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Abstract

Background: Exposure to air pollution was reported to affect glucose metabolism, increasing the risk of diabetes
mellitus. We conducted an epidemiological study on glucose metabolism and air pollution by exploring the levels
of fasting blood glucose (FBG) and hemoglobin A1c (HbA1c) with changes in ambient air quality, depending on
the characteristics of the susceptible population.

Methods: We carried out a cross-sectional analysis of a nationally representative sample of 10,014 adults (4267 in
male and 5747 in female) from the Korea National Health and Nutrition Examination Survey in 2012 and 2013 along
with data from the Korean Air Quality Forecasting System. The analysis was performed using a generalized linear
model stratified by sex, age, and presence of diabetes. We assessed the changes in FBG and HbA1c associated with
exposures to particulate matter (PM10), fine particulate matter (PM2.5), and nitrogen dioxide (NO2) after controlling
for confounders.

Results: There were 1110 participants with diabetes (557 in male and 553 in female). Overall, the FBG level
increased by 7.83 mg/dL (95% confidence interval [CI]: 2.80–12.87) per interquartile range (IQR) increment of NO2,
5.32 mg/dL (95% CI: 1.22–9.41) per IQR increment of PM10 at a moving average of 0–6 days, and 4.69 mg/dL (95%
CI: 0.48–8.91) per IQR increment of PM2.5 at a moving average of 0–5 days. HbA1c increased by 0.57% (95% CI: 0.04–
1.09) per IQR increment of PM10 at a moving average of 0–60 days and 0.34% (95% CI: 0.04–0.63) per IQR increment
of PM2.5 at a moving average of 0–75 days. The change in FBG and HbA1c increased more in the diabetic group,
especially in males aged 65 years or more. There was a strong association between elevation in diabetes-related
parameters and exposure to air pollution.

Conclusions: Our study provides scientific evidence supporting that short- and mid-term exposure to air pollution
is associated with changes in biological markers related to diabetes. This finding suggests that the impact of air
pollution should be reflected in chronic disease management when establishing local health care policies.
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Background
Exposure to ambient air pollution is a major environ-
mental risk factor in terms of the global burden of dis-
ease [1]. Short- and long-term exposure to particulate
matter (PM) increases the incidence of respiratory and
cardiovascular disease [2], as well as the risk of chronic
diseases such as diabetes mellitus (DM) [3, 4]. DM is a
disease in which insulin secretion is perturbed, resulting
in impaired blood glucose control. Exposure to ambient
air pollutants has also been associated with deterioration
in blood coagulation and glucose metabolism and effects
on gene expression [5–8]. These metabolic disorders are
associated with an increase in the levels of fasting blood
glucose (FBG) and hemoglobin A1c (HbA1c), which are
essential blood markers of DM.
Prolonged inhalation of toxic substances in the atmos-

phere leads to an increased risk of DM [9–15]. Exposure
to nitrogen dioxide (NO2) contributes to impaired glu-
cose metabolism [16], while exposure to fine particulate
matter (PM2.5) resulted in elevated levels of FBG and
HbA1c [17, 18]. Chen et al. observed a strong associ-
ation between daily exposure to air pollutants and
changes in FBG levels [19]. Chuang et al. also reported
that short-term exposure to PM10 elevated the levels of
FBG and HbA1c [20].
However, air pollution does not affect all populations

equally because of the differences in sensitivity among
susceptible subpopulation [21]. Several previous studies
have assessed the effects of short-term exposure to am-
bient air pollution on the morbidity associated with DM,
obesity, and hypertension in susceptible populations
[22–24]. In 2012, Kim and Hong showed that incre-
ments in PM10 and NO2 levels were significantly associ-
ated with changes in blood glucose levels among the
elderly population in Seoul, Korea [5]. This study was
performed on a panel study upon elderly subjects in a
district. Few studies have evaluated some diabetes-
related blood markers that can be used to determine the
presence of diabetes based on a general population.
We explored the association between short- and mid-

term exposure to ambient air pollution and blood
markers of DM with a specific focus on susceptibility
factors, such as sex, age, and the presence of DM, using
the Korea National Health and Nutrition Examination
Survey (KNHANES).

