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Abstract

Background: The petrochemical industry is a major source of hazardous and toxic air pollutants that are
recognised to have mutagenic and carcinogenic properties. A wealth of occupational epidemiology literature exists
around the petrochemical industry, with adverse haematological effects identified in employees exposed to ‘low’
concentrations of aromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylene). Releases from the
petrochemical industry are also thought to increase the risk of cancer incidence in fenceline communities. However,
this emerging and at times inconclusive evidence base remains fragmented. The present study’s aim was to
conduct a systematic review and meta-analysis of epidemiological studies investigating the association between
incidences of haematological malignancy and residential exposure to the petrochemical industry.

Methods: Epidemiological studies reporting the risk of haematological malignancies (Leukaemia, Hodgkin’s
lymphoma, Non-Hodgkin’s lymphoma, and Multiple myeloma) were included where the following criteria were met: (i)
Cancer incidence is diagnosed by a medical professional and coded in accordance to the International Classification of
Diseases; (ii) A clear definition of fenceline communities is provided, indicating the proximity between exposed
residents and petrochemical activities; and (iii) Exposure is representative of normal operating conditions, not
emergency events. Two investigators independently extracted information on study characteristics and outcomes in
accordance with PRISMA and MOOSE guidelines. Relative risks and their 95% confidence intervals were pooled across
studies for the four categories of haematological malignancy, using a random effects meta-analysis.

Results: The systematic review identified 16 unique studies, which collectively record the incidence of haematological
malignancies across 187,585 residents living close to a petrochemical operation. Residents from fenceline communities,
less than 5 km from a petrochemical facility (refinery or manufacturer of commercial chemicals), had a 30% higher risk
of developing Leukaemia than residents from communities with no petrochemical activity. Meanwhile, the association
between exposure and rarer forms of haematological malignancy remains uncertain, with further research required.

Conclusions: The risk of developing Leukaemia appears higher in individuals living near a petrochemical facility. This
highlights the need for further policy to regulate the release of carcinogens by industry.

Keywords: Cancer, Environmental justice, Haematological, Leukaemia, Lymphoma, Myeloma, Meta-analysis,
Petrochemical, Refinery
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Introduction
Haematological malignancies are cancers affecting the
blood, bone marrow, lymph, and lymphatic system. The
International Agency for Research on Cancer (IARC)
classifies haematological malignancies into four broad
categories: Leukaemia, Hodgkin Lymphoma, Non-Hodg-
kin Lymphoma and Multiple Myeloma [1, 2]. In line
with global cancer trends, estimated incidences and
mortality of blood cancers are rapidly rising, with the
number of new leukaemia cases estimated at 437,033
and the number of deaths attributable to leukaemia esti-
mated at 309,006 in 2018, according to the Global Can-
cer Statistics (see Table 1). Several agents contribute to
the development of blood cancers, including occupa-
tional, lifestyle, and hereditary risk factors [3]. People
may be exposed to carcinogens in their lived environ-
ments, notably through chronic and acute forms of air
pollution [4, 5].
The petrochemical industry acts as a major source of

hazardous and toxic air pollution and is associated with
the release of a range of known carcinogens, such as vola-
tile organic compounds, BTEX (benzene, toluene, ethyl-
benzene, xylene), polycyclic aromatic hydrocarbons,
polychlorinated biphenyls and polyvinyl chloride [6, 7].
The petrochemical industry incorporates the ‘upstream’
processing of crude oil and natural gas, the ‘midstream’
storage and transportation of refined oil and gas products,
and the ‘downstream’ manufacturing of petrochemicals
and commercially marketable products. As a way of redu-
cing transportation costs and mitigating safety concerns,
and due to agglomeration economies and integrated pro-
duction processes, several refinery and manufacturing op-
erations are often clustered in petrochemical industrial
complexes, increasing combined pollutant levels [8].
Given that petrochemicals make up part of numerous
everyday commodities, it is often difficult to distinguish
where the petrochemical industry begins and ends.
A wealth of occupational studies have identified ad-

verse haematological effects in employees exposed to

toxicants in the petrochemical industry [9]. Notably, oc-
cupational benzene exposure has been found to increase
the risk of haematological malignancies among workers,
even with low recorded daily concentrations (< 0.1 ppm)
[10–14]. The increased risk has been consistently dem-
onstrated through identification of DNA or chromo-
somal damage [15–17], reduced white blood cell counts
[18, 19], and case control studies [20–22]. The raised oc-
cupational risk of developing haematological malignan-
cies due to occupational benzene exposure has been
observed across the upstream, midstream and down-
stream sectors of the petrochemical industry, notably in-
corporating studies of refineries [23–26], synthetic
rubber manufacturing plants [27–30], petrochemical
[31–35], and plastics manufacturing industries [21, 36],
as well as petroleum storage and distribution [37]. Ac-
cordingly, the World Health Organisation (WHO) [38]
states that there are no safe levels of benzene exposure,
associating it with an excess lifetime risk of leukaemia.
While evidence on the elevated occupational risk of

developing haematological malignancies in the petro-
chemical industry is largely conclusive, toxic and hazard-
ous releases from the industry are also understood to
increase the risk of cancer incidence in fenceline com-
munities. However, the evidence base documenting the
blood cancer risks for populations living in close prox-
imity to petrochemical operations remains inconclusive
and disjointed. There is a need to enhance understand-
ing of the specific health impacts of the petrochemical
industry for fenceline communities, as an evidence base
for environmental (in)justices.
To our knowledge, there has been no meta-analysis

thus far on the incidence of haematological malignancies
in fenceline communities living near petrochemical sites.
To fill this gap, we conduct a meta-analysis of cohort
and case-control studies that have examined the inci-
dences of haematological malignancies in residential
populations close to petrochemical sites. For this we
build upon Lin et al.’s meta-analyses of lung cancer

Table 1 The different haematological malignancies

Condition Definition [2] Global incidence per
annum [4]

Global mortalities per
annum [4]

Count ASR a Count ASR a

Leukaemia A type of cancer that develops in blood-forming tissue, normally the bone marrow,
resulting in the production of abnormal white blood cells which crowd out normal
blood cells and platelets.

437,033 5.2 309,006 3.5

Hodgkin’s
Lymphoma

A cancer of the lymphatic system, a large network of nodes and vessels that carries
tissue fluid (called lymph) throughout the body and an important element of the
immune system.

79,990 1 26,167 0.3

Non-Hodgkin’s
Lymphoma

A cancer of the lymphatic system. 509,590 5.7 248,724 2.8

Multiple
Myeloma

A cancer of plasma cells, a type of white blood cells that produce antibodies, which
collects in the bone marrow, the soft fatty tissue inside bone cavities.

159,985 1.8 106,105 1.1

a Age-standardized rates (ASRs) per 100,000 persons
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mortality [8] and incidence [7] in fenceline communities
residing close to petrochemical industrial complexes.

Methods
Search strategy
The study was conducted in accordance to PRISMA and
MOOSE guidelines (see Fig. 1 and the checklists contained
in Additional file 1). The meta-analysis protocol was regis-
tered in the PROSPERO database (ID: CRD42019118567),
to avoid the duplication of research and for transparency
purposes by providing evidence of a priori analysis inten-
tions. This procedure minimises the introduction of bias by
hypothesising after the results are known, otherwise known
as ‘HARRKing’, whereby findings are omitted or accommo-
dated to achieve a more desirable outcome [39].
We comprehensively searched the Cochrane Library,

PubMed, ScienceDirect and Web of Science electronic da-
tabases for published studies available before Wednesday
14th November 2018. The following search terms were
used to look for partial matches in the abstract, title, and

keywords: (“Haematological Malignancy” OR “Blood Can-
cer” OR “Leukaemia” OR “Lymphoma” OR “Myeloma”
OR “Hodgkin”) AND (“Refinery” OR “Petroleum” OR
“Petrochemical” OR “Oil Industry” OR “Gas Industry” OR
“Chemical Industry”). The search criteria were set to in-
clude full-text publications from any year and in all lan-
guages, with wildcards and spelling variations between the
American and British English language accounted for (see
Additional file 1). Only a few articles of relevance from
the returned literature were published in languages other
than English (Italian), but these were excluded for report-
ing rates of mortality rather than incidence. Additional
studies were obtained through manually searching the ref-
erence lists of articles that were identified to be of import-
ance. The returned search results were collated and
processed using EndNote 19.0.

