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Abstract

Conventional environmental-health risk-assessment methods are often limited in their ability to account for
uncertainty in contaminant exposure, chemical toxicity and resulting human health risk. Exposure levels and
toxicity are both subject to significant measurement errors, and many predicted risks are well below those
distinguishable from background incident rates in target populations. To address these issues methods are
needed to characterize uncertainties in observations and inferences, including the ability to interpret the
influence of improved measurements and larger datasets. Here we develop a Bayesian network (BN) model
to quantify the joint effects of measurement errors and different sample sizes on an illustrative exposure-
response system. Categorical variables are included in the network to describe measurement accuracies, actual
and measured exposures, actual and measured response, and the true strength of the exposure-response
relationship. Network scenarios are developed by fixing combinations of the exposure-response strength of
relationship (none, medium or strong) and the accuracy of exposure and response measurements (low, high,
perfect). Multiple cases are simulated for each scenario, corresponding to a synthetic exposure response study
sampled from the known scenario population. A learn-from-cases algorithm is then used to assimilate the
synthetic observations into an uninformed prior network, yielding updated probabilities for the strength of
relationship. Ten replicate studies are simulated for each scenario and sample size, and results are presented
for individual trials and their mean prediction. The model as parameterized yields little-to-no convergence
when low accuracy measurements are used, though progressively faster convergence when employing high
accuracy or perfect measurements. The inferences from the model are particularly efficient when the true
strength of relationship is none or strong with smaller sample sizes. The tool developed in this study can
help in the screening and design of exposure-response studies to better anticipate where such outcomes can
occur under different levels of measurement error. It may also serve to inform methods of analysis for other
network models that consider multiple streams of evidence from multiple studies of cumulative exposure and
effects.
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Background

Exposure- and dose-response assessment are among the
most critical steps of the environmental risk-assessment
process (see Fig. 1). These provide information about
the adverse health effects of different exposure levels in
the population. In toxicological studies uncertainty is in-
troduced due to experimental error (e.g., an imperfectly
controlled environment, human factors and experimen-
tal conditions leading to dose variability, etc.); limited
sample sizes; and the effects of high- to low-dose and
animal-to-human extrapolation when interpreting the
results of the study [1]. In epidemiological studies the
assessment is uncertain due to exposure measurement
errors; uncertainty in the relationship between exposure
and dose to critical cells or organs; the influence of con-
founding factors affecting members of the population;
and incomplete or erroneous data on health endpoints.
In either case the relationship between the actual expos-
ure level of a toxicant and the actual response is difficult
to estimate by direct measurements [2—5]. The network
model developed herein provides a direct, integrated
method for assessing the value of such improvements in
exposure and response measurement.

Toxicological experiments are generally done with
high-dose compound exposure in laboratory animals,
and these results are used to predict the potential ad-
verse health endpoint(s) in humans, assuming that simi-
lar effects would be expected. However, the levels of
chemical exposure in environmental settings are usually
much lower than tested levels [1, 6]. Decisions about set-
ting maximum contaminant limits can thus be biased by
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epidemiological studies the sampled population and risk
levels are often too small for the exposure-related incre-
ment to be statistically distinguished from background
levels of the health endpoint. Epidemiological studies are
also prone to known or unknown confounding factors
which may affect estimation of exposure-response rela-
tionships in ways similar to the effects of measurement
error [7—10]. Therefore, this study starts with key uncer-
tainty problems in experimental studies: (1) How should
prior knowledge be used to learn about the strength of
the relationship between true exposure and true re-
sponse? (2) How do measurement errors in exposure
and response affect experimental design and interpret-
ation for toxicological and epidemiological studies? and
(3) What are the sample sizes needed to determine
whether a significant exposure-response relationship is
present?

We know that prior scientific knowledge about expos-
ure and response mechanisms can lead to better design
and interpretation of study results. Furthermore, better
understanding of the sources of measurement error, op-
tions to reduce it, and its effect on subsequent inference
can increase the likelihood of successful experimental
designs for future trials and for clinical use. In order to
achieve this goal, we propose a Bayesian network (BN)
model-based approach to analyze the probabilistic rela-
tionship between true exposure and true response. BNs
provide a simple yet holistic approach to the use of both
quantitative and qualitative knowledge, with the distinct
advantage of combining available information through a
mix of expert judgment, mechanistic models, and statis-

these measured responses at high dose. In tical updating with observed outcomes [11-13].
Hazard Identification Dose-Response
What health problems are Assessment
caused by the pollutant? What are the health
problems at different Risk Characterization
exposures? What is the extra risk of
health problems in the
exposed population?

