and τ to take values (0.5, 0.6, 0.7, 0.8, 0.9). It is worth
noting that based on standard measurement error theory
pure classical error would produce a value of λ > 1 and
pure Berkson error a value of λ < 1 [1]. All simulations
were run in R versions 3.3.2 and 3.4.3, [27] using the
packages MASS, [28] Hmisc, [29] and lme4 [30]. Each
scenario was run serially with a different 9 digit starting
seed chosen at random from published tables of random
numbers [31, 32].

Results
From Tables 1 and 2, it would appear that in general the
health effect estimates were biased toward the null and to a
similar degree for both short and long-term exposures. This
bias tended to become more negative as the correlation
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coefficient decreased from 0.9 to 0.5 and the ratio of vari-
ances (model versus “true”) increased from 0.5 to 2.0
(Fig. 1).
At the extreme scenario under which the correlation

coefficient was 0.5 and variance ratio was 2.0, attenu-
ation was 65% for short-term exposure to NO2 and 74%
for long-term exposure, while for PM10 the correspond-
ing figures were 65% and 66%. However for high correl-
ation of 0.9 combined with a low variance ratio of 0.5
bias away from the null was observed for both pollutants
reaching 27% and 40% for short and long-term exposure
to NO2 and 31% and 34% for short and long-term ex-
posure to PM10. For both pollutants the standard errors
of the health effect estimates appeared to be attenuated
for variance ratios> 1 but inflated for variance ratios< 1
and these effects appeared to be independent of the cor-
relation coefficient.
For effect estimates associated with short-term ex-

posure, particularly those in Table 1 the coverage of
95% CIs appeared to depend on both the correlation
coefficient and the variance ratio, reducing as the
former got smaller and the latter increased. This can
be seen graphically in Additional file 3: Figure S3.1.
At the extreme scenario within which the correlation
was 0.5 and a variance ratio was 2, the coverage
probability fell to an estimated 19% for short-term ex-
posure to NO2 (suggesting that only in 95 of our 500
simulated samples did the 95% CI contain the true
value of β1), but a far less marked 72.8% for
short-term exposure to PM10. For effect estimates as-
sociated with long-term exposure the 95% coverage
probability exhibited comparatively little change
across the various scenarios never falling below 84%.

For both pollutants the statistical power to detect an
association with short-term exposure appeared to fall as
the correlation between model and monitor data de-
creased, although for long-term exposure there was
some slight tendency for power to decrease with both an
increase in the variance ratio and a decrease in the cor-
relation (see in Additional file 3: Figure S3.2 ).

Discussion
Based on our simulations we demonstrated downward
biases in the health effect estimates associated with both
long and short-term pollutant exposure, the magnitude
of which depended on the correlation between modelled
and true pollutant concentrations and the ratio of their
variances (the lower the correlation coefficient and the
higher the variance ratio of model versus “true” data the
greater the attenuation). However for high correlation
combined with a low variance ratio we observed some
bias away from the null which at the extreme (i.e. correl-
ation of 0.9 and variance ratio of 0.5) was non-trivial.
The standard error of the simulated effect estimate ap-
peared to depend on the variance ratio, with ratios >1
resulting in attenuation and those <1 in inflation.
Marked attenuation in the coverage probability was ob-
served for short-term exposures to NO2 when the tem-
poral correlation between modelled and “true” data was
low and the model exposure variance was greater than
the “true”; and reductions in statistical power were ob-
served for short-term exposures to both pollutants as
the correlation coefficient decreased. Overall, statistical
power for short-term exposure effects was higher for
NO2 than PM10 (Additional file 3) but this may be

Fig. 1 Percentage bias in health effect estimates by correlation coefficient and variance ratio (model versus “true”)
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attributed at least in part to the different CRFs driving
their respective scenarios.
The aim of our methodology was to introduce measure-

ment error of both types (i.e. classical / classical-like and
Berkson / Berkson-like) by simulating “pseudo” model data
which had on average a pre-specified correlation with the
“true” data and a pre-specified variance ratio both spatially
and temporally. The importance of the correlation coeffi-
cient (τ) and the variance ratio (λ) is clear simply from a
consideration of the standard formula for total measure-
ment error between model (Z) and true (X) data i.e.