Selection criteria
Epidemiological studies reporting the risk of haemato-
logical malignancies (Leukaemia, Hodgkin’s lymphoma,

Fig. 1 PRISMA flowchart of the systematic literature search on haematological malignancy incidence in residents living near petrochemical
facilities
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Non-Hodgkin’s lymphoma, or Multiple myeloma) were
included where the following criteria were met: (i) Can-
cer incidence is diagnosed by a medical professional and
coded in accordance to the International Classification
of Diseases; (ii) A clear definition of fenceline communi-
ties is provided, indicating the proximity between ex-
posed residents and petrochemical activities; and (iii)
Exposure is representative of normal operating condi-
tions, not emergency events.
Ecological studies comparing incidence rates in re-

gions with and without petrochemical activity were ex-
cluded, based on issues of representativeness. The
proximity of individuals to petrochemical sources and
therefore the proportion of the population exposed in
such studies is unknown, with any group-level measures
of confounding influences not necessarily providing a
true representation of individual experiences. However,
this ecological literature contains the only record of
haematological malignancy rates for the oil fields of
Croatia [40] and the Ecuadorian Amazon basin [41, 42],
the exclusion of which will restrict the geographic cover-
age of our analysis.
Other noteworthy exclusions include:

� Knox’s (1994) [43] exploratory case-control study of
leukaemia in British children aggregated cases into
postal zones and randomly assigned a census-based
control cluster, using potentially unrelated socio-
economic characteristics and an unknown level of
exposure to downstream petrochemical activity.

� Patel’s (2004) [44] cohort study of a large spill event
at an underground storage facility in Pennsylvania
was also excluded, because exposure was not
representative of normal midstream operating
conditions.

Two reviewers independently screened the search re-
sults for conformity with the selection criteria, and any
disagreement was resolved by a third reviewer.

Data extraction and quality assessment
Two investigators used standardised protocols to inde-
pendently extract descriptive data for the following char-
acteristics: study design, study location (country and
continent), study resolution (temporal and geographic),
exposure by petrochemical sector (upstream, down-
stream or midstream), community proximity to the
petrochemical industry, year of the baseline survey, age
range of participants at the baseline, gender, diagnostic
classification system (ICD 7–10 and ICD-O), and the de-
gree of statistical adjustment used to account for con-
founding influences. The following procedure was
conducted to collect missing information: (1) contact
the articles corresponding authors; (2) If an inactive

account exists, academic profiles were explored using
the academic databases mentioned in section 2.1 and
internet search engines; (3) Records were estimated from
census records and other registers, if no response was
received to the first two stages (see Table 3).
Two reviewers independently used the Newcastle-

Ottawa scale to assess the quality and potential risk of
bias in the included studies, with any disagreement re-
solved by a third reviewer [45]. This 10-point scale (0–9)
provides a semi-quantitative evaluation of a study’s se-
lection of participants, comparability, and outcomes. See
Additional file 1 for examples of the quality scoring
criteria.
A single effect size was extracted from each primary

study, except when the authors had provided gender or
source specific (i.e. nonadjacent communities exposed to
a different form of petrochemical activity) approxima-
tions of relative risk. This approach allowed for the in-
vestigation of moderator effects that are of interest,
while minimising the risk of dependency between effect
sizes. Often effect sizes from the same study or research
group are more alike and thus interdependent, because
of similarities in study design, measurement, analysis,
and the selection of participants – influences, which if
ignored can inflate and lead to the overconfidence of a
meta-analysis [46, 47]. This approach contrasts from
that of Lin et al. [7], the only other meta-analysis of inci-
dence rates in residents near to petrochemical facilities.
Lin et al’s [7] analysis of lung cancer incidence included
17 approximations of relative risk taken from 6 studies,
with ten risk measures coming from a single study of Si-
cily [48] providing 71.7% of the weight behind the
pooled estimate. A conservative approach would have
only extracted male and female risk estimates for the en-
tire contamination zone, instead of including separate
results for each individual municipality. Lin et al’s [7]
meta-analysis also fails to provide an adequate definition
of fenceline communities, either by proximity or pollu-
tion thresholds, resulting in the inclusion of the eco-
logical study by Hurtig & San Sebastián [41].
In our analysis, Fazzo et al.’s [48] study only provides

gender specific haematological incidence rates for Priolo,
because no other municipalities in the contamination
zone are within 5 km of a petrochemical facility.

Data synthesis
Estimates from the individual studies were reported ei-
ther as an Odds Ratio (n = 4) or Standardised Incidence
Ratio (n = 12). The Odds Ratio (OR) and Standardised
Incidence Ratio (SIR) may be considered as approxima-
tions of Relative Risk (RR) under the rare disease as-
sumption, where the rate of such an event in the general
population is less than 10% [8, 49–51].
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These approximations of RR were log-transformed, to
ensure the distribution of these outcome measure are
symmetric around 0 and are close to normal [52].
Twelve studies provided upper and lower 95% confi-
dence interval limits, which were converted into Stand-
ard Error (SE) estimates of the natural-log RR with the
following equation [53]:

SE lnRRð Þ¼ ln RRupper
� �

− ln RRlowerð Þ
2�1:96

Where ln(RRupper) and ln(RRlower) represent the nat-
ural logs of the upper limit and lower limit of RR,
respectively.
Four studies [54–57] only provide information on the

observed (O) number of incident cases in the exposed
group and the expected (E) number of cases based on a
reference population, to calculate the SIR where O/E.
The 95% confidence intervals of these studies were esti-
mated by regarding O as a Poisson variable, with upper
(OU) and lower (OL) distribution table values that are to
be divided by E [58]. These confidence intervals were
then converted into SE estimates of the natural-log RR.

Statistical analysis
Relative risks and their 95% confidence intervals were
pooled across studies for each of the four categories of
haematological malignancy, using a random effects
meta-analysis. We assessed the consistency of findings
across individual studies with the I2 test, where a score
of less than 25% indicates a low level of between-study
heterogeneity [59]. A higher test score would indicate
that variation in the effect estimates is not a result of
chance, but of the presence of a moderator effect, that
has in part influenced the direction and strength of the
study outcome. Meta-regressions containing a single
quantitative or qualitative moderator effect were used to
investigate possible causes of heterogeneity and when re-
quired to construct adjusted risk ratios, based on demo-
graphic, diagnosis, exposure, geographic, quality or
temporal differences in the study designs.
Contour-enhanced funnel plots [60] collectively dis-

played the study effect estimates against their standard er-
rors, to check for the presence of publication bias,
whereby inconclusive results are more likely to remain un-
published. Funnel lines were centred at 0 (i.e. the null hy-
pothesis of no effect), with the observation effects
classified by confidence interval bands. The visual pres-
ence of asymmetry is a subjective indicator of publication
bias. Egger’s regression test was then employed to object-
ively determine if the effect estimates and sampling vari-
ances are related, with p-values < 0.05 indicative of
publication bias [61].

It should be noted that the funnel plot and its associ-
ated measures are only capable of testing for ‘positive’
forms of publication bias, and it is plausible that re-
search on industrial pollution and public health, may in
part be suppressed, if the publication of positive associa-
tions had the potential to cause economic damage. As
meta-analysis guidelines do not currently account for
‘negative’ forms of publication bias, we can only place a
limited amount of influence on such tests, which were
conducted in accordance to PRISMA and MOOSE
guidelines.
All components of this analysis were conducted in the

open source [R] programming language, using the ‘meta-
for’ package version 2.1 [52].

