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Abstract

Background: Air pollution has a significant health impact. Most data originate from temperate regions. We aim to
study the health impact of air pollution, particularly among the elderly, in a tropical region.

Methods: A daily time-series analysis was performed to estimate excess risk (ER) of various air pollutants on daily
death counts amongst the general population in Singapore from 2001 to 2013. Air pollutants included particulate
matters smaller than 10 μm, and 2.5 μm (PM10, PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3)
and sulphur dioxide (SO2). The studied outcomes were non-accidental and cardiovascular mortality. Single-day lag
and distributed lag models were studied and adjusted for confounders.

Results: In single-day lag models, a 10 μg/m3 increase in particulate matter was associated with significant increases in
non-accidental (PM10 ER: 0.627%; 95% confidence interval (CI): 0.260–0.995% and PM2.5 ER: 0.660%; 95% CI: 0.204–1.
118%) and cardiovascular mortality (PM10 ER: 0.897; 95% CI: 0.283–1.516 and PM2.5 ER: 0.883%; 95% CI: 0.121–1.621%).
This was significant in the elderly ≥ 65 years but not in those < 65 years and were seen in the acute phase of lag 0-5
days. Effects by other pollutants were minimal. For cardiovascular mortality, the effects turned protective at a
cumulative lag of 30 days in the elderly and could due to “harvesting”.

Conclusions: These first contemporary population-based data from an equatorial country with tropical climate
show that exposure to particulate air pollution was significantly associated with non-accidental mortality and
cardiovascular mortality, especially in the elderly.
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Background
Air pollution has a significant health impact on mortality
and morbidity worldwide, resulting in an estimated 4.2
million deaths and 103.1 million disability–adjusted
life-years lost [1]. Air pollution has wide-ranging sys-
temic effects on the human body, impacting both the
respiratory, and cardiovascular systems via multiple
mechanisms including oxidative stress, inflammation
and endothelial dysfunction [2].

Many prospective cohort and daily time-series studies
published globally have consistently demonstrated the
negative associations between long and short-term ex-
posure to air pollution and human health [3–9]. These
studies did not only establish associations between ambi-
ent particulate matters and respiratory health, but also
on cardiovascular health, with the elderly being an espe-
cially susceptible group [10–12]. However, the vast ma-
jority of these studies were conducted in temperate
regions [3–9] rather than in the tropics. As seasonal var-
iations and temperature changes have been shown to
impact the relationship of air pollution on health out-
comes [13–15], we aim to study the impact of air pollu-
tion on non-accidental and cardiovascular mortality in
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the general population, as well as the elderly, in an equa-
torial country with tropical climate and no seasons.

Methods
Data sources
Singapore is an Asian city-state, situated near the equa-
tor with a tropical climate, comprising 5.40 million of
people. Besides being exposed to daily ambient air pollu-
tion generated from domestic sources, Singapore is also
exposed almost yearly to haze episodes of about a month
long duration, whereby smoke from regional forest fires
especially during the dry seasons is blown by winds from
neighbouring countries [16].
Air pollutant and meteorological data are comprehen-

sively collected in Singapore. Daily average of 24-h con-
centrations for particulate matters smaller than 10 μm
and 2.5 μm (PM10 and PM2.5), 8-h carbon monoxide
(CO), 24-h nitrogen dioxide (NO2), 8-h ozone (O3) and
24-h sulphur dioxide (SO2) from the years of 2001 to
2013 were obtained from the National Environment
Agency (NEA) Singapore. During this 13-year study
period, air pollution in Singapore was monitored in air
monitoring stations located at various sites around
Singapore. Four stations located at road-sides were ex-
cluded from the study because they did not reflect the
daily exposure to air pollutants amongst the general
population. Our final analysis included data from 18
studied stations and data completeness for each studied
station was assessed by calculating the proportion of
days on which data was collected out of the number of
days in operation. Aggregated daily air pollutant concen-
trations were calculated following the Air Pollution on
Health: European Approach (APHEA) protocol with
added modifications [13]. In summary, imputed annual
mean concentrations for each station were subtracted
from the station-specific daily concentrations of the
same year to generate a set of ‘centred’ values. Using the
centred values, the arithmetic mean was calculated
across all stations by day and the average of the imputed
annual mean concentrations were then added back to
derive the daily values used in the analysis. Average me-
teorological values were derived from daily means of dry
bulb temperature and relative humidity from 5 stations
which selected based on the shortest proximity to the air
monitoring stations provided by NEA’s Meteorological
Service division.
Mortality data from the Registry of Births & Deaths

