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Abstract

Background: Cohort studies have documented associations between fine particulate matter air pollution (PM2.5)
and mortality risk. However, there remains uncertainty regarding the contribution of co-pollutants and the stability
of pollution-mortality associations in models that include multiple air pollutants. Furthermore, it is unclear whether
the PM2.5-mortality relationship varies spatially, when exposures are decomposed according to scale of spatial
variability, or temporally, when effect estimates are allowed to change between years.

Methods: A cohort of 635,539 individuals was compiled using public National Health Interview Survey (NHIS) data
from 1987 to 2014 and linked with mortality follow-up through 2015. Modelled air pollution exposure estimates for
PM2.5, other criteria air pollutants, and spatial decompositions (< 1 km, 1–10 km, 10–100 km, > 100 km) of PM2.5 were
assigned at the census-tract level. The NHIS samples were also divided into yearly cohorts for temporally-
decomposed analyses. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95%
confidence intervals (CIs) in regression models that included up to six criteria pollutants; four spatial
decompositions of PM2.5; and two- and five-year lagged mean PM2.5 exposures in the temporally-decomposed
cohorts. Meta-analytic fixed-effect estimates were calculated using results from temporally-decomposed analyses
and compared with time-independent results using 17- and 28-year exposure windows.

Results: In multiple-pollutant analyses, PM2.5 demonstrated the most robust pollutant-mortality association. Coarse
fraction particulate matter (PM2.5–10) and sulfur dioxide (SO2) were also associated with excess mortality risk. The
PM2.5-mortality association was observed across all four spatial scales of PM2.5, with higher but less precisely
estimated HRs observed for local (< 1 km) and neighborhood (1–10 km) variations. In temporally-decomposed
analyses, the PM2.5-mortality HRs were stable across yearly cohorts. The meta-analytic HR using two-year lagged
PM2.5 equaled 1.10 (95% CI 1.07, 1.13) per 10 μg/m3. Comparable results were observed in time-independent
analyses using a 17-year (HR 1.13, CI 1.09, 1.16) or 28-year (HR 1.09, CI 1.07, 1.12) exposure window.

Conclusions: Long-term exposures to PM2.5, PM2.5–10, and SO2 were associated with increased risk of all-cause and
cardiopulmonary mortality. Each spatial decomposition of PM2.5 was associated with mortality risk, and PM2.5-
mortality associations were consistent over time.
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Background
Numerous studies have documented associations be-
tween long-term exposure to fine particulate matter air
pollution (PM2.5, particles < 2.5 μm in aerodynamic
diameter) and risk of mortality. Notable cohort studies
have indicated that elevated PM2.5 exposures are associ-
ated with increased risks of all-cause and cardiopulmo-
nary mortality [1–25]. Several studies have estimated the
association between PM2.5 and mortality while control-
ling for exposures to one or more co-pollutants, such as
ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide
(SO2) [4, 5, 13, 20]. There remains a need for further
multiple-pollutant analyses that control for other com-
mon air pollutants, including coarse fraction particulate
matter (PM2.5–10, particles 2.5–10 μm in aerodynamic
diameter) and carbon monoxide (CO).
Related to multiple-pollutant analyses are models that

examine constituents of PM2.5 rather than aggregated PM2.5

treated as a single pollutant. The composition and toxicity of
PM2.5 can vary substantially based on when and where it is
sampled and the distance from the pollution source [26, 27].
Exposures that occur near a pollution source may include a
larger fraction of primary combustion products (black carbon
and primary organic aerosol) and other local sources (indus-
trial and road dust). Alternatively, exposure may occur far-
ther from the source, allowing a larger fraction of aged,
agglomerated, and secondary particulate matter (sulfates, ni-
trates, and secondary organic aerosol). Are there differences
in the PM2.5-mortality associations across spatial decomposi-
tions of PM2.5 pollution?
The composition of PM2.5 not only varies spatially, but

may also vary temporally as sources of pollution change.
Furthermore, ambient pollution levels change over time,
and observed health effects of PM2.5 likely depend on
the window of exposure assigned to individuals in the
cohort. Therefore, an important question is, are there
differences in observed PM2.5-mortality associations
across time or for different windows of PM2.5 exposure?
This study uses a large, well-documented, and repre-

sentative cohort of the U.S. [25] to pursue three primary
objectives. First, investigate pollution-mortality associa-
tions with models that include multiple air pollutants.
Second, explore differences in PM2.5-mortality associa-
tions across spatially-decomposed PM2.5 as an evaluation
of whether the impact of PM2.5 depends on distance
from pollution source. Third, estimate PM2.5-mortality
associations in temporally-decomposed cohorts, allowing
effect estimates to vary across time and for different
choices of exposure window.