Case-study: Louisiana’s petrochemical corridor
Activists have long argued that the petrochemical indus-
try has severely harmed the health of people living in
Louisiana; however, first-hand quantitative evidence has
been notoriously difficult to gather: Research has report-
edly been terminated over safety fears, and local cancer
registries have been spatiotemporally censored at low
resolution units, debatably over disclosure concerns or
to conveniently mask trends within the data [62, 63].
Using the knowledge gained from these meta-analysis

models, we intend to conservatively estimate the impact
of petrochemical activity on haematological malignancy
incidence in Louisiana from 2011 to 15, based on the
following approach.
While the ‘Upstream’ component of the petrochemical

industry is clearly defined (i.e. refineries), difficulties
exist in the identification of ‘Downstream’ activities, and
links start to blur as petroleum feedstock is gradually
restructured into ever more complex chemical compo-
nents. Still, most forms of petrochemical activity may be
traced by the release of volatile aromatic hydrocarbons,
in the form of benzene, toluene, ethylbenzene, and xy-
lene compounds (BTEX).
We assumed that ‘Upstream’ activities are the most

polluting aspect of the industry, as they process and
break down the largest volumes of petrochemical feed-
stock. Table 2 provides the median annual emission
rates of BTEX compounds for all petrochemical refiner-
ies in the United States, in 1987 and for 2011–15. Envir-
onmental legislation over the past 30 years has seen a
cleaning of industry; however, facilities still exist that are
considered highly polluting even by historic standards
(i.e. above the 1987 median BTEX values).
We first identified all industries operating in Louisiana

between 2011 and 2015, which released emissions of a
BTEX compound above or equal to the median emission
level of refineries in 1987 (n = 29). The selected facilities
are considered as ‘highly’ polluting, even by historic
levels. Standard industrial classification (SIC) codes
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identified 8 refineries, 1 midstream storage facility, and
10 downstream manufacturers of commercially market-
able products in the form of organic chemicals, plastics
and fertilisers. Fifteen of these ‘highly’ polluting petro-
chemical facilities were located on the Mississippi (79%).
Ten facilities were omitted from the analysis for not pro-
cessing hydrocarbons, which highlights the additional
risk posed by other industrial activity, particularly from
the fabrication of metals at shipyards.
Firstly, the total number of leukaemia cases in each

parish was calculated, by combining population counts
with age-adjusted incidence rates obtained from the Na-
tional Cancer Institute. The US Environmental Protec-
tion Agency’s Toxic Release Inventory (TRI) was then
used to identify ‘highly’ polluting petrochemical facilities,
and a 30x30m population grid was used to estimate the
size of their fenceline communities [65].
For each individual parish, a ‘Population Attributable

Fraction’ (PAF) estimated the proportion of haemato-
logical malignancy incidence, attributable to residential
exposure from the petrochemical industry [66]:

PAF¼ Ppop� RR−1ð Þ
Ppop� RR−1ð Þþ1

Where Ppop represents the proportion of a parish res-
iding within 5 km of a petrochemical facility (i.e. the pro-
portion of exposed subjects), and RR is the pooled
relative risk of a particular outcome occurring in the ex-
posed population, as estimated by the meta-analysis
models.

Results
Study level characteristics
The systematic review identified 16 unique studies,
which collectively record the incidence of haematological
malignancies across 187,585 residents living close to a
petrochemical operation (see Table 3) [6, 48, 54–57, 67–
76]. In terms of geographical coverage, 11 studies were
conducted in Europe, 3 in North America and 2 in Asia.
Twelve of these studies were based on retrospective co-
horts, with the remaining four implementing a case-
control approach. As a collective, the systematically
identified literature covers 51 years of petrochemical ac-
tivity (1960–2011).

Relative risks were obtained for 21 different population
groups, seven of which are for males, four for females,
and ten examined risk irrespective of gender. A majority
reported risk across the general population, with only
three of the population groups being entirely comprised
of children (< 15 years of age). In terms of petrochemical
activity, 9 of the population groups lived near to “up-
stream” refinery operations, 4 lived near to “down-
stream” facilities producing commercially marketable
chemical products, and 8 lived alongside both forms of
petrochemical activity. Fenceline communities were typ-
ically defined as living within 5 km of a petrochemical fa-
cility, although a few authors used an exposure
threshold of up to 8 km in their analysis [55, 56, 67].
The quality of the existing literature was assessed via

the Newcastle-Ottawa scale, which evaluates the risk of
bias introduced by the selection of participants, their
comparability to reference populations, and differing
definitions of exposure (see Tables 4, 5). Most studies
were of moderate to high quality (score ≥ 6), with only
six cohort studies deemed to be of reduced quality. The
following analysis controls for differences in quality, if
heterogeneity is detected by the model diagnostics.
Otherwise, variations in study design are considered to
have minimal influence on the measured outcome.
Where applicable, quality was included as a categorical
moderator effect (1 = High, 0 = Low), with the revised
risk ratio reflecting the model’s high-quality subgroup.

Leukaemia incidence
Figure 2 provides pooled meta-analysis estimates on the
relative risk (RR) of leukaemia incidence in fenceline
communities, presented alongside the underlying obser-
vations reported by 12 different studies. None of the
studies representing fenceline communities > 5 km from
a petrochemical facility were observed to report an in-
creased level of risk at the 95% confidence level. This
observation was statistically confirmed by a subgroup
meta-analysis of the three distant fenceline communities,
whose pooled estimate found no evidence of increased
risk (RR = 0.86; 95% CI = 0.52 to 1.43), or any between-
study variation in effect size (I2 < 1%). Based on this evi-
dence, the subsequent analysis focused on communities
within 5 km of a petrochemical facility.
A pooled RR of 1.30 (95% CI = 1.09 to 1.55) indi-

cates that leukaemia incidence is higher in fenceline
communities no more than 5 km away from petro-
chemical activity. Beale et al’s [69] gender-based sub-
populations within the US state of Utah collectively
provide the largest, but by no means overriding influ-
ence on the pooled estimate (31.5% of the weight).
Meanwhile, the lowest level of influence (0.5% of the
weight) is attributed to the experience of female resi-
dents from Sicily [48]. These meta-analysis weightings

Table 2 Median annual emission rates for all petrochemical
refineries in the United States. (Source: US-EPA Toxic Release
Inventory 1987-2015 [64])

Year(s) Count BTEX Emissions (tonnes per annum)

Benzene Toluene Ethylbenzene Xylenes

1987 144 6.19 15.88 2.37 8.94

2011–2015 145 2.90 5.14 1.00 4.24
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are reflective of uncertainty in the measurements of
RR reported by the underlying studies. Still, moderate
levels of heterogeneity were detected between the
study group risk estimates (I2 = 52.2%), which must be
accounted for, in order to test the robustness of these
findings.
A series of meta-regressions were conducted to iden-

tify and control for potential causes of heterogeneity in
the risk of leukaemia incidence for fenceline communi-
ties (see Table 6). The influence of categoric and
continuous moderator effects were investigated by a
Wald-type chi-square test (QM), where p > 0.05 rejects
the null hypothesis of no relationship between the effect
size and moderator variable(s). Any remaining sources
of heterogeneity found in the model’s residuals are con-
sidered of negligible influence, if the I2 test returns a
value below 25%, and or Cochran’s Q rejects its null hy-
pothesis (QE p-value > 0.05).
In terms of demographic attributes, no apparent differ-

ences were found in relation to gender or age, although
few studies specifically examine leukaemia incidence in
children [71, 75]. Considering that heavy industries are
traditionally male-dominated forms of employment, it
could have been argued that increased levels of risk are
associated only with occupation and not residential ex-
posure, but this is not the case.

The meta-regressions identified no differences in
risk from residential exposure to a specific sector of
the petrochemical industry, be that from an upstream
refinery or downstream manufacturer of petroleum-
based goods (QM p-value = 0.85). The petrochemical
industry also appears to pose a common risk, regard-
less of any differences in operational practices at ei-
ther a continental (QM p-value = 0.24) or national
(QM p-value = 0.45) level of analysis. The presence of
confounding caused by revisions to the classification
schemes used to diagnose blood cancers was then
tested for, the impact of which appears to be negli-
gible (QM p-value = 0.37 and 0.73).
Heterogeneity between the individual study effects ap-

pears to be linked to aspects of study quality, measured
by the three underlying themes of the Newcastle-Ottawa
scale. Virtually all traces of heterogeneity were removed
when controlling for differences in quality, based on the
“Participant Selection” process of each study (I2 < 1%).
The participant selection processes were critiqued based
on the format of underlying data (i.e. record linkage or
self-reports), its validity, and the representativeness of
sampling procedures.
The pooled RR of leukaemia incidence in fenceline

communities increased to 1.58 (95% CI = 1.32 to 1.90),
after controlling for participant selection. The meta-

Table 4 Newcastle-Ottawa scale for assessing cohort study quality

Lead Author (Publication Year) Selection (Max = 4) Comparability (Max = 2) Exposure (Max = 3) Overall Quality (Max = 9)

