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Abstract

Background: Short-term geomagnetic disturbances (GMD) driven by the quasi-periodic 11-year cycle of solar
activity have been linked to a broad range of adverse health effects, including cardiovascular diseases (CVD) and
total deaths. We conducted a large epidemiological study in 263 U.S. cities to assess the effects of GMD on daily
deaths of total, CVD, myocardial infarction (MI), and stroke.

Methods: We employed a two-step meta-analysis approach, in which we estimated city-specific and season-
stratified mortality risk associated with a GMD parameter (Kp index) in 263 U.S. cities. In addition, sensitivity analysis
was performed to assess whether effect modification of particulate matter (PM2.5) in the prior day changed Kp
index effects on daily deaths after adjusting for confounders.

Results: We found significant association between daily GMD and total, CVD, and MI deaths. The effects were even
stronger when we adjusted the models for 24-h PM2.5 for different seasons. For example, in the winter and fall one
standard deviation of z-score Kp index increase was associated with a 0.13 and 0.31% increase in total deaths,
respectively (Winter: p = 0.01, 95% CI: 0.02 to 0.24; Fall: p = 0.00001; 95% CI: 0.23 to 0.4), without adjusting for PM2.5.

The effects of GMD on total deaths were also observed in spring and summer in the models without PM2.5 (p =
0.00001). When the models were adjusted for PM2.5 the total deaths increased 0.47% in winter (p = 0.00001, 95% CI:
0.3 to 0.65) and by 0.23% in fall (p = 0.001, 95% CI: 0.09 to 0.37). The effects of GMD were also significant associated
with MI deaths and CVD. No positive significant association were found between Kp and stroke. The GMD effects
on deaths were higher than for 24 h-PM2.5 alone, especially in spring and fall.

Conclusion: Our results suggest that GMD is associated with total, CVD and MI deaths in 263 U. S cities. Increased
mortality in the general population during GMD should be further investigated to determine whether those
human physiological dynamics driven by variations in solar activity can be related to daily clinical cardiovascular
observations.
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Introduction
Life on Earth has been long shaped by the continuous ex-
posure to environmental electromagnetic fields. Exchange
of energy between the solar wind-plasma and Earth’s mag-
netic field (EMF) is driven by the quasi-periodic 11-year
cycle of solar activity, which generates short-term geomag-
netic disturbances (GMD). GMD affect the physiology,
standard metabolism and behavior pattern of humans and
other species (e.g., birds, whales, reptile, insects, bacteria)
[1]. Short-term GMD have been associated with a broad
range of adverse health effects, including cardiovascular
diseases (CVD), neurological system diseases, behavioral
diseases, and total deaths [1–29].
CVD, such as myocardial infarction (MI), coronary heart

diseases, and stroke, continue to be the major cause of
death for all regions worldwide [30]. Heart diseases have
been the first leading causes of death since 1900 in the
United States, with stroke among the 50 leading causes of
death every year since 1924 [30, 31]. Cornelissen et al.
(2002) showed an additional risk of MI mortality of 5%
during years of high solar activity compared to years of
low activity in Minnesota, USA [2]. Recently, Vencloviene
et al. (2014) evaluated the association between GMD and
the survival of 1413 hospitalized patients with acute cor-
onary syndromes in Lithuania [3]. Active GMD episodes
during the second day after admission increased the haz-
ard ratio by 1.58 times for cardiovascular death compared
with geomagnetic quiet days [3].
Alabdulgader et al. (2018) found that not only solar wind

intensity was correlated with increase in heart rate variabil-
ity (HRV), but also the intensity of cosmic rays, solar radio
flux, and Schumann resonance power were all associated
with increased HRV and parasympathetic activity in a small
health cohort in Hofuf, Saudi Arabia [28]. Sympathetic and
parasympathetic nervous system activity of the autonomic
nervous system (ANS) (Involuntary Nervous System) regu-
late functions such as the HRV, breathing, and metabolic
processes in the body (U.S. National Library of Medicine,
2018). Low HRV is associated with a 32–45% increased risk
of a first cardiovascular event in populations without
known CVD [32], and is a predictor for sudden cardiac
death that is responsible for about 25% of deaths in clinical
cardiology [33].
In contrast to the positive associations discussed above