Exposure Assessment

How much of the pollutant are
people exposed to during a
specific time period? How
many people are exposed?

Fig. 1 Components of the risk-assessment process (Source: https://www.epa.gov/risk/conducting-human-health-risk-assessment)
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Measurement error in statistical and risk science is
a well-studied topic in the literature [14—18]. How-
ever, effects of measurement error on the strength of
concentration-response relationships in toxicological
studies have been limited. BNs can help to under-
stand the effects of measurement errors on the mag-
nitude of an exposure- or dose-response relationship.
There are three effects of measurement error in co-
variates: (1) it causes bias in parameter estimation, (2)
it leads to a loss of power for the prediction of a re-
lationship, and (3) it makes structural analysis difficult
[19]. Sonderegger et al. [20] investigated the effects of
unmeasured temporal variation, and they suggest tem-
poral variation in contaminant concentrations causes
important bias in the exposure-response relationship.

In the next section, we discuss our model, giving back-
ground on BNs and our estimation of model parameters.
In the following section, we apply the model using illus-
trative values of model input parameters. We then
present our results and discuss further possible applica-
tions of our methods and results.

Methods
Using BN as a risk-assessment tool allows us to investi-
gate and quantify the causal relationships between
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several interacting variables and outcomes because there
is a theoretical relation between causality and probability
[11, 21-23]. Therefore, we aim to predict the strength of
relationship between True Exposure (TE) and True Re-
sponse (TR) based on observations of exposure and re-
sponse from studies with different sample sizes.

BNs capture cause-and-effect relationships through the
structure of an acyclic directed graphs, so understanding
and designing the diagrams is critical. Figure 2 shows the
directed graph of a theoretical exposure-relationship as-
sessment. This simplified influence diagram considers sev-
eral sources of error under different nodes. Reductions in
the Accuracy of exposure measurement (that is, greater er-
rors in exposure measurements or classification) could re-
sult from incomplete spatial and/or temporal coverage of
the target population in the exposure study; the selection
of environmental or internal (biomarker) metrics of ex-
posure that provide an imperfect indication of the critical
exposures that matter to the health endpoint; and labora-
tory and field sampling errors for these metrics. Reduc-
tions in the Accuracy of response measurement (that is,
greater errors in response measurements or classification)
result from the occurrence of incomplete reporting or
misdiagnosis of health endpoints in humans (for epi-
demiological studies) or laboratory animals (for

Exposure-Response

Relationship

Accuracy of
Exposure
Measurement

True Exposure >

True Response

red Exposure

Fig. 2 An influence diagram for a dose-response assessment

Accuracy of

Response
Measurement
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toxicological studies); limited sample sizes in these studies;
and errors in fitted relationships and extrapolations for
response outcomes. True exposure and true response are
the actual exposure and response levels in the target
population, reflecting the true magnitude of the
exposure-response relationship. These actual values are
measured (or estimated) imperfectly to yield measured ex-
posure and measured response.

Bayesian networks

Bayesian networks were developed in the late 1980s
to visualize probabilistic dependency models via Di-
rected Acyclic Graphs (DAG) and model efficiently
the joint probability distribution over sets of variables
[11, 24]. BNs are strong modeling tools and are rela-
tively simple compared to other modeling approaches
[13]. The characterization of linkages between vari-
ables is typically probabilistic, rather than determinis-
tic, so that BNs allow use of both quantitative and
qualitative information [24].

BNs have been used to analyze problems, and to plan,
monitor, and evaluate diverse cases of varying size and
complexity in several different disciplines [25-29].
Bayesian models are particularly appropriate for environ-
mental systems because uncertainty is inherent, and BNs
have been used widely for ecological applications [30].
Similar potential exists in the field of human health risk
assessment [31]. Specifically, a few studies have investi-
gated the relationship between true exposure and true
response through BNs [32-35]. Marella and Vicard
(2013) [33] investigated the measurement error generat-
ing mechanism by developing an object oriented Bayes-
ian network model. There are also a number of recent
examples of BN and related DAG applications in
health-risk assessment [21, 36—38]. Several studies inves-
tigated interactions among cancer risk components
caused by environmental exposure by using a probability
tree approach [39, 40]. These papers focus on
exposure-response predictions as a part of fundamental
assumptions of the cancer risk network.