Methods
Study population
The cohort for this study was constructed using
publicly-available National Health Interview Survey

(NHIS) data from 1987 to 2014, linked with restricted-
use geographic information and mortality follow-up
through 2015. The sample was limited to NHIS re-
spondents aged 18–84 at the time of survey for whom
information was available regarding age, sex, race-
ethnicity, income, education, marital status, smoking
status, BMI, census tract, ambient air pollution, survey
date, mortality status at the end of 2015, and date of
death (if deceased at the end of 2015).
The NHIS is a household survey administered annually

by the National Center for Health Statistics (NCHS) and
designed to be representative of the civilian noninstitu-
tionalized U.S. population [28]. Survey data were linked
with the National Death Index for mortality follow-up
through 2015 [29]. The construction of this cohort has
been described in a previous study [25], where it was re-
ferred to as a “subcohort” of a larger NHIS cohort. This
cohort, rather than the larger “full cohort” of the prior
study, was chosen for the present analysis because it in-
cluded information for smoking status and BMI. The
NHIS design was altered periodically over the sample
period, so some variables required harmonization. Data
linkage was performed with permission and assistance
from the NCHS. Further details on construction,
harmonization, and data linkage for the NHIS cohort are
documented elsewhere [25].

Air pollution data
Air pollution exposures were assigned to individuals
based on their census tract of residence at the time of
survey, using year-2000 Census tracts for individuals
surveyed from 1987 to 2010 and year-2010 Census tracts
for individuals surveyed from 2011 to 2014. Annual-
average estimates of ambient air pollution were calcu-
lated for criteria pollutants (PM2.5, PM10, SO2, NO2, O3,
and CO) using estimates from the v1 empirical models
of Kim et al., 2018 [30], available at www.caces.us. These
models employed regulatory monitoring and land-use
data, and pollution estimates were calculated starting
with the first year for which nationwide monitoring data
were available for that pollutant (1979 for SO2, NO2,
and O3; 1988 for PM10; 1990 for CO; and 1999 for
PM2.5). In the case of O3, annual values are the mean for
May through September of the daily maximum eight-
hour moving average. O3 monitoring is not widely and
routinely conducted from October through April since
these months typically experience very low O3 concen-
trations. Estimates for each pollutant-year through 2015
were generated at the census-block level using year-2010
Census block centroids. Tract-level estimates for year-
2000 Census tracts and year-2010 Census tracts were es-
timated by mapping year-2010 Census blocks to census
tracts and then calculating a population-weighted aver-
age of the census blocks within a census tract. PM2.5
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exposures prior to 1999 were estimated by multiplying a
census tract’s PM10 value with the census tract’s mean
PM2.5:PM10 ratio from 1999 to 2003, as explained else-
where [25]. Values for PM2.5–10 were calculated by sub-
tracting PM2.5 from PM10.
In addition, spatially-decomposed PM2.5 data were gen-

erated following an approach described elsewhere [26].
Briefly, a census block’s total ambient PM2.5 was decom-
posed into four components, depending on the spatial
variance in PM2.5 surrounding the census block. Estimat-
ing spatial decompositions involved finding and subtract-
ing the minimum PM2.5 values within circular buffers
around each census block. First, the minimum PM2.5 for
census block centroids within a 100 km radius of a given
census block centroid was found, and this minimum was
designated as regional (> 100 km) PM2.5. After subtracting
regional PM2.5, the minimum PM2.5 within a 10 km radius
of the census block centroid was found, and this value was
designated as mid-range (10–100 km) PM2.5. Next, the
minimum value within 1 km of the block centroid was
similarly used to calculate neighborhood (1–10 km) PM2.5

by subtracting regional and mid-range PM2.5. Finally, the
residual PM2.5 that remained after subtracting regional,
mid-range, and neighborhood PM2.5 was called local (< 1
km) PM2.5. The process was repeated for each year-2010
Census block and for each year from 2000 through 2015.
Values for census tracts were calculated using population-
weighted averages of year-2010 Census blocks.