Methods
Study population
We used the data from the KNHANES, which is an an-
nual nationwide survey conducted by the Korea Centers
for Disease Control and Prevention since 1998 [25]. It is
a cross-sectional survey composed of a health interview,
physical examination, and nutrition survey applied to a
nationally representative population [26]. This survey

provides representative and reliable statistical data on 23
households from 192 national sampling units on the
level of health, health behavior, and food and nutritional
intake in the Republic of Korea (South Korea). The sam-
pling framework of the survey uses the latest population
and housing survey data available at the time of sample
design so that a probability sample can be extracted for
those over one year of age living in South Korea. Two-
stage stratified sampling was applied to select the pri-
mary and secondary sampling units. The KNHANES
also developed a method for quality control and diag-
nostic medical examinations to ensure the accuracy of
blood test results and conducts internal and external
quality control evaluations each year. A total of 7279 in
males and 8797 in females participated in the
KNHANES in 2012 and 2013. Among them, we re-
cruited those aged 20 years or older.
The present study used the FBG and HbA1c values

obtained after the participants had fasted for 8 h to de-
termine the presence of DM from blood tests. We se-
lected only those who had also responded to the
questionnaire among those with data on FBG and
HbA1c levels. Participants with FBG levels above 126
mg/dL or taking diabetes medications, who received in-
sulin injections, or who had been diagnosed with DM by
a physician were classified as being diabetic. We calcu-
lated the body mass index (BMI) using the height and
weight measured during the health examination. BMI
was defined as body weight (kg) divided by the square of
height (meters). During the study period, a total of 10,
014 participants were included in the analysis (4267 in
male and 5747 in female).

Definition of covariates
Individual socioeconomic status (SES) was determined
based on the participants’ level of education, which
was categorized based on the participants’ responses
to the items in the questionnaire used in the
KNHANES: “below elementary school”, “middle
school”, “high school”, and “university and over”. Al-
cohol consumption status was categorized as “no”,
“less than once a week”, and “more than once a
week” [27]. Physical activity was classified as “no” if
no physical activity was performed and “yes” if at
least moderate physical activity was performed once a
week. Smoking status was categorized as “never
smoked”, “smoked in the past but not currently”, and
“currently smoking” [28, 29]. According to BMI, we
categorized the participants as “underweight” (BMI <
18.5 kg/m2), “normal” (BMI ≥18.5 and < 25.0 kg/m2),
and “obese” (BMI ≥25.0 kg/m2) [30, 31]. The level of
FBG (mg/dL) and HbA1c (percentage) per interquar-
tile range (IQR) was adjusted for daily mean
temperature, humidity, sex, age, education, alcohol
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consumption, physical activity, smoking, and obesity
in Model 3 (Additional file 1: Table S1 and S2).

Exposure modeling
Of 192 sampling units in the KNHANES, only half had
air pollution data measured at air quality monitoring sta-
tions. In order to generate air pollution data for all 192
sampling units, a prediction model with data assimila-
tion using data from the Korean Air Quality Forecasting
System (KAQFS) was used.
The modeling configuration of the KAQFS consists of

the Weather Research and Forecasting model for me-
teorological modeling, the Sparse Matrix Operator Ker-
nel Emissions system for emission data processing, and
the Community Multiscale Air Quality (CMAQ) model
for chemical transport simulation over the East Asia re-
gion, focusing on the Korean peninsula. The KAQFS,
which has been running and open to the public since
2007 (http://www.kaq.or.kr/), was used to forecast the
air quality in terms of PM10, PM2.5, SO2, O3, CO, and
NO2 concentrations across South Korea. The anthropo-
genic emission data from China and Japan were based
on the Multi-resolution Emission Inventory for China
(http://www.meicmodel.org) for 2010 and the Regional
Emission inventory in Asia for 2008 from the National
Institute for Environmental Studies, Japan. For the South
Korean region, the Clean Air Policy Support System
emission inventory by the National Institute for Environ-
mental Research for 2011 was used. The detailed model
configurations and corresponding input data have been
described elsewhere [32–36].
The data assimilation using surface measurements in

China and South Korea was applied to the KAQFS to
enhance model performance. The model predictions
using the KAQFS with data assimilation showed better
agreement with observations than those without it. Choi
et al. showed that the spatial distributions of PM10,
PM2.5, and NO2 with data assimilation over China and
the Korean peninsula accurately depicted the observed
air quality at the monitoring stations [36]. Further details
of data assimilation are available in Choi et al.’s study,
and these data have also been validated in a previous
study [36, 37].
The air quality over the Korean peninsula was assessed

according to grid sizes of 9 km × 9 km, with a fine grid
size of 3 km × 3 km in the metropolitan areas of Seoul.
We used these values to calculate the weighted mean
values according to the boundaries of 253 health admin-
istrative districts. We estimated the daily concentrations
of PM10 (unit: μg/m3), PM2.5 (unit: μg/m3), and NO2

(unit: parts per billion [ppb]) using the KAQFS data in
each region where the KNHANES is conducted. The
data were combined by matching the residential address
of the participants and the date of the blood test.