Calculations in BNs are based on repetitive applica-
tions of Bayes’ theorem (also known as Bayes’ rule or
Bayes’ law), which was first derived by Thomas Bayes
and published posthumously in 1764 [41]. According to
Bayes’ theorem, a prior probability provides information
about the initial uncertainty of a parameter (before data
are collected, based, for example, on expert judgment),
while the posterior probability is calculated using the ob-
served data and its likelihood function to update the un-
certainty distribution of the parameter [42]. This feature
of the theorem differentiates Bayesian statistical models
from ordinary non-Bayesian statistical models because
the Bayesian approach is a mixture of ordinary models
and a joint distribution over the measured variables, and
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it may incorporate subjective prior beliefs [23]. Bayes’
rule (Eq. 1) allows for iteratively updating the marginal
probability distribution over each node in the network
as new data are collected and states in the network are
observed [41, 43].

pX=xY=y)

p(Y =y)
__ PX =x)p(Y =y|X =x)
YPX =x)p(Y =y X =)

pX =xlY =y) =

(1)

BNs bring a holistic approach to understand the im-
portant pathways in networks, which are not easily
expressed by mathematical equations, by integrating
qualitative expert knowledge, equations, probabilistic
modeling, and empirical data [11, 44, 45]. When the re-
sponse variable (X in Eq. 1) is categorical, the BN pro-
vides the equivalent of a probabilistic classification
approach [46].

We developed a BN (Fig. 3) based on the preliminary
directed graph of Fig. 2 by using the GeNle software
package [47]. We chose this software because of its qual-
ity, flexible data-generation feature, its user-friendly
graphical interface, and availability (free of charge to
academic users). The default belief updating algorithm
in GeNle is the clustering algorithm, the fastest-known
exact algorithm for Bayesian networks. The clustering
algorithm was originally proposed by Lauritzen and
Spiegelhalter (1988) and improved by several researchers
[48, 49]. We chose the Estimated Posterior Importance
Sampling (EPIS) algorithm for sampling cases, which
provides more precise results compared to other avail-
able algorithms [47].

The accuracy of exposure-measurement and response-
measurement levels are represented by AcEM and
AcRM, respectively. These accuracy levels can be af-
fected by errors at various stages of the exposure or re-
sponse estimation activities, as described above. The
measured (observed) values of exposure and response
are termed ME and MR, respectively. The true exposure
(TE) and true response (TR) values are the actual expos-
ure and response levels. Node R represents the complex
relationship between TE and TR. For instance, if R is
strong, then the degree of causal influence of TE on TR
is high and the association between TE and TR ap-
proaches a nearly perfect alignment. That is, low TE al-
most always yields low TR, medium TE almost always
yields medium TR, and high TE almost always yields
high TR. As such, an increasing strength of relationship
(from none to medium to strong), indicates an increased
health risk associated with increasing exposure. The
state none represents the event that there is no causal
linkage between true exposure and true response, so that
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Fig. 3 BN model for dose-response assessment with prior probabilities

increasing the exposure levels does not impart any add-
itional risk of the targeted health effect.

The node ER Match is used to compile the results of
an exposure-response study, with each subject in the
study classified into one of the three exposure states (1,
m or h) and one of three response states (l, m or h),
yielding nine possible outcomes for ER Match: (ME,
MR) = (l’ l)r (1» m); (lr h)» (m: 1); (m’ m); (m» h)r (hr 1)» (h,
m); and (h, h). This outcome node can consider out-
comes for individuals or groups of individuals, with
resulting probability updates then propagated back
through the network. When the measured exposure and
measured risk are the same, i.e., states (I, 1), (m, m), or
(h, h), this lends support to the belief that a strong rela-
tionship exists between the true exposure and the true
risk, especially when the measurement errors are low.
When the states do not match, this lends support to the
belief that the relationship is not strong, and possibly
that there is no relationship at all (or the relationship is
masked by measurement error).