Statistical analyses
Statistical analyses were performed at the NCHS Re-
search Data Center in Hyattsville, MD, using SAS (ver-
sion 9.3; SAS Institute). Survival analyses were
performed for all-cause and cardiopulmonary mortality,
with cardiopulmonary mortality defined as mortality due
to cardiovascular disease (ICD-10 codes: I00-I09, I11,
I13, I20-I51), cerebrovascular disease (I60-I69), chronic
lower respiratory disease (J40-J47), and influenza or
pneumonia (J09-J18). Mortality hazard ratios (HRs) and
95% confidence intervals (CIs) were estimated using two
versions of the Cox proportional hazards (PH) model.
The first PH model, referred to as the basic PH model,
controlled for age, sex, and race-ethnicity by allowing
each combination of age (in one-year increments), sex,
and race-ethnicity (Hispanic, non-Hispanic black, non-
Hispanic white, other or unknown) its own baseline haz-
ard function using the STRATA statement of the
PHREG procedure in SAS. The second PH model, re-
ferred to as the complex PH model, controlled for age
group (18–24 years and subsequent five-year age
groups), sex, and race-ethnicity by including an indicator
variable for each interaction of age group, sex, and race-
ethnicity. The complex PH model was estimated using
the SURVEYPHREG procedure in SAS, adjusting for the

NHIS complex survey design, using reported survey
stratum, primary sampling unit, and sample weight from
mortality follow-up files [28].
Both PH models controlled for covariates by including

indicator variables for each value of marital status (never
married, married, separated, divorced, widowed),
inflation-adjusted household income ($0–35,000; $35,
000-50,000; $50,000-75,000; >$75,000), education (<high
school graduate, high school graduate, some college, col-
lege graduate, >college graduate), smoking status
(current, former, never), BMI (< 20, 20–25, 25–30, 30–
35, > 35), U.S. Census region, urban versus rural desig-
nation, and survey year. Survival time was the number of
days between survey and death. For all-cause mortality,
censored survival time was the number of days between
survey and mortality follow-up (31 Dec 2015). In models
that considered cardiopulmonary mortality, censored
survival time was the number of days between survey
and mortality follow-up, or the number of days between
survey and non-cardiopulmonary mortality. Pollution
values were included as continuous variables in the
regressions.
In models using criteria pollutants (PM2.5, PM2.5–10,

SO2, NO2, O3, and CO), regressions included one, two,
or six pollutants, and were estimated for both all-cause
and cardiopulmonary mortality. One- and two-pollutant
regression models used the basic PH model. For six-
pollutant regression models, both the basic and complex
PH models were employed to examine whether results
were sensitive to adjusting for the NHIS complex survey
design. Basic PH models were also used to estimate the
associations between spatial decompositions of PM2.5

and risk of all-cause and cardiopulmonary mortality. Re-
gressions were performed for each of the four decompo-
sitions individually and for models that included all four
decompositions.
For temporally-decomposed analyses, the NHIS cohort

was decomposed into 24 yearly cohorts (1992–2015), be-
ginning in 1992 to allow up to a five-year lagged
pollution-exposure window. An individual in the NHIS
cohort was included in a particular year’s cohort if she
was alive on 1 Jan and was surveyed by 31 Dec of that
year. For example, the 1992 cohort included those sur-
veyed before 1992 and alive on 1 Jan 1992. It also in-
cluded those who were surveyed in 1992. For those who
died in 1992, survival time was the number of days be-
tween 1 Jan 1992 and date of death (for individuals sur-
veyed before 1992), or the number of days between
survey date and date of death (for individuals surveyed
in 1992). For those who did not die in 1992, censored
survival time was the number of days between 1 Jan and
31 Dec (for individuals surveyed before 1992), or the
number of days between survey date and 31 Dec (for in-
dividuals surveyed in 1992). Analogous cohorts were
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constructed for each year from 1993 to 2015. The con-
struction of these yearly cohorts is illustrated in Additional
file 1: Figure S1.
Complex PH regressions were performed for all-cause

and cardiopulmonary mortality for each of the 24
temporally-decomposed cohorts. In each cohort, individ-
uals were assigned a two-year (cohort year and previous
year) and five-year (cohort year and four previous years)
average of ambient PM2.5 using their census tract of resi-
dence at time of survey. In addition, age was adjusted to
age in cohort year. Other covariates were not updated
between cohorts. Meta-analytic fixed-effect estimates of
the HR associated with a 10 μg/m3 increase in mean am-
bient PM2.5 were calculated for all-cause and cardiopul-
monary mortality using estimates generated by the 24
yearly cohorts (Comprehensive Meta Analysis Ver. 3
Biostat Englewood, NJ).