Axelsson (2010) [6] 3 1 2 6

Barregard (2009) [68] 3 1 2 6

Beale (2010) [69] 2 2 2 6

Bulat (2011) [56] 3 1 1 5

Fazzo (2016) [48] 3 1 1 5

Lyons (1995) [54] a 2 1 2 5

Pasetto (2012) [73] a 3 2 2 7

Pekkanen (1995) [55] 2 1 1 4

Salerno (2013) [74] 3 1 1 5

Sans (1995) [67] 2 2 2 6

Wilkinson (1999) [75] 2 2 2 6

Zusman (2012) [57] a 3 0 1 4
aStudies not included in the meta-analysis of leukaemia incidence

Table 5 | Newcastle-Ottawa scale for assessing case-control study quality

Lead Author (Publication Year) Selection (Max = 4) Comparability (Max = 2) Exposure (Max = 3) Overall Quality (Max = 9)

De Roos (2010) [70] a 4 2 2 8

García-Pérez (2015) [71] 2 1 3 6

Linos (1991) [72] 3 2 2 7

Yu (2006) [76] 3 2 1 6
a Studies not included in the meta-analysis of leukaemia incidence
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regression outputs confirm that any variation in study
design is sufficiently accounted for (I2 < 1%, QE p-value =
0.60), and no publication bias exists amongst the identi-
fied studies (Egger’s p-value = 0.67).
Another consideration is the likely change in quantity

and perhaps even the composition of pollutants emitted
from petrochemical facilities over time, with manufac-
turing processes and abatement technology developing
in response to evolutions in the environmental legisla-
tion. The impact of a changing petrochemical landscape

on reported risk, was therefore evaluated by controlling
for the initial reporting year of each study. These tem-
poral meta-regression models also comprehensively ex-
plained the variation in risk between studies (I2 < 1%),
and surprisingly reported an increase in risk with time
(see Table 6).
A final meta-regression was created, which controlled

for quality (in terms of participant selection) and the ini-
tial reporting year of each study (see Table 6 and Fig. 3).
The model shows no signs of heterogeneity (I2 < 1%) or

Fig. 2 The association between residential exposure to petrochemical activity and the relative risk (RR) of Leukaemia incidence
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Table 6 Pooled estimates on the relative risk (RR) of leukaemia incidence within 5 km of a petrochemical facility, moderated by
different characteristics

Assessment Characteristics Heterogeneity Tests Pooled Relative Risks
(95% CI)I2 (%) QE (p-value)

c QM (p-value) c

Base Model – 52.18 0.01 – –

Demographic 1.1. Gender
• All (n = 5)
• Male (n = 5)
• Female (n = 3)

47.98 0.03 0.67 –

1.2. Participants
• Children (n = 2)
• General Population (n = 11)

57.63 0.01 0.51 –

Diagnosis 2.1. Classification Scheme
• ICD 7–10 (n = 8)
• ICD for Oncology (n = 5)

49.48 0.02 0.37 –

2.2. Classification Scheme
• ICD 7–8 (n = 3)
• ICD 9–10 (n = 5)
• ICD for Oncology (n = 5)

56.71 0.02 0.73 –

Exposure 3.1. Petrochemical Sector
• Upstream (n = 7)
• Downstream (n = 3)
• Combination (n = 3)

52.99 0.02 0.85 –

3.2. Maximum Distance
• 3 km (n = 10)
• 3.1 to 5 km (n = 3)

41.98 0.05 0.12 –

Geography 4. Continent
• Europe (n = 8)
• North America (n = 4)
• Asia (n = 1)

31.67 0.09 0.24 –

Quality d 5.1. Newcastle-Ottawa Score
• Low (n = 4)
• High (n = 9)

45.10 0.04 0.07 –

5.1.1. Participant Selection
• Low (n = 4)
• High (n = 9)

< 0.01 0.60 < 0.01 Low: 1.01 [0.90 to 1.14]
High: 1.58 [1.32 to 1.90]

5.1.2. Study Comparability
• Low (n = 7)
• High (n = 6)

45.07 0.04 0.20 –

5.1.3. Outcome Assessment
• Low (n = 5)
• High (n = 8)

33.38 0.12 0.03 Low: 1.71 [1.25 to 2.35]
High: 1.15 [0.98 to 1.37]

Temporal 6.1. Study Start
• 1965 to 1974 (n = 3)
• 1975 to 1984 (n = 3)
• 1985 to 1994 (n = 2)
• 1995 to 2004 (n = 5)

< 0.01 0.42 < 0.01 1965/74: 1.02 [0.91 to 1.15]
1975/84: 1.21 [1.09 to 1.34]
1985/94: 1.43 [1.23 to 1.65]
1995/04: 1.69 [1.36 to 2.11]
2005/14: 2.00 [1.48 to 2.70] b

6.2. Study Start (+ 1 Year) a < 0.01 0.28 < 0.01 1971: 1.00 [0.88 to 1.14]
1981: 1.20 [1.09 to 1.33]
1991: 1.44 [1.23 to 1.69]
2001: 1.73 [1.36 to 2.22]
2011: 2.08 [1.48 to 2.93] b

Mixed Effect 5.1.1. Participant Selection, and
6.2 Study Start (+ 1 Year) a

< 0.01 0.63 < 0.01 1971: 1.38 [1.02 to 1.87]
1981: 1.49 [1.21 to 1.84]
1991: 1.61 [1.34 to 1.93]
2001: 1.74 [1.36 to 2.22]
2011: 1.88 [1.32 to 2.67] b

a Continuous variable
b Predicted risk
c Wald type Chi-Squared tests: QE Test for Residual Heterogeneity, QM Test of Moderators
d Newcastle-Ottawa Score: Total (L = 0–5, H = 6–9), Selection (L = 0–2, H = 3–4), Comparability (L = 0–1, H = 2), Assessment (L = 0–1, H = 2–3)
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publication bias (Egger’s p-value = 0.93), and the highest
rates of risk are still found in the most recent population
studies. The RR of leukaemia incidence from petrochem-
ical operations in 2011 is estimated at 1.88 (95% CI = 1.32
to 2.67), compared to 1.38 (95% CI = 1.02 to 1.87) in 1971.
Although it is unlikely that an increasingly regulated in-
dustry will pose the greater risk, we can conclude that the
potential risk of petrochemical operations certainly has
not diminished over time..

Other incidences of Haematological malignancy
The systematic review then evaluated the epidemio-
logical evidence base of the three remaining categories
of haematological malignancy, in the form of Non-
Hodgkin’s Lymphoma (NHL), Hodgkin’s Lymphoma
(HL), and Multiple Myeloma (MM).
Figure 4 presents the underlying observations of 9 dif-

ferent studies and the pooled meta-analysis RR estimate
of Non-Hodgkin’s Lymphoma incidence in fenceline
communities. The model outputs confirm that the study
effects are homogeneous, even when including studies
that define the upper limit of fenceline communities at
7.5 km (I2 < 1%, QE p-value = 0.89). The creation of a
symmetrically distributed funnel plot (see Additional file
1) and its two null hypothesis tests also indicate an ab-
sence of publication bias in the reported effect sizes
(Egger’s p-value = 0.85). The existing epidemiological
evidence indicates that people living within 7.5 km of a
petrochemical facility are at greater risk of developing
Non-Hodgkin’s Lymphoma (RR = 1.06; 95% CI = 0.97 to

1.17). However, further research is required to verify
these findings.
Figure 5 presents the underlying observations of 9

different studies and the pooled meta-analysis RR estimate
of Hodgkin’s Lymphoma incidence in fenceline communi-
ties. Although the study effects appear to be homogeneous
(I2 < 1%, QE p-value = 0.55), a somewhat asymmetric fun-
nel plot and close rejection Egger’s test (p-value = 0.16)
may indicate publication bias.
Finally, a pooled RR estimate of Multiple Myeloma in-

cidence in fenceline communities was constructed from
gender-specific effects, reported by 3 different studies
(see Fig. 6). Whilst the meta-analysis of the raw effect
sizes returned a positive estimate with high levels of un-
certainty (RR = 1.16, 95% CI = 0.83 to 1.63), there were
issues of heterogeneity between the studies (I2 ≈ 41%).
The variation in effect size appeared to be linked to
study quality, as measured by the Newcastle-Ottawa
scale overall score (I2 < 1%). The resulting revised model
found no clear link between Multiple Myeloma and resi-
dential exposure to the petrochemical industry (RR =
0.97, 95% CI = 0.78 to 1.20).