In the application below we assume a sequence of sce-
narios for the exposure-response relationship and the
measurement errors, and use these to simulate synthetic
measured outcomes in a study population of a given
size. These results demonstrate the statistical behavior of
the network model and the probability that correct infer-
ences will be drawn for each scenario, in particular
showing the variability of inferences and the rates of
convergence with sample size.

Parameterization of the illustrative Bayesian network
model

To provide an illustrative demonstration of the Bayesian
network methodology, we select representative values of
the conditional probability tables (CPTs) and prior prob-
abilities in the network to demonstrate how measurement
errors influence the ability to distinguish between the pos-
sible strengths of the exposure-response relationship:
none, medium or strong. The critical CPTs in the model
include those for:

i) the measured exposure, ME, as influenced by the
true exposure (TE) and the accuracy of the exposure
measurement (AcEM);

the measured response, MR, as influenced by the
true response (TR) and the accuracy of the response
measurement (AcRM); and

the true response, TR, as influenced by the true
exposure (TE) and the strength of the exposure-
response relationship (R).

ii)

iii)

The conditional probabilities in CPTs i) and ii) reflect
the degree of correspondence between the true exposure
and the measured exposure, and between the true re-
sponse and the measured response, respectively. Tables
1 and 2 shows the CPTs for ME and TR, respectively.
The first row of the table indicates the states of AcEM
followed by the states of TE. For example, if AcEM =
low, and the true exposure=TE=Ilow, then the
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Table 1 Conditional probability distributions for measured exposure, ME (The first row represents the accuracy of exposure measurement,
ACEM. The second row shows the True Exposure levels, TE. The first column categories (low, medium, and high) are for the ME node)

AcEM low high perfect
iE low ‘ medium ‘ high low medium | high low | medium | high
low 0.5 0.25 0.2 0.9 0.05 0.03 1 0 0
medium 0.3 0.5 0.3 0.07 0.9 0.07 0 1 0
» |high 0.2 0.25 0.5 003 005 0.9 0 0 1

probability that the measured exposure, ME = high
equals 0.2.

We assume that there is no prior information about
the distributions of the top nodes in the network. There-
fore, we use the uniform prior probability distribution
over each variable, i.e., we assume that each state in a
node with three outcomes has a 33% probability of oc-
currence, except the relationship (R) node. The R node
prior probability is designed to investigate any potential
relationship in addition to the strength of relationship.
We thus assume a 50% probability of no existing rela-
tionship and a 50% probability of some relationship, allo-
cated equally between a medium or a strong
relationship, with 25% probability each (see Fig. 3). In all
of the analyses that follow, “what if” scenarios are speci-
fied by choosing particular values of AcEM and AcRM,
to determine the effect of different levels of measure-
ment accuracy.

Data simulation and analysis

We simulate random cases for nine scenarios (Table 3)
using GeNle which allows the users to generate ran-
dom cases that are representative of the network
based on the overall joint probability distribution of
the nodes and their states. Each scenarios represent-
ing potential combinations of strength of relationship
(R), the accuracy of exposure measurement (AcEM)
and the accuracy of the response measurement
(AcRM). To limit the number of scenarios considered,
AcEM and AcRM were varied together so that sce-
narios reflect either low, medium or high accuracy for
both the exposure and response measurements. We
progressively increase the sample size from N=1 to
N =1000 in the following examples, with the posterior

probabilities following inclusion of case i serving as
the prior probabilities for case i+ 1.

GeNle allows the user to generate random cases that
are representative of the network, according to the joint
probability distribution over the nodes and their states.
Each case represents a hypothetical individual in a group
of N that was exposed to a low, medium or high amount
of toxicant in an environment, either with uncertainty
based on the (equal prior) probabilities shown in the TE
node in Fig. 3, or as specified for the scenarios below by
selecting either low, medium or high exposure with
100% probability. A “true” population is thus simulated
for a scenario with an assumed strength of relationship
(none, medium, or strong) and specified levels of expos-
ure and effect measurement error (low, medium or high
for each). Given multiple sets of random cases with each
(true) specification, we use each of the case sets to up-
date a new “blank” copy of the network (that is, one with
the prior specifications for the correct values of AcEM
and AcRM, we assume to know the accuracies) and infer
the posterior probability that the strength of relationship
(informed by the case set) is none, medium, or strong.
In essence, we use the simulated study results to update
the assumed prior beliefs (in this case, uninformed) re-
garding the strength of the exposure-response relation-
ship. If the inferred probabilities align with the true
strength of relationship used to generate the cases, then
we conclude that the simulated exposure-response study
has the power to properly infer the strength of relation-
ship. This power depends on the accuracy of the mea-
surements and the sample size N, i.e., the number of
random cases in each case set. As N increases, the
power for proper inference likewise increases. In order
to demonstrate the comparative results for different