Results
Table 1 presents summary statistics for the NHIS co-
hort. Table 2 provides summary statistics (mean, stand-
ard deviation, and interquartile range [IQR]) for the 17-
year (1999–2015) averages of the six criteria pollutants
(PM2.5, PM2.5–10, SO2, NO2, O3, and CO) and correl-
ation coefficients between pollutants, within the NHIS
cohort. Criteria pollutants were generally positively cor-
related, with the exception of PM2.5–10 and SO2 (see
Table 2). Figure 1 presents heat maps for the six criteria
pollutants across census tracts in the contiguous U.S.
Figure 2 illustrates the HRs (and 95% CIs) estimated in

regression models with the six criteria pollutants, using
one-, two-, and six-pollutant models. HRs and CIs in
Fig. 2 are presented relative to each pollutant’s IQR. Ex-
posure to PM2.5 was consistently associated with in-
creased risk of all-cause and cardiopulmonary mortality,
and the PM2.5-mortality associations were statistically
significant and insensitive to controlling for other pollut-
ants. Exposures to PM2.5–10 and SO2 were also associ-
ated with increased mortality risk, including in six-
pollutant models, but the associations were less robust.
NO2, O3, and CO were not consistently linked with ex-
cess mortality risk. In models that controlled for PM2.5,
exposures to NO2 were associated with reduced mortal-
ity risk. Furthermore, O3 was not associated with excess
risk of all-cause mortality in six-pollutant models, and
O3-mortality associations were marginally significant in
six-pollutant cardiopulmonary regression models. Esti-
mated HRs were not sensitive to using the complex PH
regression model.
Because the IQR of PM2.5–10 (5.42 μg/m

3) is larger than
the IQR of PM2.5 (3.12 μg/m3), the pollution-mortality
HRs associated with these two pollutants appear more
similar in Fig. 2 than when scaled by 10 μg/m3. In the
two-pollutant basic PH model with PM2.5 and PM2.5–10,

Table 1 Baseline unweighted characteristics of the NHIS cohort

Variable NHIS Cohort

Total number in cohort 635,539

Total Deaths 106,385

Cardiopulmonarya 43,195

Sex

% Male 44.54

% Female 55.46

Age yrs. (mean) 45.3

Race/Ethnicity

% Non-Hispanic White 67.51

% Hispanic 14.08

% Non-Hispanic Black 14.01

% All other/unknown 4.40

Income (inflation adjusted to 2015)

% $ 0–35,000 38.04

% $ 35–50,000 15.47

% $ 50–75,000 18.79

% $ 75,000+ 27.71

Marital Status

% Married 49.57

% Divorced 14.06

% Separated 3.59

% Never Married 24.31

% Widowed 8.47

Education

% < High School grad 18.63

% High School grad 30.37

% Some College 27.10

% College grad 15.03

% > College grad 8.87

Urban/Rural

% Urban 77.64

% Rural 22.36

Census Region

% Northeast 18.08

% Midwest 23.71

% South 35.74

% West 22.46

BMI

% < 20 7.28

% 20–25 36.37

% 25–30 33.80

% 30–35 14.43

% > 35 8.12

Smoking
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the all-cause mortality HR associated with a 10 μg/m3 in-
crease in PM2.5 is 1.12 (95% CI: 1.09, 1.15), whereas the
HR associated with a 10 μg/m3 increase in PM2.5–10 is 1.02
(1.00, 1.04). Thus, when considered per 10 μg/m3, expos-
ure to PM2.5 is associated with about six times greater ex-
cess risk than PM2.5–10.
Table 3 provides summary statistics and correlations

for 16-year (2000–2015) averages of spatial decomposi-
tions of PM2.5 (local PM2.5, < 1 km; neighborhood PM2.5,
1–10 km; mid-range PM2.5, 10–100 km; regional PM2.5,
> 100 km), within the NHIS cohort. Although local,
neighborhood, and mid-range PM2.5 are somewhat cor-
related, regional PM2.5 is mostly uncorrelated with local
PM2.5 and negatively correlated with neighborhood and
mid-range PM2.5 (see Table 3). Table 3 reports large dif-
ferences in the means and IQRs of the spatial decompo-
sitions of PM2.5.
Fig. 3 presents estimated HRs for all-cause and cardio-