were extracted to calculate aggregated daily counts of all
non-accidental deaths (International Classification of
Diseases (ICD)-9000–799 from the period of 2001–2012
& ICD-10 A00-R99 for the year of 2013) and cardiovas-
cular deaths (ICD-9390–459 & ICD-10 I00-I99) by age
groups (all-age, < 65 and ≥ 65 years) over the 13 years
study period. A separate analysis was also conducted

looking at the subset of subjects ≥ 80 years. Ethics ap-
proval was obtained from the SingHealth Centralised
Institutional Review Board.

Statistical analysis
A quasi-Poisson generalized additive model was used for
the analysis [17]. Single-day lag models and distributed
lag models (DLMs) were respectively built to analyse the
lagged day effects of the different air pollutants first on
all ages combined non-accidental and cardiovascular
mortality [18–20] respectively. Analyses of PM10 and
PM2.5 effects stratified by two age groups (< 65 and ≥ 65
years) were then repeated using the DLMs to further
study age-specific effects.
Separate core models were firstly built (for each age

group and mortality type) without adding pollutant vari-
able to explain the variations, as much as possible, due
to long term trends and other potential time-varying
confounding factors:

Log E Yð Þ½ � ¼ αþ s Tð Þ þ β1DOW þ β2SARS
þ β3FLU þ β4PH þ β5afterPH
þ s DBTð Þ þ s RHð Þ

Where Log is the natural logarithm, Y is the daily
counts of non-accidental or cardiovascular deaths,
DOW refers to the day of week and s(T), s(DBT) and
s(RH) refer to the penalised cubic regression smoothers
for long term trends, dry bulb temperature (°C) and rela-
tive humidity (%) respectively. 1 to 3 days lag were tested
for variables DBT and RH. Selection of lag-day variables
and smoothing spline parameters were based on models
giving the lowest quasi-Akaike’s Information Criterion
[21]. Dummy variables of SARS and FLU are used to
control for impact due to the periods of 2003 severe
acute respiratory syndrome (SARS) and of the 2009 in-
fluenza A(H1N1) pandemics respectively while PH and
afterPH are terms for public holidays and the day follow-
ing public holidays.
After the core model was established and chosen for

each mortality outcome, variables depicting the various
air pollutants were added for the single-day lag models.
Two-pollutant models were further constructed for pol-
lutants with significant effects in the single pollutant
model. For the DLMs, basis functions were applied with
the lag-response relationship defined a priori using a 3rd
degree polynomial. Polynomials had been used in previ-
ous air pollution studies to analyse the lag-response as-
sociations [22–24]. A 30-day lag structure, signifying a
medium-term period of about a month, was used to ob-
serve cumulative effects and mortality displacement if any.
As a sensitivity analysis, cumulative lag-response charts
generated with DLMs using 2nd and 4th degrees polyno-
mials are shown in the Additional file 1: Figures S1 to S4.
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Percentage changes in mortality risk, or excess risks (ERs),
associated with a 0.1 mg/m3 for CO and 10 μg/m3 for
other pollutants were calculated using (RR-1) × 100%,
where RR denotes relative risk estimated from the regres-
sion coefficient of air pollutant variable of the models.
Statistical significance was assessed using 95% confidence
intervals (CI). Residual autocorrelation (ACF) and partial
autocorrelation (PACF) charts for the core models were
performed to assess model fit and are shown in Additional
file 1: Figure S5. Data collection process might be inter-
rupted for certain stations over the study period due to
site relocation or site closure, and hence annual mean pol-
lutant concentrations used for centring the data were im-
puted using spatial interpolation with the “fields” package
version 8.3–6 in the R statistical software [25]. All statis-
tical analyses, including plotting of lag-response relation-
ships and residual diagnostics to assess model fit, were
carried out using the “mgcv” and “dlnm” packages in R
version 3.3.1 [17, 19, 26].