Var X−Zð Þ ¼ V Xð Þ þ V Zð Þ−2COV X;Zð Þ ¼ Var Xð Þ 1þ λ−2τ
ffiffiffi
λ

p� �
:

The correlation coefficient between modelled and
monitored data is often used as a measure of model val-
idity, [33] and while a correlation of 0.8 would seem rea-
sonably high, using outputs from such a model as
exposure metrics in an epidemiological analysis may re-
sult in bias in the health effect estimate. Within our sim-
ulations assuming a correlation of 0.8 and a variance
ratio of 2 we observed negative biases in the health ef-
fect estimates of between 42% and 46%. Increasing the
correlation to 0.9 still resulted in a 32–37% negative bias
in the health effect estimates emphasizing that measure-
ment error adjustment is important in cohort studies as
well as time-series and panel studies.
Gryparis et al.,[7] suggest that the smoothing inherent

in spatio-temporal models effectively converts classical
error into Berkson error, so that the latter is more of a
concern. Thus for modelled pollution data a more realistic
scenario maybe one where the overall variance of the
model predictions is less than that of the “true” expo-
sures (λ < 1); and under the scenarios of, λ = 0.5 and λ =
0.75, (Fig. 1) attenuation in the health effect estimate ap-
peared to be less marked than for λ = 1, λ = 1.25 or λ =
2.0. However, for λ = 0.5 combined with a high correlation
coefficient of 0.9, bias away from the null was observed
for both short and long-term exposure ranging from 27%
to 40%. In trying to explain these findings we note that
the scenario effectively sets the covariance between the
model and “true” data equal to 1.27 times (i.e. 0:9ffiffiffiffiffi

0:5
p ) the

variance of the model data. This relationship is indicative
of positive bias (based on simple regression calibration)
[10, 25] but may only occur in practice if there is a lack of
independence between the Berkson component of meas-
urement error and the modelled data [9, 10]. While, in
general Berkson error is not thought to introduce bias into
the health effect estimate, some studies have shown that
bias away from the null can occur due to Berkson error if
additive on a log scale [9, 10].
Error (both classical and Berkson-like) can be introduced

into an epidemiological analysis due to the use of model
predictions that are misaligned in space from the observed

data on which the model is based. In a simulation study
and in the context of a linear regression analysis of cohort
data, Szpiro et al., [4] investigated the impact of such error
and reported only minimal bias in estimating the health ef-
fect estimate associated with long-term exposure. This is in
contrast to our findings where negative bias in the health
effect estimate was pronounced when the spatial correl-
ation between “true” and modelled exposures was low,
even for λ = 0.75 (Fig. 1). Low correlation may arise due to
spatial misalignment but also model misspecification (i.e.
the omission from LUR and/or kriging models of an
important spatial covariate). Alexeef et al., 2016, [8] in the
context of a linear regression analysis investigated the ef-
fects of model miss-specification for long-term exposures
and, in common with our findings, their simulations
illustrated a downward bias in the health effect estimate.
However Szpiro et al., [2] demonstrated scenarios in which
the use of a correctly specified model compared to a
miss-specified model though resulting in more precise
long-term exposure prediction did not result in improved
health effect estimation. They concluded that more accur-
ate exposure prediction does not necessarily improve the
estimation of health effects as the additional parameter es-
timation involved may increase the classical-like error. It is
therefore important, as illustrated by our own simulations,
to consider both the correlation and the variance ratio
when assessing the validity of modelled air pollutant out-
puts for use in epidemiological analyses.
The fact that bias in the standard error depends on

the variance ratio is not unexpected. Indeed the pattern
in standard errors observed across values of λ, is in line
with the error inflation we might expect under a Berk-
son error model (λ < 1) and the bias in standard error es-
timation which can be in either direction (here
attenuation) that we might expect under a classical error
model (λ > 1) [3]. However it is not so clear why the
standard error should not be influenced by the magni-
tude of the correlation coefficient.
Our simulations were based on 1000 sites (assumed

to be the centroids of 1000 LSOAs) and therefore
each simulated dataset was based on 1000 LSOAs ×
1826 days =1,826,000 observations. Nevertheless, given
the very small concentration response functions [22–
24] this implies that statistical power to detect associ-
ations with both short-term exposure and particularly
for long-term exposure were low. Indeed our simula-
tions suggest that the power of our study set-up
would be around 85% and 34% for short-term expo-
sures to NO2 and PM10 respectively and 13% for
long-term exposures. This combined with the use of
only 500 simulations may have obscured any patterns
in statistical power across the different scenarios for
long-term exposure. However, despite this we did ob-
serve some reductions in power for long-term
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exposure, with some suggestion of greater attenuation
with decreasing correlation and increasing variance
ratio.
In terms of 95% CIs we observed some under-coverage

for short-term exposures, especially for NO2 and for low
correlation / high variance ratio scenarios. However cover-
age probabilities for long-term exposures varied little across
all scenarios. This is likely due to the fact that within our
simulations, as in real studies of the type considered here,
health effect estimates associated with short-term exposures
were based on larger numbers of observations and were
therefore estimated with more precision as illustrated by
their smaller standard errors. Thus for short-term expo-
sures it only takes a small bias in the health effect estimate
to move the 95% confidence interval so that it no longer
contains the “true” value. The follow-on from this is that
given a more powerful study any reduction in coverage
probability may be more extreme and observed for both
pollutants and both health effect estimates.
Simulation studies are limited in that they only inform