pulmonary mortality from models including spatially-
decomposed PM2.5. In the top panel, HRs are presented
per 10 μg/m3 to assess the toxicity of spatial components
of particulate matter. The same results are also pre-
sented as scaled by IQR (bottom panel) to account for
differences in exposure variability across spatial decom-
positions of PM2.5. Regression results from models that
included individual spatial decompositions were compar-
able to results from models that included all four spatial
decompositions. Both types of model provide some

evidence that local PM2.5 and neighborhood PM2.5 may
be more toxic than mid-range and regional PM2.5.
Fig. 4 presents results from the temporally-decomposed

analysis. HRs for all-cause and cardiopulmonary mortality
associated with a 10 μg/m3 increase in two-year mean
PM2.5 are presented from regressions performed on the 24
temporally-decomposed cohorts. These PM2.5-mortality
associations were consistent across follow-up years. Al-
though PM2.5-mortality associations were generally not
statistically significant for individual cohort years, meta-
analytic estimates of pooled results were statistically sig-
nificant. HRs from fixed-effect meta-analyses of HRs from
the 24 cohorts are also presented for two- and five-year
mean PM2.5 and for all-cause and cardiopulmonary mor-
tality. HRs associated with two-year and five-year mean
PM2.5 were nearly identical. Also presented are HRs from
time-independent analyses which used the entire NHIS
cohort and 17-year (1999–2015) or 28-year (1988–2015)
mean PM2.5. HRs from meta-analyses of temporally-
decomposed regressions were greater than HRs associated
with 28-year mean PM2.5 but less than HRs associated
with 17-year mean PM2.5.

Discussion
This study advances our understanding of mortality risk
associated with long-term exposure to PM2.5 in several
ways. First, it illustrates that the PM2.5-mortality associ-
ation within a large cohort is not highly sensitive to
controlling for other air pollutants. Second, results from
multiple-pollutant models report that, while mortality
risk associated with PM2.5 exposure was the most
prominent and robust result, exposures to elevated levels
of SO2 and PM2.5–10 were also consistently linked to ex-
cess mortality risk. Third, regressions using spatially-
decomposed PM2.5 suggest that more spatially variable
components (< 10 km) of PM2.5 exposures may be more
toxic. Fourth, mortality risk was significantly associated
with all spatial decompositions of PM2.5, indicating that
the PM2.5-mortality association within the U.S. is likely
not the result of exclusively regional or local

Table 1 Baseline unweighted characteristics of the NHIS cohort
(Continued)

Variable NHIS Cohort

% Never 53.76

% Current 23.90

% Former 22.34
aCardiopulmonary mortality is based on International Statistical Classification
of Diseases, Injuries, and Causes of Death, Tenth Revision (ICD-10) and
includes: cardiovascular disease (I00-I09, I11, I13, I20-I51), cerebrovascular
disease (I60-I69), chronic lower respiratory disease (J40-J47), and influenza and
pneumonia (J09-J18)

Table 2 Correlations (Pearson’s r) and summary statistics of criteria pollutants (1999–2015) in the NHIS cohort

PM2.5 PM2.5–10 SO2 NO2 O3 CO Mean SD IQR

PM2.5 (10 μg/m3) 10.67 2.37 3.12

PM2.5–10 (10 μg/m3) 0.19 9.77 4.51 5.42

SO2 (ppb) 0.41 −0.34 2.25 1.01 1.26

NO2 (ppb) 0.56 0.44 0.37 10.69 5.73 6.72

O3 (ppb) 0.33 0.17 0.17 0.11 47.45 5.31 6.75

CO (ppm) 0.42 0.56 0.17 0.90 0.04 0.37 0.10 0.10

Note: PM2.5, fine particulate matter (particles < 2.5 μm in aerodynamic diameter); PM2.5–10, coarse fraction particulate matter (particles 2.5–10 μm in aerodynamic
diameter); SO2, sulfur dioxide; NO2, nitrogen dioxide; O3, ozone, mean for May–September of daily max of eight-hour moving average; CO, carbon monoxide; SD,
standard deviation; IQR, interquartile range
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confounders. And fifth, the temporally-decomposed ana-
lysis indicates that PM2.5-mortality associations were
largely consistent over time within the NHIS cohort, but
provides incomplete evidence regarding the most rele-
vant window of pollution exposure.
The robustness of the PM2.5-mortality association has