Case-study: Louisiana’s petrochemical corridor
Louisiana is located within the southeastern United States,
where the Mississippi River meets with the Gulf of
Mexico. It is considered one of the most toxic states, an-
nually discharging 7.2 t of hazardous waste per capita, and
accounting for 12.5% of the country’s hazardous waste
from only 6.5% of the nation’s chemical facilities [77, 78].
The ‘National Cancer Institute’ currently recognises that

Fig. 3 Meta-regression outputs, illustrating the relationship between Relative Risk (RR) of leukaemia incidence and the initial reporting year of
each study, while controlling for study quality. The contour-enhance funnel plot is used to check for the impact of unpublished literature, and
the significance of individual studies
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age-adjusted rates of overall cancer incidence in Louisiana,
are 7.3% above the national estimate of 448 cases per 100,
000 persons [79]. Along the Louisiana stretch of the Mis-
sissippi, there are several densely packed industrial zones
which form a petrochemical corridor from Baton Rouge
to New Orleans, often referred to as “Cancer Alley”.
Table 7 presents the number of newly diagnosed leu-

kaemia cases in each parish, that are attributed to resi-
dential exposure from the petrochemical industry along
the Louisiana stretch of the Mississippi River. Approxi-
mately 188,075 residents from 12 parishes live within 5
km of a ‘highly’ polluting petrochemical facility. Over
40% of the residents from the sparsely populated par-
ishes (< 50,000 persons) of Iberville and St. Bernard live
in fenceline communities. By count, the parish of East
Baton Rouge has the largest number of residents in fen-
celine communities (n = 82,554).
It is estimated that the petrochemical industry is ac-

countable for 58.7 (27.8 to 105.1) new cases of leukaemia
in fenceline communities along this river corridor, over
the 5-year period of 2011–15, when applying our meta-

analysis risk ratio to parish level health data. Figure 7
displays the number of attributable cancer incidence
cases for each parish, with respect to these ‘highly’ pol-
luting petrochemical facilities.

Discussion
Principal findings
The systematic review and meta-analysis identified 16
unique studies which collectively record the incidence of
haematological malignancies across 187,585 residents
living in close proximity to petrochemical sites. Across
varied geographical contexts and covering a period of
analysis between 1960 and 2011, the review found that
those living within 5 km of a petrochemical facility have
a 30% higher risk of developing leukaemia than residents
from communities with no petrochemical activity. The
enhanced risk for fenceline communities applied to up-
stream, midstream and downstream petrochemical
operations.
The analysis indicated that heterogeneity between the

16 studies may be explained by differences in study

Fig. 4 The association between residential exposure to petrochemical activity and the relative risk (RR) of Non-Hodgkin’s Lymphoma incidence
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quality, notably in relation to the participant selection
process of the research. The meta-analysis also found
temporal differences, with the most recent exposure
studies reporting the highest rates of leukaemia risk in
fenceline communities. Given the increasingly regulated
nature of the petrochemical industry, this was an unex-
pected and surprising finding. It is plausible that the
earliest studies investigated sites representative of the

wider industry, with later research guided by a wealth of
anecdotal evidence and primarily focusing on the most
polluting operations.. Thus, we do not suggest that the
risk of developing leukaemia in fenceline communities is
becoming greater, but rather that the risk for residents liv-
ing close to petrochemical sites persists.
The incidences of Non-Hodgkin’s Lymphoma (NHL),

Hodgkin’s Lymphoma (HL), and Multiple Myeloma

Fig. 5 The association between residential exposure to petrochemical activity and the relative risk (RR) of Hodgkin’s Lymphoma incidence

Fig. 6 The association between residential exposure to petrochemical activity and the relative risk (RR) of Multiple Myeloma incidence

Jephcote et al. Environmental Health           (2020) 19:53 Page 13 of 18



(MM) in fenceline communities remain uncertain and
further research is required to determine the risk of de-
veloping these blood cancers in fenceline communities
of petrochemical sites.
Building on the meta-analysis, we estimate the poten-

tial impact of the petrochemical industry on leukaemia
incidence in Louisiana’s Mississippi Valley, between
2011 and 2015. Nineteen petrochemical facilities in the
state of Louisiana, were currently found to release emis-
sions of a BTEX compound above or equal to expected
industry levels in 1987, fifteen of which are located close
to the Mississippi. It is estimated that 188,075 residents
from 12 parishes along Louisiana’s Mississippi Valley,
known as ‘Cancer Alley’, live within 5 km of a ‘highly’
polluting petrochemical facility. The findings suggest
that the petrochemical industry is accountable for 58.7
new cases of leukaemia in fenceline communities in
‘Cancer Alley’, between 2011 and 2015. This estimate is
thought to be conservative, as we only considered the
impact from 15 out of 54 identifiable petrochemical fa-
cilities from these 12 parishes (28%), based on the cri-
teria of ‘high’ levels of BTEX emissions under normal
operating conditions.

Comparison with other studies
The findings from this meta-analysis support existing
occupational research on the incidence of haemato-
logical malignancies among workers in the petrochem-
ical industry, which observed close associations between
exposure to toxic pollutants and the development of
blood cancers across the upstream, midstream and
downstream sectors of the industry [24, 30, 34, 35]. The

higher occupational risks also applied to workers ex-
posed to low levels of BTEX concentrations [10–12].
Along the same lines, the analysis in this paper indicates
that also residents of fenceline communities in close
proximity to petrochemical sites carry a greater risk of
developing leukaemia.
The findings from this meta-analysis extend previous

epidemiological research on associations between resi-
dential exposure to releases from petrochemical facilities
and health risk. It adds to Lin et al’s [7, 8] meta-analyses
of lung cancer incidence and mortality in residential
populations sin close proximity to petrochemical indus-
trial clusters. Despite cleaning up and the development
of emissions abatement technologies in recent years,
petrochemical industrial sites remain closely associated
with substantial toxic and hazardous releases and con-
tinue to pose a risk to the health of fenceline
communities.

Study strengths and limitations
This is the first known meta-analysis of blood cancer
risk in fenceline communities next to petrochemical in-
dustrial sites. The meta-analysis investigated the associ-
ation between incidences of haematological malignancies
and residential exposure to releases from the petrochem-
ical industry. The analysis of incidence rates rather than
mortality rates can reduce the bias caused by other fac-
tors which may affect blood cancer survival rates (e.g.
healthcare quality) [7, 80].
The meta-analysis adopted a rigorous study selection

process, including a comprehensive search of relevant
academic databases and a strict application of criteria in

Table 7 Estimated population attributable factor and Leukaemia Incidence cases for Louisiana residents living within 5 km of a
petrochemical facility along the Mississippi River (2011–15)

Parish Name Population Age-Adjusted Leukaemia Incidence (2011–15) Population
Attributable
Fraction (%)**

Attributable
Leukaemia
Cases (2011–15)

Exposed (N) Total (N) Exposed (%) Annual Cases Per 100,000 * 5-Year Count (N)

(1) East Baton Rouge 82,554 440,046 19% 13.2 [11.7–14.8] 290.4 [257.4–325.6] 10% [6–14%] 28.5 [14.6–47.0]

(2) Orleans 37,360 343,573 11% 11.2 [9.7–12.9] 192.4 [166.6–221.6] 6% [3–9%] 11.4 [5.6–19.8]

(3) St. Bernard 22,542 35,887 63% 8.4 [4.8–13.5] 15.1 [8.6–24.2] 27% [17–36%] 4.0 [1.4–8.8]

(4) St. Charles 13,730 52,745 26% 11.8 [7.9–16.9] 31.1 [20.8–44.6] 13% [8–19%] 4.1 [1.6–8.5]

(5) Iberville 13,223 33,387 40% 14.0 [9.0–20.9] 23.4 [15.0–34.9] 19% [11–26%] 4.4 [1.7–9.2]

(6) St. John the Baptist 9796 45,914 21% 12.0 [7.7–17.8] 27.6 [17.7–40.9] 11% [6–16%] 3.0 [1.1–6.6]

(7) West Baton Rouge 4553 23,774 19% 13.9 [13.4–14.4] † 16.5 [15.9–17.1] 10% [6–15%] 1.7 [0.9–2.5]

(8) Ascension 1833 107,208 2% 12.3 [9.2–15.9] 65.9 [49.3–85.2] 1% [1–2%] 0.7 [0.3–1.3]

(9) St. James 1519 22,100 7% 13.9 [13.4–14.4] † 15.4 [14.8–15.9] 4% [2–6%] 0.6 [0.3–0.9]