you about the scenario in which they are set. It is therefore
important that the scenario resembles to some extent a
real world situation [34]. To this end we have simulated
“true” pollutant data incorporating both temporal and
spatial variation informed by real measurements from a
large number of monitors situated within the London area.
This is particularly important as two previous simulation
studies [7, 12], suggest that the adverse effects of measure-
ment error on health effect estimation may be moderated
if there is high spatial correlation in the underlying true
exposure surface. Nevertheless as in all simulation studies
we have made various assumptions which may hold to a
lesser or greater degree. In a real world setting for example
the temporal and spatial correlation coefficients (model
versus “true”) may not be the same and similarly variance
ratios may differ. However the aim of our study was to
present generalised scenarios rather than those that may
be specific to any particular air pollution model, although
our methods can easily be adapted to a more tailored ap-
proach if required. We also assume that modelled data are
linearly related to the “true” exposures both over time and
space. In other words the daily data are linearly related
within site and the 5-year means are linearly related across
sites. Given that the aim of pollution modelling is to pro-
vide an accurate representation of “true” pollutant values
this does not seem to be unreasonable. The way in which
we incorporated error into our “true” data in order to
simulate “pseudo”model data is based on second-order re-
gression equations [25, 26], and does not allow for the pos-
sibility that the classical components of measurement
error may be spatially correlated. For modelled air pollu-
tion data output from spatio-temporal models based on
LUR and / or universal kriging, it has been shown that
classical type error resulting from parameter estimation

will tend to be spatially correlated and heteroscedastic.[4]
While we acknowledge this as a limitation of our ap-
proach, the aim of our simulations was to produce
“pseudo” model datasets with given temporal and spatial
correlations to the “true” and with a given variance ratio
and it is often these measures that are used as markers of
model performance particularly in terms of performance
in epidemiological models [1, 25]. The success of incorpor-
ating these correlations and variance ratios into our
“pseudo” modelled data was assessed by checks within our
simulation programs. While overall these checks were re-
assuring they did suggest that in terms of the spatial vari-
ance ratio, the actual value introduced might be slightly
higher than intended. However across all the scenarios in
Tables 1 and 2 estimates of this bias (to 2 decimal places)
were never more than 0.02 (e.g. spatial variance ratio 2.02
rather than 2.00).
It should also be appreciated that our hypothesized cor-

relations between modelled and “true” exposures assume
that the latter have had additive classical instrument error
removed. While the assumption that monitor measure-
ments are accurate (i.e. with no instrument error) may not
be so important for long-term exposure estimation [7] it
is not trivial in terms of short-term daily exposures [9].
Another point to consider is that our analysis is based at
the level of a London LSOA, which is an area containing
roughly 1500 subjects, [19] and was chosen in order to
provide adequate numbers of events under the epidemio-
logical model considered. Thus underlying our simula-
tions is the assumption that monitor data (bar instrument
error) accurately reflects the average exposure of residents
within an LSOA and that we can ignore the Berkson error
introduced by this effective averaging. Finally when simu-
lating our “true” pollutant data we did not incorporate any
seasonal pattern or time trend. This was done for simpli-
city and to avoid any corresponding adjustment in the
multi-level Poisson regression analyses and thus any un-
foreseen effects of such an adjustment on our findings.
While our simulation study is designed to provide

some insight into the effects of measurement error due
to the use of modelled air pollution data in a complex
epidemiological analysis, our results may also be inform-
ative to multi-level health analysis of other spatially dis-
tributed exposures.

Conclusions
Our results illustrate that measurement error in modelled
air pollutant exposures can lead to non-trivial bias in
health effect estimation. Although in general this bias is
towards the null, under certain conditions bias away from
the null may occur. In order to assess the magnitude and
direction of this bias we need to consider both variance
ratios and correlation coefficients. By allowing these
factors to differ spatially and temporally, as outlined in
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Additional file 2, statistical simulation can be used to com-
pare the performance (in terms of bias, coverage probabil-
ity and power) of different pollutant modelling approaches
(e.g. LUR, dispersion, satellite-based etc.) in order to find
the best model or combination of models for use in a
multi-level analysis of air pollution and health.
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Additional file 2: Further details of equations (5–7) used to express
“pseudo” model data in terms of spatial and temporal correlations (αs
and αt) and variance ratios (γs and γt). (DOCX 16 kb)
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statistical power. (DOCX 413 kb)
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