Table 2 Conditional probability distributions for true response, TR (The first row represents the strength of relationship, R. The second

row shows the True Exposure levels, TE. The first column categories (none, low, medium, and high) are for the TR node)

R none medium strong
E low medium high low | medium high low | medium | high
» [low B | 0333 0.333 0.333 0.7 0.15 0.1 0.97 0.015 0.01
medium 0.333 0.333 0.333 0.2 0.7 0.2 0.02 0.97 0.02
" |nigh 0.334 0.334 0.334 0.1 0.15 0.7 0.01 0.015 0.97
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Table 3 Nine scenarios for power evaluation

Simulation Scenario

No Relationship (R) ACEM - AcRM
1 None Low-Low

2 None High-High

3 None Perfect-Perfect
4 Medium Low-Low

5 Medium High-High

6 Medium Perfect-Perfect
7 Strong Low-Low

8 Strong High-High

9 Strong Perfect-Perfect

sample sizes, we simulated several N values: 20, 50, 100,

and 1000.

The following summarizes the steps in the simulation

analysis:

1- Assign a true state for R, AcEM, and AcRM (e.g.,
define the scenario, Fig. 4, perfect-perfect, high-

high, low-low),

2- Generate a synthetic dataset D of size N for the
selected scenario, and repeat for 10 trials,
3- Count the frequency and calculate the average for

each state of ER Match,

4- Calculate the posterior distribution for each state of
R, given the specifications of the selected scenarios,
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and the sequential network updates calculated for
each case in the dataset D, and
5- Repeat steps 1—4 for different sample sizes (N).

To implement sequential updates of the node state
probabilities, we use the Bayes factor (BF) to facilitate
the calculation. The BF is first computed as the likeli-
hood ratio of a given set of states in the network
relative to the other states, given the (simulated) data
comprising ER Match. With a particular focus on the
alternative states of R: Ri; i=1,3, corresponding to a
strength of exposure-response relationship of none,
medium and strong, respectively, the Bayes factor is
given by [50]:

BF = Bayes Factor
likelihood of data in ER Match given Ri

= likelihood of data in ER Match given not—Ri
()

An increasing BF indicates increasing evidence in sup-
port of state value i.

Once the BF is calculated for combinations of states
and observations (i.e., for each of the three states of R
and for each of the nine observation states of ER
Match), each sequential observation of ER Match up-
dates the state probabilities for R as:

Posterior Odds (Ri) = BF x Prior Odds(Ri) (3)
where Odds (Ri) = P(Ri) / [1 — P(Ri)]

o AcEM o TE
low 0% low  97%
high 100% 1 | Imedium 2%
perfect 0% 2 |high 1%|
\ )
o ME
low  100%
medium 0%
high 0%
ER Match
lh 0% i
ml 0%
mm 0%
mh 0%
hi 0%
hm 0%
hh 0% J

Fig. 4 An example: updated BN model for AcEM-AcRM: low-low associated relationship (R) assessment and a single // case

o) R
low none 32%
medium 2% medium29%|
high 1% strong 39%

° AcRM

low 0%

high 100% /"

perfect 0% d
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One important advantage of the BF is that it is not af-
fected by the prior probability at a given stage, nor by
the sample size used to inform this probability. Once it
is computed using Eq. 2, it may be used repeatedly in
Eq. 3 to update the state probabilities in the network as
new observations are collected (or simulated) and proc-
essed. In the following comparisons, we compute poster-
ior probabilities for 10 realizations of each scenario
using an independent sample of ER Match for each. This
allows us to track the effects of measurement error on
the estimated strength of relationship and compare them
across equally plausible samples from a given population
scenario.