(10) Plaquemines 940 23,031 4% 13.9 [13.4–14.4] † 16.0 [15.4–16.6] 2% [1–4%] 0.4 [0.2–0.6]

(11) Lafourche 25 96,301 < 0.1% 15.3 [12.1–19.1] 73.7 [58.3–92.0] 0% [0–0%] 0.0 [0.0–0.0]

(12) Jefferson 0 432,415 0% 13.6 [12.2–15.2] 294.0 [263.8–328.6] 0% [0–0%] 0.0 [0.0–0.0]

*Age-Adjusted Leukaemia Incidence rates obtained from by the National Cancer Institute (https://statecancerprofiles.cancer.gov/data-topics/incidence.html)
** Leukaemia Incidence relative risk (RR) = 1.58 [1.32–1.9]
†Use of the Louisiana State cancer rate, in parishes where incidence rates have been censored and conditions with a low occurrence (< 3 cases per annum)
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selecting studies. All incident cases in the identified
studies were diagnosed by a medical professional and
coded in accordance to the International Classification
of Diseases (ICD). Furthermore, studies were only in-
cluded if they reported health outcomes under normal
operating conditions (not emergency events), and if they
provided a clear definition of fenceline communities,
thus avoiding the limitations of Lin et al’s [7, 8] meta-
analytical reports on the petrochemical industry. In
terms of analysis, the extraction of a single effect size
from each study minimised the risk of dependency be-
tween effect sizes [46, 47], while allowing for the investi-
gation of moderating influences. Indeed, a number of
potential causes of heterogeneity in the risk of leukaemia
incidence at fenceline communities were controlled for
and investigated in the analysis (e.g. study quality, age,
gender).
However, given that the identified 16 studies are clus-

tered in three geographical regions, there may exist con-
cerns over generalisability in this meta-analysis.

Exposure levels and health conditions may be affected
by geographical differences in environmental law, hous-
ing regulations, and access to healthcare, yet we ob-
served no unexplained discrepancies between the
European and North American literature. Moreover,
there are difficulties in assessing the health impacts of
pollution from the petrochemical industry in one
discrete time period, as these studies did. Blood cancers
may develop years after exposure and the slow temporal
dimensions of pollution may be a possible explanation
for why the later studies indicated higher risk levels of
leukaemia in fenceline communities. Additionally, the
quality assessments carried out using the Newcastle-
Ottawa scale are subjective and limited, in that we can
never know the full extent of the studies’ quality and can
only judge by the information provided by the
investigators.
Furthermore, other risk factors, notably socioeconomic

status, were often not universally adjusted for by the se-
lected studies, which may influence the findings [81].

Fig. 7 Estimated cases of Leukaemia Incidence in Louisiana riverside parishes, which are attributable to residential exposure to the petrochemical
industry (2011–15)
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Although, by controlling for differences in participant
selection (i.e. representativeness) we were able to ac-
count for between study heterogeneity. Additionally, it is
difficult to disentangle residential risk from occupational
risk. Some of the residents living within 5 km of the
petrochemical site are likely to be employees and, ac-
cordingly, it is methodologically challenging to limit ex-
posure to solely residential. Still, occupational exposure
research has reported the risk of lung cancer mortality
and hospital discharges for progressive lung diseases to
be 71 and 40% higher in petrochemical employees from
fenceline communities, compared to employees that
commuted, respectively. Based on the findings of our
meta-analysis, the risk from residential exposure is also
likely to exist in relation to leukaemia [73]. However,
there remains a need for further research which ac-
counts for, and reduces the influence of, occupational
factors in assessing residential exposure. Equally, it is
problematic to specifically associate higher incidences of
leukaemia with a particular petrochemical site, given
that these are often located in industrial complexes in
which other manufacturing processes are occurring.
All studies examined in this systematic review indir-

ectly measured exposure to a petrochemical facility in
terms of proximity, however, exposure can only be truly
confirmed by direct measurements of air quality and
biospecimens (i.e. a complete exposure pathway). Only
two of our identified studies provided exposure mea-
surements, which crudely summarised the areas of high
and low exposure [6, 68], and this is clearly an area in
need of further development. Still, it remains extremely
challenging to precisely measure and apportion concen-
trations to a specific source, let alone accurately measure
personal levels of exposure. Given these limitations,
proximity remains a suitable and low-cost indication of
exposure outcomes, which should then be confirmed on
an individual basis.

Conclusions
The meta-analysis provides evidence for a higher risk of
leukaemia development in individuals living near a
petrochemical facility, due to exposure to toxic and haz-
ardous emissions. Meta-analysis findings such as these
can act as evidence base for public health policy prior-
ities, including the setting up of preventive strategies
and standards, and the tightening of regulations on toxic
and hazardous pollutants from the petrochemical indus-
try. Our findings can also be used to assist legal cases of
grassroots environmental movements whose research
capacities may be limited or hindered by the power and
influence of industry.

Abbreviations
BTEX: Volatile organic compounds, which may include benzene, toluene,
ethylbenzene, and or xylene; HL: Hodgkin Lymphoma; IARC: International

Agency for Research on Cancer; LK: Leukaemia; MM: Multiple Myeloma;
MOOSE: Meta-analyses Of Observational Studies in Epidemiology; NHL: Non-
Hodgkin Lymphoma; OR: Odds Ratio; PAF: Population Attributable Fraction;
PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analyses;
RR: Relative Risk; SE: Standard Error; SIR: Standardised Incidence Ratio;
TRI: Toxic Release Inventory; WHO: World Health Organisation

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12940-020-00582-1.

Additional file 1.

Acknowledgements
The research was supported by the European Research Council (ERC).

Authors’ contributions
CJ designed the study. CJ and DB acquired, analysed, and interpreted the
underlying data. Included studies were independently graded in accordance
to the ‘Newcastle-Ottawa Assessment Scale’ by DB and TV, with CJ leading
the post-review discussion on scoring discrepancies. CJ, DB, TV and AM
drafted the manuscript. CJ performed the statistical analysis. CJ and AM su-
pervised the study. All authors had full access to the data in the study and
can take responsibility for the integrity of the data and the accuracy of the
data analysis. CJ is the guarantor. The authors read and approved the final
manuscript.

Funding
This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
programme (grant agreement: 639583).

Availability of data and materials
The supporting data and model scripts are available in the Figshare
repository, at https://doi.org/10.6084/m9.figshare.12572483.v1. The
supporting appendices are available as additional files to this article and in
the journal Figshare repository, at https://doi.org/10.6084/m9.figshare.
12331820.v1.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
All authors certify that they have no affiliations with or involvement in an
organisation or entity with any financial interest, or non-financial interest
(such as personal or professional relationships, affiliations, knowledge or be-
liefs) in the subject matter or materials discussed in this manuscript.

Received: 23 September 2019 Accepted: 20 February 2020

References
1. Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, Thiele J. WHO

classification of tumours of haematopoietic and lymphoid tissues: World
Health Organisation; 2008.

2. Howlader N, Na K, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A,
Lewis D, Chen H, Feuer E. SEER cancer statistics review, 1975-2016: National
Cancer Institute; 2019.

3. Stewart B, Wild C. World cancer report 2014: International Agency for
Research on Cancer; 2014.

4. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

5. International Agency for Research on Cancer (IARC). Latest global cancer
data: cancer burden rises to 18.1 million new cases and 9.6 million cancer
deaths in 2018: International Agency for Research on Cancer; 2018.

Jephcote et al. Environmental Health           (2020) 19:53 Page 16 of 18

https://doi.org/10.1186/s12940-020-00582-1
https://doi.org/10.1186/s12940-020-00582-1
https://doi.org/10.6084/m9.figshare.12572483.v1
https://doi.org/10.6084/m9.figshare.12331820.v1
https://doi.org/10.6084/m9.figshare.12331820.v1


6. Axelsson G, Barregard L, Holmberg E, Sallsten G. Cancer incidence in a
petrochemical industry area in Sweden. Sci Total Environ. 2010;408(20):
4482–7.

7. Lin C, Hsu Y, Christiani D, Hung H, Lin R. Risks and burden of lung cancer
incidence for residential petrochemical industrial complexes: A meta-
analysis and application. Environ Int. 2018;121(1):404–14.

8. Lin C, Hung H, Christiani D, Forastiere F, Lin R. Lung cancer mortality of
residents living near petrochemical industrial complexes: A meta-analysis.
Environ Health. 2017;16:101.