Stoupel et al. (1994) observed highly significant negative
correlation between daily paroxysmal atrial fibrillation
(intermittent, rapid involuntary contractions of the heart
muscle) and GMD activity (r = − 0.976, p = 0.02) [34].
The absolute number of daily admissions for paroxysmal
atrial fibrillation was higher on geomagnetic activity I
days (lower GMD activity) than level IV (higher GMD
activity) days (p < 0.004), and stroke admissions showed
the same highly significant negative correlation with in-
creasing geomagnetic activity, but only in males of 65

years or less (r = − 0.99, p = 0.0008) [34]. Moreover,
blood pressure and drastic changes in the circadian
rhythm (biological 24-h circadian clock) have been re-
ported during geomagnetic disturbances [2]. Circadian
rhythm is a set of physiological and behavioral processes
that exhibit a synchronized pattern with the day/night
cycle periods. Shumilov et al. (2003) report that episodes
of both high and extremely low levels of GMD are re-
lated to adverse effects on human health [6].
While research groups from Israel [13, 15, 24], Italy

[18], Bulgaria [8–11], Mexico and Cuba [4], Canada [1],
and the U.S. [2] have shown evidences of the connection
between GMD and CVD deaths and other outcomes in
relatively small cohorts, there is a need to determine the
temporal and spatial impact of short term exposure to
GMD on deaths in a large epidemiological study includ-
ing CVD deaths. Consequently, we conducted a large
national epidemiological study to investigate the acute
effects of GMD on total and cause-specific mortality in
263 U.S. cities. In addition, we investigated the potential
confounding and/or modifying effects of particulate mat-
ter with an aerodynamic diameter less than 2.5 μm
(PM2.5) on GMD effects.

Methods
Population
Our study included daily total deaths, CVD, MI, and
stroke deaths among all ages and gender from 263 U.S.
cities (Fig. 1). We analyzed 2,008,990 days with 44,220,261
deaths in the study period over approximately 30 years.
The mortality data up to 2006 were obtained from the Na-
tional Center for Health Statistics (NCHS) website, and
for years 1985 through 2013 from the Departments of
Public Health for each city. The city coordinates, time-
period mortality data and the total recorded deaths for
each city are presented in the Additional file 1: Table S1
and Table S3). The causes of death were categorized
according to the International statistical Classification
codes of Diseases and Related Health Problems, Tenth
Edition, as follows: all cardiovascular diseases (ICD-
10th, I00-I99), stroke deaths (ICD-10th, I60–I69), MI
(ICD-10th, I21-I23–8), and total non-accidental deaths.
Complete description of ICD-10th causes of deaths is in
the Additional file 1.

Environmental data
Daily local weather data were obtained from the National
Oceanic Atmospheric Administration’s (NOAA), National
Climatic Data Center. Ambient temperature and rela-
tive humidity were selected a priori based on their
known associations with the outcomes or exposures
[35–37]. Daily space weather data including Kp index,
ap [nanoTesla (nT)] and sunspot number were down-
loaded from NASA Goddard Space Flight Center’s
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Space Physics (https://omniweb.gsfc.nasa.gov/form/dx1.html)
(Figs. 2 and 3). OMNI 2 is a NASA space weather dataset re-
corded mostly from the ACE and WIND spacecraft located
in the dayside magnetopause. High-energy GMD is directly
associated with an increase in the solar activity, in which sun-
spot number is a parameter.