Results
Mean daily concentrations of PM10 & PM2.5 were
29.4 μg/m3 and 20.0 μg/m3 respectively, and reached as
high as 336.6 μg/m3 and 275.8 μg/m3 during the haze
episode in 2013. CO concentration also reached a high
of 3.6 mg/m3 during the same episode. Given Singapore’s
tropical climate, daily mean of dry bulb temperatures
ranged narrowly from 23.4 °C to 30.9 °C while daily
mean of relative humidity ranged from 63.6 to 98.1%.
Mean daily counts of non-accidental and cardiovascular
mortality for all-ages were 43.5 and 15.4 respectively
while figures of 30.6 for non-accidental mortality and
11.2 for cardiovascular mortality were recorded in the
elderly aged 65 years old and above (Table 1). The cor-
relation between air pollutant and meteorological data is
found in the Additional file 1: Table S1. There is a very
high linear correlation between levels of PM10 and PM2.5

(r = 0.923).
Completeness of the air pollutant data ranged from

58.2 to 100.0%. For each pollutant, there were 10 to 17
stations that collected data on more than 80% of the
days that they were in operation during the study period.
There was only one day in 2012 when data for zone was
not available from any of the stations.

Air pollution and mortality
The low residual ACF and PACF values (Additional file 1:
Figure S5) showed that the core models were able to ex-
plain the temporal trends of the data adequately. Signifi-
cant effects were observed for PM10 & PM2.5 in both the
single-day and distributed lag models. In the single-day
lag models, the highest ER associated with a 10 μg/m3 in-
crease occurred in the 3rd day after exposure for both
non-accidental (PM10 ER: 0.627, 95% CI: 0.260–0.995%

and PM2.5 ER: 0.660%; 95% CI: 0.204–1.118%) and cardio-
vascular mortality (PM10 ER: 0.897%; 95% CI: 0.283–
1.516% and PM2.5 ER: 0.883%; 95% CI: 0.121–1.621%).
The estimated ERs generally remained significant for
PM10 and PM2.5 even after controlling for additional pol-
lutants (Additional file 1: Table S2a,b).
O3 also exhibited a significant effect at day 1 lag for

non-accidental mortality (ER: 0.354%; 95% CI: 0.011–
0.698%). However, this effect was insignificant after adjust-
ing for PM10 and PM2.5 (Additional file 1: Table S2c).
Effects by other pollutants were observed to be minimal
or insignificant (Table 2).
Results from the distributed lag models are presented in

Table 3 and Fig. 1. Significant cumulative effects were ob-
served over days 0–5 but not over subsequent longer pe-
riods. Cumulative ERs over days 0–5 for PM10 & PM2.5

were estimated to be 0.700% (95% CI: 0.276–1.126%) &
0.829% (0.276–1.386%) respectively for non-accidental
[30] mortality, and 0.921% (0.218–1.629%) & 1.073%
(0.157–1.998%) respectively for cardiovascular mortality.
Sensitivity analysis using 2nd or 4th degree polynomials
showed similar results (Additional file 1: Figures S1-S4).

Impact by age
Cumulative effects were significant in the elderly aged 65
years old and above, with every 10 μg/m3 increase in pol-
lutant concentration resulting in a 0.771% (95% CI: 0.265–
1.279%) and a 0.955% (0.297–1.618%) increase over days
0–5 in non-accidental mortality risk for PM10 & PM2.5 re-
spectively. Cardiovascular mortality in turn showed a
1.236% (0.436–2.042%) and a 1.478% (0.437–2.530%) in-
crease in risk of PM10 & PM2.5 over days 0–5 (Table 4).
No significant effects were seen over days 0–15, but

interestingly significant negative cumulative effects were
seen for cardiovascular mortality over days 0–30 in the
elderly group (PM10 ER: -2.085%; 95% CI: -3.614% –
-0.532% and PM2.5 ER: -2.721%; 95% CI: -4.667% –
-0.736%). A similar negative effect was also seen for the
younger age group for non-accidental mortality over
days 0–30 for PM2.5 (ER:-1.694%; 95% CI: -3.220% –
-0.143%). Sensitivity analysis using up to 2nd or 4th de-
gree of polynomials showed similar results (Additional
file 1: Figures S1-S4).
In a separate analysis looking at the very elderly aged

80 years and above, cumulative effects were significant,
with every 10 μg/m3 increase in pollutant concentration
resulting in a 0.749% (95% CI: 0.095–1.408%) and a
0.955% (0.105–1.812%) increase over days 0–5 in
non-accidental mortality risk for PM10 & PM2.5 respect-
ively (data not shown). There was a trend towards in-
creased cardiovascular mortality at days 0–5, although
this association was not significant. Significant negative
cumulative effects were seen for cardiovascular mortality
over days 0–30 in this very elderly group for PM10 (ER:
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-2.060%; 95% CI: -3.987% – -0.094%) and a similar
non-signficant trend for PM2.5.