9. Descatha A, Jenabian A, Conso F, Ameille J. Occupational exposures and
haematological malignancies: overview on human recent data. Cancer
Causes Control. 2005;16(8):939–53.

10. Glass D, Gray C, Jolley D, Gibbons C, Sim M, Fritschi L, Adams G, Bisby J,
Manuell R. Leukemia risk associated with low-level benzene exposure.
Epidemiology. 2003;14(5):569–77.

11. Kang S, Lee M, Kim T, Lee J, Ahn Y. Occupational exposure to benzene in
South Korea. Chem Biol Interact. 2005;153:65–74.

12. Hu X, Song S, Ye F, Liu L. High-performance liquid chromatographic
determination of urinary trans, trans-muconic acid excreted by workers
occupationally exposed to benzene. Biomed Environ Sci. 2006;19(4):292–6.

13. Koh D, Kim T, Yoon Y, Shin K, Yoo S. Lymphohematopoietic cancer mortality
and morbidity of workers in a refinery/petrochemical complex in Korea. Saf
Health Work. 2011;2(1):26–33.

14. Rushton L, Schnatter A, Tang G, Glass D. Acute myeloid and chronic
lymphoid leukaemias and exposure to low-level benzene among petroleum
workers. Br J Cancer. 2014;110(3):783.

15. Kim Y, Choi J, Paek D, Chung H. Association of the NQO1, MPO, and XRCC1
polymorphisms and chromosome damage among workers at a petroleum
refinery. J Toxic Environ Health A. 2008;71(5):333–41.

16. Paz-Y-Miño C, López-Cortés A, Arévalo M, Sánchez M. Monitoring of DNA
damage in individuals exposed to petroleum hydrocarbons in Ecuador. Ann
N Y Acad Sci. 2008;1140(1):121–8.

17. Carugno M, Pesatori A, Dioni L, Hoxha M, Bollati V, Albetti B, Byun H,
Bonzini M, Fustinoni S, Cocco P, Satta G. Increased mitochondrial DNA copy
number in occupations associated with low-dose benzene exposure.
Environ Health Perspect. 2011;120(2):210–5.

18. Lan Q, Zhang L, Li G, Vermeulen R, Weinberg R, Dosemeci M, Rappaport S,
Shen M, Alter B, Wu Y, Kopp W. Hematotoxicity in workers exposed to low
levels of benzene. Science. 2004;306(5702):1774–6.

19. Koh D, Jeon H, Lee S, Ryu H. The relationship between low-level benzene
exposure and blood cell counts in Korean workers. Occup Environ Med.
2015;72(6):421–7.

20. Sonoda T, Ishida T, Mori M, Sakai H, Noguchi M, Imai K. A case-control study
of multiple myeloma in Japan: association with occupational factors. Asian
Pac J Cancer Prev. 2005;6(1):33–6.

21. Mclean D, Mannetje A, Dryson E, Walls C, Mckenzie F, Maule M, Cheng S,
Cunningham C, Kromhout H, Boffetta P, Blair A. Leukaemia and occupation:
a New Zealand cancer registry-based case–control study. Int J Epidemiol.
2009;38(2):594–606.

22. Sathiakumar N, Delzell E, Cole P, Brill I, Frisch J, Spivey G. A case-control
study of leukemia among petroleum workers. J Occup Environ Med. 1995;
37(11):1269–77.

23. Pukkala E. Cancer incidence among Finnish oil refinery workers, 1971-1994. J
Occup Environ Med. 1998;40(8):675–9.

24. Kirkeleit J, Riise T, Bråtveit M, Moen B. Increased risk of acute myelogenous
leukemia and multiple myeloma in a historical cohort of upstream
petroleum workers exposed to crude oil. Cancer Causes Control. 2008;19(1):
13–23.

25. Campagna M, Satta G, Campo L, Flore V, Ibba A, Meloni M, Giuseppina
Tocco M, Avataneo G, Flore C, Fustinoni S, Cocco P. Biological monitoring
of low-level exposure to benzene. Med Lav. 2012;103(5):338.

26. Edokpolo B, Yu Q, Connell D. Health risk assessment for exposure to
benzene in petroleum refinery environments. Int J Environ Res Public
Health. 2015;12(1):595–610.

27. Ward E, Hornung R, Morris J, Rinsky R, Wild D, Halperin W, Guthrie W. Risk of
low red or white blood cell count related to estimated benzene exposure
in a rubberworker cohort (1940–1975). Am J Ind Med. 1996;29(3):247–57.

28. Macaluso M, Larson R, Delzell E, Sathiakumar N, Hovinga M, Julian J, Muir D,
Cole P. Leukemia and cumulative exposure to butadiene, styrene and
benzene among workers in the synthetic rubber industry. Toxicology. 1996;
113(1–3):190–202.

29. Cheng H, Sathiakumar N, Graff J, Matthews R, Delzell E. 1, 3-butadiene and
leukemia among synthetic rubber industry workers: exposure–response
relationships. Chem Biol Interact. 2007;166(1–3):15–24.

30. Sathiakumar N, Brill I, Leader M, Delzell E. 1, 3-butadiene, styrene and
lymphohematopoietic cancer among male synthetic rubber industry
workers–preliminary exposure-response analyses. Chem Biol Interact. 2015;
241:40–9.

31. Wong O. Risk of acute myeloid leukaemia and multiple myeloma in workers
exposed to benzene. Occup Environ Med. 1995;52(6):380–4.

32. Hayes R, Dosemeci M, Wacholder S, Travis L, Rothman N, Hoover R, Linet M,
Yin S, Li G, Li C. Benzene and the dose-related incidence of hematologic
neoplasms in China. J Natl Cancer Inst. 1997;89(14):1065–71.

33. Adegoke O, Blair A, Shu X, Sanderson M, Jin F, Dosemeci M, Addy C, Zheng
W. Occupational history and exposure and the risk of adult leukemia in
Shanghai. Ann Epidemiol. 2003;13(7):485–94.

34. Budroni M, Sechi O, Cesaraccio R, Pirino D, Fadda A, Grottin S, Flore M, Sale
P, Satta G, Cossu A, Tanda F. Cancer incidence among petrochemical
workers in the Porto Torres industrial area, 1990-2006. Med Lav. 2010;101(3):
189–98.

35. Poynter J, Richardson M, Roesler M, Blair C, Hirsch B, Nguyen P, Cioc A,
Cerhan J, Warlick E. Chemical exposures and risk of acute myeloid leukemia
and myelodysplastic syndromes in a population-based study. Int J Cancer.
2017;140(1):23–33.

36. Paxton M, Chinchilli V, Brett S, Rodricks J. Leukemia risk associated with
benzene exposure in the pliofilm cohort. II. Risk estimates. Risk Anal. 1994;
14(2):155–61.

37. Heibati B, Pollitt K, Karimi A, Charati J, Ducatman A, Shokrzadeh M,
Mohammadyan M. BTEX exposure assessment and quantitative risk
assessment among petroleum product distributors. Ecotoxicol Environ Saf.
2017;144:445–9.

38. World Health Organisation (WHO). WHO guidelines for indoor air quality:
selected pollutants: WHO Regional Office for Europe; 2010.

39. Kerr N. ‘HARKing’: hypothesizing after the results are known. Personal Soc
Psychol Rev. 1998;2(3):196–217.

40. Gazdek D, Strnad M, Mustajbegovic J, Nemet-Lojan Z.
Lymphohematopoietic malignancies and oil exploitation in Koprivnica-
Krizevci County, Croatia. Int J Occup Environ Health. 2007;13(3):258–67.

41. Hurtig A, San Sebastian M. Geographical differences in cancer incidence in
the Amazon basin of Ecuador in relation to residence near oil fields. Int J
Epidemiol. 2002;31(5):1021–7.

42. Hurtig A, San Sebastian M. Incidence of childhood leukemia and oil
exploitation in the Amazon basin of Ecuador. Int J Occup Environ Health.
2004;10(3):245–50.

43. Knox E. Leukaemia clusters in childhood: geographical analysis in Britain. J
Epidemiol Community Health. 1994;48(4):369–76.

44. Patel A, Talbott E, Zborowski J, Rycheck J, Dell D, Xu X, Schwerha J. Risk of
cancer as a result of community exposure to gasoline vapors. Arch Environ
Health. 2004;59(10):497–503.