Results and discussion

We evaluate the efficiency of the model by how well it
predicts the strength of relationship when updated using
synthetic ER Match results simulated for scenarios with
specified values of R (none, medium, or high) and alter-
native scenarios for AcEM and AcRM (perfect-perfect,
high-high, low-low). The results for these 3x3 =9 sce-
narios are summarized in Figs. 5, 6 and 7, with the pre-
dicted probability for each of the categories of R shown
as a function of sample size. In each case, one of the
states for R is correct, corresponding to the original
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population designation, while the other two states are in-
correct for the specified scenario. In each case the focus
is upon whether and how quickly the predicted probabil-
ity of the assumed true state of R approaches 1.0. Prob-
ability trajectories are shown as predicted from each of
the 10 trials of simulated ER Match results for a given
scenario (gray lines), as well as the mean probability
prediction for each level of R across the 10 trials (black
line).

In each figure, the rows represent the actual state of R
used to generate the samples of ER Match, while the
predicted posterior probabilities are for the state of R
corresponding to each column. Each curve depicts the
predicted probability of its column value of R given that
its row state is true. The three plots along the diagonal
of each figure show whether and how quickly the correct
results are inferred by the network model using data
with varying degrees of measurement error. The
off-diagonal plots show whether, and for how large of a
sample, false inferences are made for each of the two in-
correct states.

Figure 5 summarizes the posterior probabilities of pre-
dicted R over different sample sizes assuming perfect
measurements of both an individual’s exposure and their
response. In this scenario, there is perfect correspond-
ence between TE and ME, and between TR and MR, and

None

Posterior probabilities of predicted R

Medium

Strong

None

Medium

Actual R

Strong

of relationship of dataset)

Sample size (N)

Fig. 5 Posterior probabilities of different strength of relationship for the case of perfect-perfect accuracy level (title indicates the actual strength
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relationship of dataset)
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Fig. 6 Posterior probabilities of different strength of relationship for the case of high-high accuracy level (title indicates the actual strength of

the Bayesian network predictions for the true state of R
converge to a probability of 1.0 in a relatively direct man-
ner. This convergence is quite rapid for R =strong or
none, occurring with approximate sample sizes of N =20
or N =50, respectively. Identification of R =medium is
more difficult, requiring a sample N =700 or more. Fur-
thermore, as noted for many of the plots in Fig. 5, infer-
ences from one or more of the individual trials (plotted in
grey) exhibit divergent behavior well into the sample
count, appearing as outliers relative to the other trials and
diverging from the overall mean of the predicted probabil-
ity over all or some of the pre-convergence sample sizes.
Figure 6 shows results for the high-high accuracy sce-
nario where both the ME and MR correspond closely, but
imperfectly, to TE and TR, respectively. As indicated, con-
vergence for correct identification of the true R still occurs
for all trials by an approximate sample size of N =100 for
R =strong, and by a sample size of N=300 for R = none.
For R = medium, convergence of all trials to a probability
of 1.0 is still not achieved by a sample size of N =1000.
The overall slower convergence of the high accuracy vs.
the perfect measurement scenarios is expected, as is the
greater variance in individual trials exhibited in Fig. 6
compared to Fig. 5. The especially slow convergence for R
=medium may result from our particular model
parameterization, but also from the fact that the medium

state for R is bounded on both sides by the alternatives
none (below) and strong (above). If very strong evidence
for R =none accumulates (with a very small number of
samples where the subjects’ measured exposure and mea-
sured response align), this statistical overabundance of
support for R = none still supports the subsequent infer-
ence that R = none. The same occurs for R = strong when
there is a statistical overabundance (e.g., nearly all samples
yield MR = ME). In contrast for R = medium, as unusual
(perhaps non-representative) results accumulate, there is
somewhere else for the fitted probability to go, either up-
wards to R = strong or downwards to R = none.