Lag-response association
Graphs showing non-cumulative percentage change in
mortality over days 0–30 are shown in the Additional file 1:

Figure S6, S7. The graphs for the all-age group and the ≥
65 years age group showed that impact on mortality was
mostly observed in the immediate days (days 0–5) after ex-
posure. After this initial period, significant protective effects
were actually observed in both non-accidental & cardiovas-
cular mortality. However, while non-accidental mortality

Table 2 Single-day lag models for association between air pollutant levels and mortalitya

Percentage change (95% confidence interval)

Lag 0 Lag 1 Lag 2 Lag 3

Non-accidental mortality

PM10 0.485 (0.109, 0.863) 0.487 (0.114, 0.862) 0.481 (0.111, 0.852) 0.627 (0.260, 0.995)

PM2.5 0.593 (0.129, 1.058) 0.518 (0.056, 0.981) 0.504 (0.047, 0.964) 0.660 (0.204, 1.118)

CO 0.064 (−0.237, 0.366) 0.133 (− 0.166, 0.433) 0.240 (− 0.059, 0.539) 0.219 (− 0.077, 0.514)

NO2 − 0.124 (− 0.985, 0.744) − 0.025 (− 0.867, 0.824) − 0.082 (− 0.947, 0.791) 0.042 (− 0.800, 0.890)

O3 0.015 (− 0.372, 0.403) 0.354 (0.011, 0.698) 0.037 (− 0.356, 0.432) 0.219 (− 0.117, 0.557)

SO2 − 0.218 (− 1.044, 0.616) 0.221 (− 0.603, 1.053) 0.679 (− 0.147, 1.512) −0.390 (− 1.208, 0.435)

Cardiovascular mortality

PM10 0.553 (− 0.074, 1.185) 0.633 (0.007, 1.262) 0.610 (− 0.010, 1.234) 0.897 (0.283, 1.516)

PM2.5 0.632 (−0.142, 1.412) 0.603 (−0.172, 1.385) 0.541 (− 0.229, 1.318) 0.883 (0.121, 1.651)

CO 0.167 (−0.328, 0.665) 0.071 (−0.418, 0.561) 0.135 (− 0.356, 0.629) 0.362 (− 0.132, 0.858)

NO2 − 0.344 (− 1.707, 1.038) −0.151 (− 1.486, 1.203) −0.897 (− 2.217, 0.441) −0.352 (− 1.726, 1.041)

O3 0.500 (− 0.134, 1.137) 0.292 (− 0.266, 0.854) 0.105 (− 0.454, 0.667) 0.489 (− 0.154, 1.137)

SO2 0.223 (− 1.114, 1.577) −0.325 (− 1.647, 1.014) 0.857 (− 0.479, 2.211) −0.197 (− 1.519, 1.143)
aPer 0.1 mg/m3 increase in CO and per 10 μg/m3 increase for other pollutants
Results highlighted in bold are statistically significant

Table 1 Summary statistics of daily air pollutant concentrations, meteorological data and mortality.2001–2013

No.(days) Mean SD Percentile

Min 10th 50th 90th Max

Air Pollutants

PM10 (μg/m3) 4748 29.4 12.9 7.6 19.1 27.6 39.9 336.6

PM2.5 (μg/m3) 4748 20.0 10.6 6.0 11.9 18.1 28.9 275.8

CO (mg/m3) 4748 0.6 0.2 0.1 0.3 0.5 0.8 3.6

NO2 (μg/m3) 4748 25.0 6.8 7.4 16.8 24.4 33.7 60.7

O3 (μg/m3) 4747a 37.7 15.1 5.4 20.1 35.8 56.9 125.5

SO2 (μg/m3) 4748 13.2 7.6 0.5 4.2 12.3 23.2 60.8

Meteorological variables

DBT (°C) 4748 27.8 1.1 23.4 26.3 27.8 29.2 30.9

Relative humidity (%) 4748 81.4 5.3 63.6 74.6 81.2 88.5 98.1

Daily non-accidental mortality

All ages 4748 43.5 7.7 21 34.0 43.0 54.0 74

< 65 years 4748 12.9 3.6 2 8.0 13.0 18.0 27

> 65 years 4748 30.6 6.5 13 23.0 30.0 39.0 57

Daily cardiovascular mortality

All ages 4748 15.4 4.1 4 10.0 15.0 21.0 33

< 65 years (No.) 4748 4.3 2.1 0 2.0 4.0 7.0 16

> 65 years (No.) 4748 11.2 3.4 2 7.0 11.0 16.0 26
aNo data for ozone on 11/2/2012
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showed effects approaching the null around days 15–20,
cardiovascular mortality only showed a rebound around
days 20–25, thus indicating a slower approach.