45. Wells G, Shea B, O'connell D, Peterson J, Welch V, Losos M, Tugwell P. The
Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised
studies in meta-analyses: Ottawa Hospital Research Institute; 2011. www.
ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 15 Dec 2018.

46. Lipsey M, Wilson D. Practical meta-analysis. Thousand Oaks: Sage; 2001.
47. Assink M, Wibbelink C. Fitting three-level meta-analytic models in R: A step-

by-step tutorial. Quant Methods Psychol. 2016;12(3):154–74.
48. Fazzo L, Carere M, Tisano F, Bruno C, Cernigliaro A, Cicero M, Comba P,

Contrino M, De Santis M, Falleni F, Ingallinella V, Madeddu A, Marcello I,
Regalbuto C, Sciacca G, Soggiu M, Zona A. Cancer incidence in Priolo, Sicily:
a spatial approach for estimation of industrial air pollution impact. Geospat
Health. 2016;11(320):43–55.

49. Symons M, Taulbee J. Practical considerations for approximating relative risk
by the standardized mortality ratio. J Occup Med. 1981;23(6):413–6.

50. Schmidt C, Kohlmann T. When to use the odds ratio or the relative risk? Int
J Public Health. 2008;53(3):165–7.

51. Persoskie A, Ferrer R. A most odd ratio: interpreting and describing odds
ratios. Am J Prev Med. 2017;52(2):224–8.

52. Viechtbauer W. Conducting meta-analyses in R with the metaphor package.
J Stat Softw. 2010;36(3).

53. Higgins J, Green S. Cochrane handbook for systematic reviews of
interventions version 5.1.0: The Cochrane Collaboration; 2011. www.
handbook.cochrane.org. Accessed 15 Dec 2018.

Jephcote et al. Environmental Health           (2020) 19:53 Page 17 of 18

http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
http://www.handbook.cochrane.org
http://www.handbook.cochrane.org


54. Lyons R, Monaghan S, Heaven M, Littlepage B, Vincent T, Draper G.
Incidence of leukaemia and lymphoma in young people in the vicinity of
the petrochemical plant at Baglan Bay, South Wales, 1974 to 1991. Occup
Environ Med. 1995;52(4):225–8.

55. Pekkanen J, Pukkala E, Vahteristo M, Vartiainen T. Cancer incidence around
an oil refinery as an example of a small area study based on map
coordinates. Environ Res. 1995;71(2):128–34.

56. Bulat P, Ivić M, Jovanović M, Petrović S, Miljus D, Todorović T,
Miladinov-Mikov M, Bogdanović M. Cancer incidence in a population
living near a petrochemical facility and oil refinery. Coll Antropol. 2011;
35(2):377–83.

57. Zusman M, Dubnov J, Barchana M, Portnov B. Residential proximity to
petroleum storage tanks and associated cancer risks: Double Kernel Density
approach vs. zonal estimates. Sci Total Environ. 2012;441:265–76.

58. Morris J, Gardner M. Statistics in medicine: calculating confidence intervals
for relative risks (odds ratios) and standardised ratios and rates. Br Med J
(Clin Res Ed). 1988;296(6632):1313–6.

59. Higgins J, Thompson S, Deeks J, Altman D. Measuring inconsistency in
meta-analyses. BMJ. 2003;327(7414):557–60.

60. Peters J, Sutton A, Jones D, Abrams K, Rushton L. Contour-enhanced meta-
analysis funnel plots help distinguish publication bias from other causes of
asymmetry. J Clin Epidemiol. 2008;61(10):991–6.

61. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis
detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

62. Allen B. The problem with epidemiology data in assessing environmental
health impacts of toxic sites. WIT Trans Ecol Environ. 2005;85:467–75.

63. Singer M. Down cancer alley: the lived experience of health and
environmental suffering in Louisiana’s chemical corridor. Med Anthropol Q.
2011;25(2):141–63.

64. United States Environmental Protection Agency (US-EPA). Toxics release
inventory (TRI) basic data files: calendar years 1987-2018. 2019. https://www.
epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-
years-1987-2018. Accessed 10 Mar 2019.

65. Dmowska A, Stepinski T. High resolution dasymetric model of U.S
demographics with application to spatial distribution of racial diversity. Appl
Geogr. 2014;53:417–26.

66. Levin M. The occurrence of lung cancer in man. Acta Unio Int Contra
Cancrum. 1953;9:531–54.

67. Sans S, Elliott P, Kleinschmidt I, Shaddick G, Pattenden S, Walls P, Grundy C,
Dolk H. Cancer incidence and mortality near the Baglan Bay petrochemical
works, South Wales. Occup Environ Med. 1995;52(4):217–24.

68. Barregard L, Holmberg E, Sallsten G. Leukaemia incidence in people living
close to an oil refinery. Environ Res. 2009;109(8):985–90.

69. Beale L, Hodgson S, Abellan J, Lefevre S, Jarup L. Evaluation of spatial
relationships between health and the environment: the rapid inquiry facility.
Environ Health Perspect. 2010;118(9):1306–12.

70. De Roos A, Davis S, Colt J, Blair A, Airola M, Severson R, Cozen W, Cerhan J,
Hartge P, Nuckols J, Ward M. Residential proximity to industrial facilities and
risk of non-Hodgkin lymphoma. Environ Res. 2010;110(1):70–8.

71. García-Pérez J, López-Abente G, Gómez-Barroso D, Morales-Piga A,
Romaguera E, Tamayo I, Fernández-Navarro P, Ramis R. Childhood leukemia
and residential proximity to industrial and urban sites. Environ Res. 2015;
140:542–53.

72. Linos A, Blair A, Gibson R, Everett G, Van Lier S, Cantor K, Schuman L,
Burmeister L. Leukemia and non-Hodgkin's lymphoma and residential
proximity to industrial plants. Arch Environ Health. 1991;46(2):70–4.

73. Pasetto R, Zona A, Pirastu R, Cernigliaro A, Dardanoni G, Addario S,
Scondotto S, Comba P. Mortality and morbidity study of petrochemical
employees in a polluted site. Environ Health. 2012;11(34).

74. Salerno C, Berchialla P, Palin L, Vanhaecht K, Panella M. Cancer morbidity of
residents living near an oil refinery plant in north-West Italy. Int J Environ
Health Res. 2013;23(4):342–51.

75. Wilkinson P, Thakrar B, Walls P, Landon M, Falconer S, Grundy C, Elliott P.
Lymphohaematopoietic malignancy around all industrial complexes that
include major oil refineries in Great Britain. Occup Environ Med. 1999;56(9):
577–80.

76. Yu C, Wang S, Pan P, Wu M, Ho C, Smith T, Li Y, Pothier L, Christiani D.
Residential exposure to petrochemicals and the risk of leukemia: using
geographic information system tools to estimate individual-level residential
exposure. Am J Epidemiol. 2006;164(3):200–7.

77. Allen B. Uneasy alchemy: citizens and experts in Louisiana’s chemical
corridor dispute. Cambridge: MIT Press; 2003.

78. Lerner M. Diamond: a struggle for environmental justice in Louisiana’s
chemical corridor. Cambridge: MIT Press; 2004.

79. National Cancer Institute (NCI). State cancer profiles: 2012-2016 age-
adjusted incidence rate report by state 2019. https://statecancerprofiles.
cancer.gov/. Accessed 15 Dec 2019.

80. Checkoway H, Pearce N, Kriebel D. Selecting appropriate study designs to
address specific research questions in occupational epidemiology. Occup
Environ Med. 2007;64(9):633–8.

81. Forrest L, White M, Rubin G, Adams J. The role of patient, tumour and
system factors in socioeconomic inequalities in lung cancer treatment:
population-based study. Br J Cancer. 2014;111(3):608.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Jephcote et al. Environmental Health           (2020) 19:53 Page 18 of 18

https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-2018
https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-2018
https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-2018
https://statecancerprofiles.cancer.gov/
https://statecancerprofiles.cancer.gov/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Search strategy
	Selection criteria
	Data extraction and quality assessment
	Data synthesis
	Statistical analysis
	Case-study: Louisiana’s petrochemical corridor

	Results
	Study level characteristics
	Leukaemia incidence
	Other incidences of Haematological malignancy
	Case-study: Louisiana’s petrochemical corridor

	Discussion
	Principal findings
	Comparison with other studies
	Study strengths and limitations

	Conclusions
	Abbreviations
	Supplementary information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