Kp index is a planetary GMD parameter generated by
electric currents and the magnetic deviations on the
ground (NOAA, 2019) (Fig. 3) [38]. The 3-h (h) ap
(equivalent range in nT unit) index is derived from the
Kp index, defined as the earliest occurring maximum
24-h value obtained by computing an 8-point running

Fig. 1 The 263 U.S. cities coordinates

Fig. 2 Daily sunspot number and Kp index distribution. Note: r 0.2, p < 0.0001
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average of successive 3-h ap indices uniquely associated
with the storm event (NOAA, 2019). Kp values range
from 0 (no disturbance) to 9 (maximum disturbance) in
1/3 increment reported 8 times a day at 3-h intervals
recorded in Coordinated Universal Time (UTC). We
used daily Kp sum, which is the sum of 24 h 3-h inter-
vals of Kp data in UTC were converted to local time for
each city i.
Daily PM2.5 values for each city were calculated using

a model that standardizes daily measurements for all
monitors within a city boundary and prevents missing
days from one monitor from adding false variability to
the daily value as previously described in Zanobetti &
Schwartz, 2009 [39, 40]. Acute exposure to PM2.5 was
calculated as the mean of 24-h PM2.5 concentrations.

Statistical analysis
We estimated the effects of GMD on mortality risks in
263 U.S. cities using a generalized additive models
(GAM) with a quasi-Poisson link function to account for
over-dispersion. The models were fitted using city-
averaged variables including smooth functions (splines)
with 1.5 or 2 degrees of freedom: day of the year (DOY)
(1–365/366), daily ambient temperature (temp) (°C), and
daily ambient relative humidity (RH) (%). Additional
analyses were performed to investigate the impact of
wind speed [WSPD (mph)] and planetary boundary layer
height. Day of the week (DOW) (from Sunday to Satur-
day) and year were also included in the models. Seasons
were defined as winter (December–February), spring

(March–May), summer (June–August), and fall (Septem-
ber–November). The generic structure these models can
be represented as:

E Y tð Þ ¼ αþ βi;s�Kpi;s þ g1:5 DOY tð Þ þ g2 tempð Þ
þ g2 RHð Þ þ ωday;s�DOWt þ λs�year; ð1Þ

where for each city and season, E (Yt) is the expected
deaths at day t; α is an intercept parameter; Kpi, s is the
Kp index of the city i at season s and βi, s its respective
coefficient; DOWt is a factor variable that represents the
day of week at time t and ωday, s is its coefficient for each
factor level/day at season s; and year corresponds to the
year and has λs as coefficient at season s. The gdf(∙) func-
tion represents smoothing splines with df degrees of
freedom. For a sensitivity analysis of the above model,
we also included PM2.5 modeled through smoothing
splines with 2 degrees of freedom to account for poten-
tial confounding by PM2.5. The z-score transformation,
z = (x-μx)/σx, was employed for all continuous variables.
In the second stage, we used a mixed-effects meta-

analysis model to estimate the overall Kp index mortality
effect for each season. The model can be written as
follows:

E β̂i;s
� �

¼ γs þ ui;s; ð2Þ

where β̂i;s is the estimated Kp index coefficient for city
i at season s (see model 1) and γs represents the overall
Kp index mortality effect (intercept) at season s. The

Fig. 3 Daily Kp index and the equivalent Ap in nanoTesla (nT) distribution. Note: r 0.34, p < 0.0001
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city-specific random effects are represented by ui,s,
which satisfies ui;s � Nð0; σ2uÞ:
Based on model (1), the overall Kp index mortality

effect at each season is calculated by:

Ef fs ¼ exp c�γ̂s
� �

; ð3Þ

where γ̂s represents the Kp index estimated intercept
in (2) and c is a predefined increment of Kp index at
season s. Throughout this work, we consider c =1 as one
standard deviation of z-score Kp index. Pearson correl-
ation analysis was used to describe the relation between
Kp, ap and sunspot number (Figs. 2 and 3). All analyses
were performed in R software 3.4.3.