Discussion
In this daily time series analysis performed in an equa-
torial Asian city-state with tropical climate, we found
significant associations between particulate air pollutants
(PM2.5, PM10) and non-accidental mortality, as well as
cardiovascular mortality, which corroborated with other
previous studies conducted in temperate countries, but
our estimated effect sizes are closer to the lower end of
their estimates. Greater effects were especially found in
the elderly. The impacts of other pollutants were gener-
ally insignificant however.
The strongest evidence for the impact of air pollutants

on mortality lie in the particulate air pollutants. In a re-
cent meta-analysis, a 10 μg/m3 increment in PM2.5 was
associated with a 1.04% increase in mortality with sub-
stantial regional variations (ranging from 0.25 to 2.08%)
[27]. In a study from 20 cities in the United States, a
10 μg/m3 increased in PM10 was associated with signifi-
cant increase of 0.51% in overall mortality, with no im-
pact from the other air pollutants [7]. Another study
from 38 cities in China similarly showed a 10 μg/m3

change in PM10 concentrations was associated with a
0.44% increase in daily number of deaths [3]. In Europe,
PM2.5 was significantly associated with overall mortality
while NO2 was not [5]. The ESCALA study (Estudio de
Salud y Contaminación del Aire en Latinoamérica)
which included 9 Latin American cities in the tropics (al-
beit non-equatorial) found a similar significant association

between PM10 and mortality [28]. In our study, we found
an increase of 0.63 and 0.66% in overall mortality with
every 10 μg/m3 increase in PM10 and PM2.5 respectively
from the single-day lag model. No significant impact on
overall mortality was found from the other air pollutants.
The lack of impact from other air pollutants despite some
findings from other studies may in part be explained by the
lower concentrations of these air pollutants in our study.
For example, the NO2 concentrations in our study were
about half that of several published studies [22, 29] which
found significant associations between NO2 and mortality.
Similarly, significant lower concentrations of O3 was noted
in our study compared to others [28].
Since the hypothesis was first postulated by Seaton et

al. (1995), that ultra-fine particulates, less than 0.3 μm in
aerodynamic diameter, may provoke more alveolar in-
flammation causing exacerbation of existing lung disease
and increased blood coagulability than larger respired
particles, the impact of air pollution on cardiovascular
health has received great attention. In addition, air pol-
lutants result in increase in risk of cardiovascular events
via various pathways including oxidative stress, systemic
inflammation, endothelial dysfunction, atherothrombo-
sis, and arrhythmogenesis [2, 29, 30]. Increased levels of
air pollutants have been shown to be associated with
progression in coronary calcification on computed tom-
ography scans [8]. The same meta-analysis mentioned in
the previous paragraph found a 0.84% increase in cardio-
vascular mortality with a 10 μg/m3 in PM2.5 [27]. The
ESCALA study from tropical Latin American also found
a significant association between PM10 and cardiovascu-
lar events [28]. In study of 8 cities in China, a 10 μg/m3

Table 3 Distributed lag models for association between air pollutant levels and mortalitya

Percentage change (95% confidence interval)

Lags 0–5 Lags 0–15 Lags 0–30

Non-accidental mortality

PM10 0.700 (0.276, 1.126) 0.316 (−0.277, 0.912) 0.220 (−0.700, 1.148)

PM2.5 0.829 (0.276, 1.386) 0.362 (−0.419, 1.150) 0.297 (−0.904, 1.512)

CO 0.260 (−0.051, 0.572) 0.074 (−0.368, 0.518) 0.660 (− 0.015, 1.339)

NO2 −0.622 (−1.713, 0.480) −1.560 (−3.119, 0.024) −0.106 (−2.239, 2.073)

O3 0.123 (−0.373, 0.622) − 0.628 (− 1.305, 0.054) − 1.184 (− 2.200, − 0.159)

SO2 −0.125 (− 1.380, 1.146) 0.120 (− 1.715, 1.989) 1.048 (− 1.514, 3.677)