been reported by various studies, including studies using
two- or three-pollutant models [4, 5, 13, 20]. Our results
regarding risks associated with other air pollutants, how-
ever, were less congruent with existing literature. For ex-
ample, this study found a relatively stable association
between PM2.5–10 and mortality, which contrasts with
the lack of consistent associations in similar cohort stud-
ies [31]. Similarly, previous studies examining the effect
of long-term O3 exposures reported results that
remained significant when controlling for PM2.5 and
NO2 [4, 13, 20], while this study found that the associ-
ation was stable except in six-pollutant models. The

mortality association with NO2 was extremely sensitive
to the inclusion of other pollutants, especially PM2.5. Ul-
timately, the clearest signals emerging from multiple-
pollutant regressions were that the PM2.5-mortality asso-
ciation was the most robust among these pollutants and
that the mortality associations of other pollutants re-
quire further investigation.
The spatially-decomposed analyses are interesting

because they provide insight into different compo-
nents of PM2.5. PM2.5 is largely comprised of regional
and mid-range components which are presumably
dominated by secondary material (sulfates, nitrates,
and secondary organic aerosol). The neighborhood
and local components contribute a relatively small
fraction of the PM2.5 mass (6 and 17% respectively)
but are presumably more influenced by local emissions
and therefore comprised of combustion emissions
(black carbon and primary organic aerosol) and other

Fig. 1 Average concentrations of criteria pollutants by 2010 Census tracts in the continental U.S., 1999–2015. PM2.5, fine particulate matter
(particles < 2.5 μm in aerodynamic diameter) in μg/m3; PM2.5–10, coarse fraction particulate matter (particles 2.5–10 μm in aerodynamic diameter)
in μg/m3; SO2, sulfur dioxide in ppb; NO2, nitrogen dioxide in ppb; O3, ozone in ppb, mean for May–September of daily max of eight-hour
moving average; CO, carbon monoxide in ppm
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local sources (industrial and road dust). As illustrated
in Fig. 3, these results provide some evidence that
local PM2.5 and neighborhood PM2.5 may be more
strongly associated with mortality risk than regional
PM2.5. Near-source PM2.5 was also more strongly as-
sociated with mortality risk than regional PM2.5 in an-
other large U.S. cohort [32]. An implication of these
results is that reliance on PM2.5-mortaltiy associations
that are driven largely by regional differences in

pollution may underestimate the health effects of ex-
posure to local sources of pollution.
Strengths of the NHIS cohort have been described previ-

ously [25], which include the availability of detailed docu-
mentation, precise geographic information, large sample
size, representativeness of U.S. adults, and individual-level
controls for age, race-ethnicity, sex, smoking status, educa-
tion, BMI, marital status, and income. Other strengths of
this study include a) the robustness of the PM2.5-mortality

Fig. 2 Illustration of regression results using 6 criteria pollutants, examining all-cause (left panel) and cardiopulmonary (right panel) mortality.
Hazard ratios (and 95% CIs) were estimated using models that adjusted for age, sex, race-ethnicity, marital status, inflation-adjusted household
income, education, smoking status, BMI, U.S. Census region, urban versus rural designation, and survey year. Hazard ratios are represented with
circles when estimated using basic proportional hazards regressions, and with squares when estimated using complex proportional hazards (PH)
regressions. Data used to generate plot are listed in Additional file 1 Table S1.
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association in multiple-pollutant models that included mod-
eled air pollution estimates for six criteria pollutants. b) The
ability to examine the stability of other pollutant-mortality
associations in multiple-pollutant models. c) The use of
spatially-decomposed PM2.5 data to investigate whether the
toxicity of PM2.5 depended on proximity to source. d)
Temporally-decomposed analyses which allowed exposures
and mortality effects to vary between years and facilitated
comparisons of different windows of exposure.
This study also has important limitations. Like all obser-

vational studies, it was hindered by a lack of random

exposure assignment, meaning it was susceptible to con-
founders that were unobserved or inadequately controlled
for. Another limitation was the lack of follow-up for most
individual-level data, including residential census tract,
smoking status, marital status, and income. In multiple-
pollutant analyses, correlations among pollutants limit the
ability to estimate independent associations between
mortality risk and specific pollutants. For example, the cor-
relation between PM2.5 and NO2 likely contributed to in-
stability in the estimated effect of NO2 exposures; in
models that controlled for PM2.5, NO2 was linked with