Results
Our study included up to 2,008,990 days with data for
mortality, Kp index, temperature, and relative humidity
from 263 cities. The mean daily total mortality was 14
deaths/day, with winter having 16 deaths/day, spring
with 14 deaths/day, summer with 13 deaths/day and fall
having 14 deaths/day, including 44,220,261 deaths in the
study period. The mean daily Kp index was 16.5 (~ 428
nT), with the highest seasonal average levels in spring
(17.3 or ~ 758 nT) and fall (17 or ~ 758 nT) and lowest
in winter and summer (15.8 or ~ 410 nT). The number
of GMD storms was higher in spring and fall (Table 1).
Kp index was correlated with sunspot and ap (p <
0.0001) (Figs. 2 and 3). Summary statistics are presented
in Table 1.
Table 2 presents the estimated percent increase in

mortality for each standard deviation increase in z-score
Kp index. Overall, we found statistically significant

associations (p < 0.05) between daily GMD and total,
CVD, and MI deaths. The results were even stronger
when adjusted for 24-h average PM2.5 concentration in
different seasons (Fig. 4). The effects of the exposure to
GMD on total, CVD, and MI deaths in the day of event
were similar or higher than the exposure to 24-h PM2.5

especially in spring and fall (Fig. 4). In winter, the associ-
ation between GMD and total, CVD and MI deaths were
significantly larger in the models adjusted for PM2.5. No
significant associations were observed between 24 h-
PM2.5 and CVD and MI alone (Fig. 4).
We found that an increase of 0.13% in total mortality

in winter (p = 0.01; 95% CI: 0.02 to 0.24), 0.31% in
spring (p = 0.00001; 95% CI: 0.21 to 0.41), 0.27% in
summer (p = 0.00001; 95% CI: 0.16 to 0.37), and 0.31%
increase in total deaths in fall season (p = 0.00001; 95%
CI: 0.23 to 0.4) for one standard deviation increase in
z-score Kp index in the models without adjusting for
PM2.5. When adjusted for PM2.5, total deaths increased
by 0.47% for each standard deviation of z-score Kp
index increase in winter (p = 0.00001; 95% CI: 0.3 to
0.65), 0.22% in summer (p = 0.00001; 95% CI: 0.05 to
0.4), and 0.23% in fall (p = 0.001; 95% CI: 0.09 to 0.37).
No statistically significant associations were found be-
tween GMD and total deaths in spring in the models
adjusted for PM2.5 (Table 3).
The analysis of the effects of GMD on CVD and MI

deaths showed statistically significant associations in
spring and fall seasons in the models without adjusting
for PM2.5. CVD mortality increased by 0.21% for one
standard deviation of z-score Kp index increase in spring
(p = 0.008; 95% CI: 0.05 to 0.37), and by 0.34% in fall
(p = 0.00001; 95% CI: 0.23 to 0.44). In the models

Table 1 Summary of daily death counts and environmental parameters included in the analysis

Variable Overall Winter Spring Summer Fall

Daily Mortality (deaths/day) Mean (SD)

Total 15.3 (21.5) 15.7 (23.7) 14.4 (21.4) 13.3 (20) 13.9 (20.7)

CVD 5 (8.3) 5.4 (9.3) 4.9 (8.3) 4.5 (7.6) 4.6 (7.9)

MI 1.2 (2.4) 1.4 (2.7) 1.3 (2.4) 1.1 (2.2) 1.2 (2.3)

STROKE 1 (1.6) 1.03 (1.7) 0.9 (1.6) 0.8 (1.5) 0.9 (1.5)

Environmental Parameters

Temperature (°C) 14.2 (10.1) 3.9 (8.5) 13.6 (7.7) 23.9 (4.26) 15.07 (7.6)

Z-score 0 (1.0) −1.04 (0.8) −0.05 (0.7) 0.9 (0.4) 0.1 (0.7)

Relative Humidity (%) 66.2 (16.2) 69.4 (16.1) 69.5 (15.7) 62.1 (16.6) 65.8 (15.6)