Cardiovascular mortality

PM10 0.921 (0.218, 1.629) 0.011 (−0.948, 0.989) − 1.078 (− 2.489, 0.354)

PM2.5 1.073 (0.157, 1.998) −0.196 (− 1.451, 1.074) − 1.450 (− 3.263, 0.396)

CO 0.278 (− 0.232, 0.791) − 0.151 (− 0.854, 0.557) 0.110 (− 0.922, 1.152)

NO2 −1.345 (− 3.034, 0.375) −3.112 (−5.365, − 0.805) −1.685 (−4.498, 1.211)

O3 0.435 (− 0.350, 1.227) −0.785 (− 1.809, 0.249) −2.165 (− 3.586, − 0.722)

SO2 −0.095 (− 2.098, 1.948) −0.963 (− 3.747, 1.901) −1.032 (− 4.653, 2.727)
aPer 0.1 mg/m3 increase in CO and per 10 μg/m3 increase for other pollutants
Results highlighted in bold are statistically significant
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in PM10 was associated with 0.36% increase in coronary
heart disease mortality, with significant associations also
found for NO2 and SO2 [31]. A study from Korea found
that exposure to PM2.5, PM10, CO, SO2, and NO2, but
not O3, increased the risks of cardiovascular events and
mortality [6].
In our analysis of the single-day lag model, we found

an increase of 0.90 and 0.88% in cardiovascular mortality
with every 10 μg/m3 increase in PM10 and PM2.5 respect-
ively. Interestingly, in the single-day lag model, the earli-
est significant effects on overall mortality were seen on
the same day as exposure while the effects on cardiovascu-
lar mortality were primarily seen on lag day 3. Although

both lags are fairly acute, this may indicate a relatively
more delayed effect of air pollution on the cardiovascular
system compared to the respiratory system (the respira-
tory system being in direct contact with the inhaled pol-
lutants). Furthermore, although the pro-ischemic and
pro-thrombotic effects of pollution may occur within
hours of exposure [32], it may take longer (eg. days) for
cardiovascular mortality to occur. A similar finding was
demonstrated by Costa et al., whereby the impact of air
pollution on cardiovascular mortality was evident only on
lag day 3 while the impact on respiratory mortality was
more immediate [22]. We did not find an impact of other
pollutants on cardiovascular mortality.

Fig. 1 a Cumulative percent change (%) in non-accidental mortality for 10 μg/m3 pollutant concentration increase in PM10 (top row) and PM2.5

(bottom row). b Cumulative percent change (%) in cardiovascular mortality for 10 μg/m3 pollutant concentration increase in PM10 (top row) and
PM2.5 (bottom row)
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The elderly is an increasingly vulnerable group and
sensitive to the effects of particulate matter. The elderly
tends to be frailer, have more co-morbidities and less
physiological reserves. In the Chinese study, the effect of
PM10 on overall mortality in those less than 60 years old
was insignificant but became significant in those aged ≥
60 years old (0.57% per 10μg/m3 increase) [3]. In the
Netherlands, PM10 caused increased overall mortality in
all age groups but only caused significant circulatory dis-
ease mortality in those aged > 65 years old [4]. Multiple
other studies have also demonstrated the ill effects from
air pollution in the elderly age group. In our study, we
found similar significant associations with overall and
cardiovascular mortality with PM10 and PM2.5 in the eld-
erly aged ≥65 years but not in those < 65 years. The sig-
nificant effects on mortality were seen primarily in the
acute phase of lag 0-5 days. Interestingly, for cardiovas-
cular mortality, the effects turned protective at a cumu-
lative lag of 30 days in the elderly. This suggests that the
number of cardiovascular deaths was lower as compared
to another 30-day window period where no exposure to
particulate matter had taken place. This could be attrib-
uted to the “mortality displacement” or “harvesting” ef-
fect [23, 33]. In the elderly population, high level of
short term exposure to air pollution may cause greater
mortality, advancing deaths and depleting the ‘at-risk’
group early on, resulting in a follow-on period with a
mortality rate that is lower than expected [23, 33]. In a
study on air pollution and myocardial infarction, higher
levels of PM10 were associated with short-term in-
creased risk of MI, but later reductions in risk suggest
that air pollution may be associated with bringing events
forward in time (“short-term displacement”) [34]. An-
other reason for the apparent lower number of deaths
later on might be the subsequent protective measures
(e.g. wearing masks, staying indoors) that alerted