The effects of low-low accuracy (i.e., high measure-
ment error) are illustrated in Fig. 7, where none of the
true states of R and their associated samples lead to cor-
rect mean probability predictions that converge to 1.0 by
N=1000. For R =none and R =strong, the mean values
of the probabilities are slowly progressing upward
(reaching 0.7 for R =none and 0.55 for R = strong when
N =1000), but with extremely high trial-to-trial variation
which grows larger with sample size. By the time N =
1000, a number of the trials for either R = none or R =
strong predict the correct state with probability close to
1.0, but others predict the correct state with probability
close to zero, providing “convincing” evidence for the
wrong conclusion. Other trials predict probabilities for
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3 None

Posterior probabilities of predicted R

Medium

Strong

None

Medium

Actual R

Strong

relationship of dataset)

Sample size (N)

Fig. 7 Posterior probabilities of different strength of relationship for the case of low-low accuracy level (title indicates the actual strength of

the correct state between 0 and 1.0, so that the infer-
ences drawn from their exposure-response analyses span
the range from correct to inconclusive to wrong. As
such, from the results in Fig. 7, low accuracy measure-
ments can cause significant mislearning to occur in
many cases becoming more severe as the study size in-
creases. The presence of variability for “None” and
“Strong” cases allows for occasional high and low poster-
ior probabilities compared to the “Medium” scenario.

To provide an overall summary of the effects of meas-
urement error Table 4 shows the sample size needed to
(on the average) infer with 90% posterior probability the
correct strength (for the three true strengths of relation-
ship) and the three accuracy levels. Increasing accuracy
levels require smaller sample sizes to predict the
strength of the true relationship. For instance, increasing
the accuracy level from low to perfect causes a dramatic

Table 4 The sample size needed to infer with 90% posterior
probability of the correct strength

Accuracy True strengths of relationship

Level None Medium Strong
Low 1000+ 1000+ 1000+
High 133 983 25
Perfect 32 205 6

decrease in the required sample size (1000+ to 6) for the
case of a strong relationship.

The main goal of this study is exploring Bayesian net-
work model as a tool to understand the effects of meas-
urement and classification errors on the accuracy and
precision of inferences drawn regarding the strength of
exposure- and dose-response relationships. There is a
high potential of applying the proposed method to dif-
ferent datasets. We acknowledge the limitations of this
study. However, in the future, Bayesian methods can be-
come a routine toolkit for assessing dose-response meas-
urement and correcting measurement errors. Therefore,
there is a growing need of scientific knowledge on ad-
vanced statistical methods. The proposed method pro-
vides important information on the prior knowledge and
likelihood of a strong, medium or weak relationship;
metrics of exposure and sources of exposure error or
misclassification; and metrics of response and the pos-
sible causes of effects misclassification; and the add-
itional data that would be needed to apply the method.

Conclusions

New methods are needed to frame and quantify the joint
effects of measurement errors and different sample sizes
on the ability of exposure- and dose-response studies to
properly infer the presence and magnitude of an actual
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epidemiological or toxicological relationship. DAGs can
provide a powerful approach for visualizing dependen-
cies between variables in a network, allowing the com-
bination of expert judgment for measurement errors and
the strength of a relationship with the quantitative study
results.

We present an illustrative demonstration of a novel
method to frame fundamental uncertainty questions in
toxicological/epidemiological studies. We use BNs as a
tool to understand the effects of measurement and clas-
sification errors on the accuracy and precision of infer-
ences drawn regarding the strength of exposure- and
dose-response relationships. For the parameters assump-
tions, differences in the power to properly infer a strong
vs. medium vs. no relationship are found. The results
show that cases where the actual strength of relationship
is either R=none or R =strong are easier to predict
(with smaller sample size) than the case where R=
medium. In general, increasing the sample size increases
the accuracy level for the predicted R for almost all sce-
narios, except when the measurement error is high
(AcEM, AcRM =low). For these scenarios, the predic-
tions, even over many trials, exhibit little or no conver-
gence. Furthermore while improved measurement
accuracy does increase the efficiency of R prediction on
average (yielding faster convergence of the mean prob-
ability), in most scenarios there are a few, or in some
cases many, of the 10 replicate trials that yield incorrect
inferences even as the sample size becomes quite large.
This suggests that environmental health scientists must
be aware of the (perhaps surprisingly high) probability of
incorrect inferences being drawn from a single
exposure-response study. Extended versions of the net-
work demonstrated here could assist in this assessment,
including, for example, the effects of possible confound-
ing exposures and behaviors, and inclusion of multiple
sets of toxicological and epidemiological study results.
These insights would be of value in a wide range of con-
texts requiring the design and interpretation of toxico-
logical and epidemiological studies.
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