Z-score 0.01 (1.0) 0.2 (1.0) −0.25 (1.0) 0.01 (0.9) 0.1 (0.9)

Kp_index 16.5 (9.4) 15.8 (9.1) 17.3 (9.6) 15.8 (8.8) 17 (10.0)

Z-score 0.02 (1.0) −0.05 (0.9) 0.1 (1.0) −0.05 (0.9) 0.07 (1.0)

Number of GMD storms (Kp index > 5; ap index > 29) 936,368 154,316 290,004 212,180 279,868

24-h Average PM2.5 (μg/m
3) 12.6 (7.5) 13.0 (7.8) 11.2 (6.2) 14.3 (8.2) 12 (7.4)

Z-score 0.05 (1.0) 0.13 (1.0) −0.13 (0.8) 0.2 (1.1) −0.04 (1.0)
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Table 2 Estimated daily percent increase in mortality (95% CI) associated with one standard deviation of z-score Kp index

Total CVD MI Stroke

Winter 0.13 (0.02,0.24)* −0.04(− 0.22,0.13) 0.21(− 0.07,0.5) −0.74(− 0.96,-0.51)****

Spring 0.31 (0.21,0.41)**** 0.21 (0.05,0.37)** 0.4 (0.05,0.72)* −0.03(− 0.4,0.33)

Summer 0.27 (0.16,0.37)**** 0.15(−0.01,0.33) 0.14(−0.2,0.5) −0.52(− 0.14,-0.9)**

Fall 0.31 (0.23,0.4)**** 0.34 (0.23,0.44)**** 0.7 (0.43,0.94)**** 0.06(−0.3,0.4)

*p-value < 0.05; **p < 0.001; ***p < 0.0001; ****p < 0.00001

Fig. 4 Daily city-specific and season-stratified mortality risk from the exposure to one standard deviation of z-score Kp index, Kp index adjusted
for 24-h PM2.5, and only 24-h PM2.5. The models were also adjusted for daily temperature (oC), daily relative humidity (%), and day of the year
(1–365/366), day of the week (DOW), year for each season (winter, spring, summer, and fall)
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adjusted for PM2.5, the CVD deaths increased by 0.54%
in winter (p = 0.0005; 95% CI: 0.23 to 0.84) and by 0.46%
in fall (p = 0.00001; 95% CI: 0.23 to 0.7) for one standard
deviation of z-score Kp index increase. No statistically
significant associations were found in spring and sum-
mer seasons in the models adjusted for PM2.5 (Table 3).
One standard deviation of z-score Kp index increased

MI deaths by 0.4% in spring (p = 0.02; 95% CI: 0.05 to
0.72) and by 0.7% in fall (p = 0.00001; 95% CI: 0.43 to
0.94), without adjusting for PM2.5. When the models
were adjusted for PM2.5, MI deaths increased 1.0% for
each standard deviation of z-score Kp index in winter
(p = 0.0001; 95% CI: 0.4 to 1.62). No significant associa-
tions were found in other seasons (Table 3). For stroke
deaths, GMD was negatively significantly associated in
winter, spring and summer (Table 2). No significant as-
sociations were found between GMD and stroke after
adjusting for PM2.5 (Table 3). The inclusion of WSPD
and HPBL in the models had no effect on the associa-
tions found between GMD and mortality rates.