individuals or organizations put in place during periods
of high air pollution levels. This may in part explain the
lower non-accidental mortality in the younger age group
at cumulative lag of 0–30 days.
The vast majority of studies on the impact of air pollu-

tion were performed in temperate regions. The meta-
analysis used data mainly from European, American and
Western Pacific regions, with only one study on hospital
admissions that included data from south-east Asia [27].
The Global Burden of Diseases Study included data from
tropical regions but air pollution burden was largely esti-
mated from satellite data and also extrapolated and ap-
plied risk estimates of air pollution from other studies
for places where such estimates were not available [1].
Moreover, studies have shown that seasonal changes,
temperature and humidity variation may impact the rela-
tionships between air pollution effect and health out-
comes [13–15], emphasizing the importance of validating
these findings in the tropics, where the climate is starkly
different. In the APHEA study, there was higher effects of
PM10 on daily mortality in cities with a higher tempera-
tures [13] and similarly in Korea, hotter temperatures ac-
centuated the effect of PM10 on mortality [14]. In our
study, we found similar significant findings on the nega-
tive impact of particulate air pollution on overall and car-
diovascular mortality. The estimates from our study,
although not directly comparable to other studies, appear
to be on the lower end of the spectrum.

Limitations
There are several limitations. Firstly, due to the time-
series analysis nature of the study, unmeasured clinical
variables (eg. comorbidities), which could affect the ac-
tual estimates of air pollution on mortality, could not be
fully accounted for despite our best efforts in controlling
for potential confounding factors in the models. Our

Table 4 Distributed lag models for association between air pollutant levels and mortality by age groupa

Percentage change (95% confidence interval)

Lags 0–5 Lags 0–15 Lags 0–30

Non Accidental Mortality

< 65 years PM10 0.105 (− 0.641, 0.856) − 0.726 (− 1.659, 0.216) − 1.214 (− 2.442, 0.029)

PM2.5 −0.073 (− 1.039, 0.903) − 1.045 (− 2.246, 0.171) −1.694 (− 3.220, − 0.143)

> 65 years PM10 0.771 (0.265, 1.279) 0.376 (− 0.345, 1.102) 0.146 (− 0.980, 1.284)

PM2.5 0.955 (0.297, 1.618) 0.447 (− 0.501, 1.405) 0.241 (− 1.229, 1.733)

Cardiovascular Mortality

< 65 years PM10 − 0.706 (− 2.038, 0.645) − 0.885 (− 2.466, 0.721) −1.456 (− 3.411, 0.539)

PM2.5 −1.145 (−2.872, 0.613) − 1.302 (− 3.332, 0.771) −2.015 (− 4.417, 0.447)

> 65 years PM10 1.236 (0.436, 2.042) − 0.288 (− 1.366, 0.801) −2.085 (− 3.614, − 0.532)

PM2.5 1.478 (0.437, 2.530) −0.655 (− 2.060, 0.771) −2.721 (− 4.667, − 0.736)
aPer 10 μg/m3 increase in PM10 and PM2.5

Results highlighted in bold are statistically significant
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models also did not adjust for the transboundary haze
episodes as we wanted to analyse the general exposure
of the public to air pollutants, and not to distinguish be-
tween domestic and transboundary air pollution. Sec-
ondly, the impact of indoor air pollution was not
assessed as this data was not readily available, but we be-
lieve such effect would be minimal as residents in
Singapore do not burn coals for cooking in the houses.
Thirdly, a 3rd degree of polynomials was used to define
the lag-response relationship over a period of 30 days. A
different parametric shape or a different degree param-
eter would result in different ER estimates. However, a
sensitivity analysis using up to 2nd or 4th degree of
polynomials showed that these differences were minute
and did not affect our final interpretation. A fourth limi-
tation is that we did not explore the inclusion of differ-
ent concentration-response functions to describe the
exposure-response relationship [35]. In our analysis, we
assumed a log-linear relationship via a quasi-Poisson
model. Lastly, correlation between the paired pollutants
in the two-pollutant models potentially resulted in mul-
ticollinearity that produced some unstable estimates.

Conclusions
These first contemporary population-based data from an
equatorial country with tropical climate and no seasons
show that exposure to particulate air pollution (PM2.5,
PM10) was significantly associated with non-accidental
mortality and cardiovascular mortality, especially in the
elderly.
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