Fig. 3 Illustration of spatially-decomposed analyses, presented per 10 μg/m3 (top panel) and per IQR (bottom panel). Hazard ratios (and 95% CIs)
were estimated using the basic proportional hazards regressions model which adjusted for age, sex, race-ethnicity, marital status, inflation-
adjusted household income, education, smoking status, BMI, U.S. Census region, urban versus rural designation, and survey year. Local PM2.5,
PM2.5 generated within 1 km of residence; neighborhood PM2.5, PM2.5 generated 1–10 km from residence; mid-range PM2.5, PM2.5 generated 10–
100 km from residence; regional PM2.5, PM2.5 generated over 100 km from residence; IQR, interquartile range. Data used to generate plot are listed
in Additional file 1 Table S2.

Table 3 Correlations (Pearson’s r) and summary statistics for spatial decompositions of PM2.5 (2000–2015) in the NHIS cohort

Local
(< 1 km)

Neighborhood
(1–10 km)

Mid-range
(10–100 km)

Regional (> 100 km) Mean SD IQR

Local PM2.5 0.63 0.28 0.32

Neighborhood PM2.5 0.25 1.81 0.87 1.01

Mid-range PM2.5 0.17 0.29 2.59 1.45 1.53

Regional PM2.5 0.01 −0.33 −0.21 5.47 1.90 2.65

Note: Local PM2.5, PM2.5 generated within 1 km of residence; neighborhood PM2.5, PM2.5 generated 1–10 km from residence; mid-range PM2.5, PM2.5 generated 10–
100 km from residence; regional PM2.5, PM2.5 generated over 100 km from residence; SD, standard deviation; IQR, interquartile range
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decreased mortality risk. Similarly, in the temporally-
decomposed analyses, the correlation of PM2.5 exposures
over time made it difficult to determine the most relevant
exposure window. In addition, the lack of variation in
PM2.5-mortality associations between years may reflect a
lack of independence between yearly cohorts, in which case
the standard errors from fixed-effect meta-analytic esti-
mates may be underestimated.

Conclusions
Associations between long-term exposure to PM2.5 air
pollution and mortality risk were robust to controlling
for co-pollutants, observed across different spatial de-
compositions of PM2.5, and consistent over temporal de-
compositions of PM2.5. There was some evidence of
increased toxicity for PM2.5 exposures that occurred
closer to pollution sources. Exposures to SO2 and

PM2.5–10 were also linked to mortality risk, even when
controlling for other air pollutants.

Additional file

Additional file 1: Table S1. Hazard ratios (and 95% CIs) from
regressions using 6 criteria pollutants, scaled by IQR. Table S2. Hazard
ratios (and 95% CIs) from spatially-decomposed analyses of PM2.5. Table
S3. Hazard ratios (and 95% CIs) from temporally-decomposed PM2.5 and
related analyses. Figure S1. Illustration of the construction of temporally
decomposed cohorts
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Air pollution data are available at www.caces.us/data. Public-use National
Health Interview Survey data can be accessed at www.cdc.gov/nchs/
nhis/data-questonnaires-documentation.htm. For access to restricted-use
geographic files, it is required to submit a proposal to the Research Data

Fig. 4 Illustration of temporally-decomposed and related analyses. Hazard ratios (and 95% CIs) for temporally-decomposed cohort analyses
estimated using the complex proportional hazards regression model adjusting for age, sex, race-ethnicity, marital status, inflation-adjusted
household income, education, smoking status, BMI, U.S. Census region, urban versus rural designation, and survey year. Cardiopulmonary
mortality is based on ICD-10 codes and includes: cardiovascular disease (I00-I09, I11, I13, I20-I51), cerebrovascular disease (I60-I69), chronic lower
respiratory disease (J40-J47), and influenza and pneumonia (J09-J18). Data used to generate plot are listed in Additional file 1 Table S3.aTime-
independent estimate using 17-yr (1999–2015) mean PM2.5 in the complex proportional hazards regression model [25].bTime-independent
estimate using 28-yr (1988–2015) mean PM2.5 in the basic proportional hazards regression model, with back-casted PM2.5 data for 1988 through
1998 [25].cCohort results using two- and five-year lagged PM2.5 were pooled using fixed-effect (FE) meta-analysis.
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