Discussion
Overall, this study suggests that GMD increases city-
specific and season-stratified total, CVD, and MI deaths
in the selected 263 U.S. cities (Fig. 2). The effects were
stronger when we adjusted the models for PM2.5 for dif-
ferent seasons. In these models, the associations between
GMD and CVD and MI were only statistically significant
in winter, indicating that both predictors are important
for this season. Previous epidemiological studies de-
scribed higher incidence of CVD mortality in winter in
elderly patients [41, 42]. In addition, while numerous
studies of environmental exposure risk have described
the seasonal impact of PM2.5 on mortality rates [43], this
study shows that short-term effects of GMD on total,
CVD, and MI deaths were similar to or stronger than
the effects of 24 h-PM2.5 exposures.
The effects of GMD on total deaths were found in all

seasons, and on CVD and MI deaths in spring and fall.
Also in spring and fall, the effects of GMD on total,
CVD, and MI deaths were higher than for PM2.5 alone.
Seasonal short-term GMD variability is notably stronger
during equinoctial seasons [44, 45]. Major GMD, also
known as geomagnetic storms, occur when variations in

the solar wind driven by solar activity transfer energy
from the solar wind into Earth’s magnetosphere. Earth’s
magnetosphere is a highly dynamic area around the
planet that responds dramatically to solar variations by
producing changes in the radiation belts, changes in the
ionosphere, and in the environmental electric currents
(NOAA, 2018). Diurnal earth magnetic field variations
can range between few tens of nT to 100–500 nT over
a 72 h period. Increased equinoctial GMD may explain
the higher impact of GMD on mortality rates in spring
and fall.
The direct impact of environmental electric and mag-

netic fields produced during GMD [46] on the human
ANS may explain the effects of GMD on total, CVD,
and MI deaths found in our study. Interactions between
GMD with ANS are likely to induce a cascade of reac-
tions in the body’s electrophysiology that culminate in
the collapse of organ functions and death. Studies have
described the mechanisms by which GMD may regulate
ANS and body systems via a magneto-reception system
[47]. Magneto-reception is a sense which allows living be-
ings to detect EMF variations. EMF may trigger quantum
chemical reactions in photosensitive retina proteins called
cryptochromes and/or within magneto-receptors in cells
containing magnetite (magnetic mineral iron) that activate
specific structures of the central nervous system, such as
the suprachiasmatic nucleus and the ANS [47]. The over-
lap between diurnal cycle of solar radiation and episodes
of GMD on photo/magnetoreceptors may over-stimulate
functioning of the central nervous system and disrupt the
standard 24-h circadian rhythm processes, playing a dra-
matic role in the regulation of cardiovascular physiology
and other systems [48]. The close alignment between the
geomagnetic activity rhythms and the electrophysiology of
the human body has been observed in ultrasound waves
from heart structures [echocardiogram (ECG)], in brain
waves (electroencephalogram [EEG)], and peripheral
nerve activity that is controlled by the ANS [1, 2, 4].
In this context, increased GMD is likely to activate in

humans: (1) the photo/magneto-reception system, includ-
ing the ferromagnetic receptors and the cryptochrome
protein [14–16, 27]; (2) cell membrane excitability (ther-
mal noise), by the enhancement of ionic motion, signaling,
and accumulation in ion channels, with primary focus on

Table 3 Estimated percent increase in mortality (95% CI) associated with one standard deviation of z-score Kp index adjusted for
PM2.5

Total CVD MI Stroke

Winter 0.47 (0.3,0.65)**** 0.54 (0.23,0.84)*** 1.0 (0.4,1.62)*** 0.35(− 0.27,0.97)

Spring −0.03(− 0.2,0.14) 0.28(− 0.01,0.57) 0.5(− 0.2,1.17) −0.13(− 0.72,0.45)

Summer 0.22 (0.05,0.4)** 0.16(−0.03,0.35) −0.25(− 0.92,0.4) 0.24(− 0.44,0.92)

Fall 0.23 (0.09,0.37)** 0.46 (0.23,0.7)**** 0.36(−0.24,0.96) −0.3(− 0.81,0.22)

*p-value < 0.05; **p < 0.001; ***p < 0.0001; ****p < 0.00001
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intracellular Ca+ 2; (3) the surface charges and small elec-
tric currents (as electric fields) among cells with capacity
to distort the membrane shape; (4) the chemical bonds via
radical-pair-reaction; (5) the production of reactive oxygen
species (ROS) or reactive nitrogen species (RNS), inducing
acute and chronic episodes of oxidative stress that con-
tribute to many pathological conditions; (6) regulation of
melatonin secretion and 24-h circadian rhythm disruption
[14–16, 48–50]. These processes appear to be mutually
dependent.
Ca2+ regulates many aspects of cell function, including en-

ergy metabolism, signal transduction, hormonal regulation,
cellular motility, and apoptosis [51, 52]. In cardiac cells, the
GMD-photo/magnetoreceptors-ANS may induce prolonged
cardiac action potential (change in voltage across cardiac cell
membrane), activating intracellular Ca2+ overload through
voltage-gated Ca2+ channels. Increased intracellular Ca2+

accumulation activates the calcium-sensor protein called
calmodulin that regulates the e.g. plasma membrane Ca2+

pump, intracellular Ca2+ dependent proteins, and enzyme
expression including adenylyl cyclase (AC) [53]. AC produce
cyclic adenosine monophosphate (cAMP), which controls
protein kinase A (PKA) activity [54]. cAMP is a second mes-
senger that regulates the function of ion channels across the
cell membranes. The activity of AC-cAMP/PKA generates
spontaneous action potential [54]. Dysregulation of ANS
and increased expression of AC-cAMP/PKA lead to cardiac
dysrhythmias and arrhythmias [53, 54], which have been
interrelated with several abnormal arrhythmia-related condi-
tions including acute myocardial infarction, congestive heart
failure, diabetic neuropathy and sudden cardiac death
[55–57]. Patients with congestive heart failure have
high incidence of sudden cardiac death attributed to
lethal cardiac arrhythmias [57]. A recent study found
that ANS activity presents strongly synchronized pat-
terns with the time-varying magnetic fields associated
with the geomagnetic field and Schumann resonances
(atmospheric electric fields) in a small healthy cohort
[29]. The same group demonstrated that GMD was
strongly correlated with increased parasympathetic ac-
tivity and HRV [28].
Previous epidemiological studies have found significant

associations between GMD and both MI and CVD
deaths [2–4, 20]. In Lithuania, Vencloviene et al. (2014)
showed that high GMD during the second day after
admission increased the hazard ratio by 1.58 times for
cardiovascular death compared with quiet days [3]. Pa-
tients with impaired cardiovascular system functions dem-
onstrated deterioration in capillary blood flow during high
GMD [3]. They also observed that increased GMD may
modify the association between short-term nitrogen diox-
ide (NO2) exposure and emergency hospitalization for
acute coronary syndrome (ACS) [3]. Mendonza et al.
(2004) observed that MI events were statistically

significantly associated with GMD (ap > 50 nT) in five
large hospitals at Havana [21]. Moreover, Stoupel et al.
(1994) found stroke deaths were negatively significantly
associated with GMD [34]. These results are similar with
our findings.
Studies have suggested that animal and human standard

physiology are synchronized with EMF, being highly sensi-
tive to its unpredictable GMD oscillations. The deep pene-
tration of earth magnetic field into living tissues and cells
added to the increase of atmospheric electric field variations
during GMD may deeply modify the circadian rhythm pro-
cesses and recovery properties of human body, leading to
its collapse and death. Future studies are needed to quantify
the synchronization between diurnal and nocturnal EMF
with human electrophysiology during different intensities of
GMD periods, which may be related to daily clinical cardio-
vascular observations. The comprehension of the cyclic
impact of natural environmental risk factors driven by solar
activity on human health is fundamental to understand
evolutionary and adaptive aspects of life on Earth.

Conclusion
Overall, this study suggests that GMD increase daily total,
CVD, and MI deaths, even fitting models with 24-h PM2.5.
The GMD effects on deaths were higher than for PM2.5

alone especially in spring and fall. Increased mortality in
the general population during GMD should be further
investigated to determine whether those human physio-
logical dynamics driven by variations in solar activity can
be related to daily clinical cardiovascular observations.
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