Study design
To assess the susceptibility factors, we stratified the partic-
ipants into males and females and divided according to
age group (< 65 and ≥ 65 years). The changes in FBG and
HbA1c levels were then analyzed according to the level of
exposure to air pollution. In particular, we observed how
the effects of air pollution differed in diabetic and non-
diabetic participants. In order to observe changes in FBG
levels due to short-term exposure to air pollution, a lag ef-
fect from a moving average of 0–10 days before the date
of the blood test (0 day [same date of the blood test], 0–1
days, 0–2 days, … 0–10 days) was applied, and the effect of
relatively mid-term exposure on HbA1c levels was exam-
ined. HbA1c has been widely accepted as the most reliable
method for evaluating mid-term blood glucose control in
participants with diabetes and reflects the glucose levels in
the previous 6–8 weeks as the lifespan of a typical red
blood cell is approximately 115 days [38]. HbA1c should
not be used for monitoring rapid changes in blood glucose
levels [39, 40]. To estimate the HbA1c level changes due
to mid-term exposure to air pollution, we calculated the
average exposure by applying the moving averages on days
0, 0–10, 0–15, 0–30, 0–45, 0–60, 0–75, 0–90, 0–120, and
0–150 before the blood test. The changes in FBG and
HbA1c levels were analyzed by applying the IQR of air
pollutants during the study period.

Statistical analysis
We used the generalized additive model (GAM) to ob-
serve the changes in FBG and HbA1c levels with in-
creasing concentrations of air pollutants. The use of
GAM enables a non-linear fit for each variable while
maintaining the legibility of existing linear models. We
used the generalized linear model, an extension of the
linear model, in which the dependent variable is con-
tinuous. In each model, the air pollutant value was
regarded as an independent variable, while the
dependent variables were the levels of FBG and HbA1c
in consideration of the lag effect. All models were ad-
justed for sex, age, level of education, alcohol consump-
tion, physical activity, smoking, obesity, and splined
function of daily mean temperature and humidity at the
time of exposure. All statistical analyses were performed
using SAS version 9.4 (SAS Institute Inc., Cary, NC,
USA) and R version 3.5.3 (https://cran.r-project.org/bin/
windows/base/old/3.5.3/). The level of statistical signifi-
cance was set at p = 0.05, and the 95% confidence inter-
vals (CIs) were estimated for the point estimates.

Results
A total of 4267 in males and 5747 in females were in-
cluded in the analyses. According to the criteria for diag-
nosing diabetes, 13.1% of males and 9.6% of females had
diabetes (Table 1).
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The mean levels of exposure to PM10 and PM2.5 were
42.1 and 32.1 μg/m3, respectively, twice as high as the World
Health Organization’s annual recommendation (20 and
10 μg/m3, respectively). The mean level of exposure to NO2

was 23.5 ppb. The IQRs of PM10, PM2.5, and NO2 were
23.5 μg/m3, 19.4 μg/m3, and 16.7 ppb, respectively (Table 2).
During the study period, the daily mean temperature was
9.8 °C, while the relative humidity was 58.0%.
The concentration of PM10, PM2.5, and NO2 was esti-

mated using the Community Multiscale Air Quality
model. SD, standard deviation; IQR, interquartile range;
PM10, particulate matter < 10 μm; PM2.5, particulate mat-
ter < 2.5 μm; NO2, nitrogen dioxide; ppb, parts per billion.
Predicted values of the CMAQ model using data assimi-

lation was compared with the observations at the Korean
Air Quality monitoring station (AQMS) as was shown in

Table 1 Demographic characteristics of the study participants by sex in the Korea National Health and Nutrition Examination Survey
(2012–2013)

Variables Male Female Total p-value†

(n = 4267) (n = 5747) (n = 10,014)

N % N % N %

Diabetesa < 0.0001

No 3710 86.9 5194 90.4 8904 88.9

Yes 557 13.1 553 9.6 1110 11.1

Age group 0.565

< 65 years 3294 77.2 4495 78.2 7789 77.8

≥65 years 973 22.8 1252 21.8 2225 22.2

Education level < 0.0001

Elementary school 694 16.3 1651 28.8 2345 23.4

Middle school 459 10.8 589 10.2 1048 10.5

High school 1577 36.9 1858 32.3 3435 34.3

University and over 1537 36.0 1649 28.7 3186 31.8

Alcohol consumption < 0.0001

No 724 17.0 2151 37.4 2875 28.7

Less than once a week 1994 46.7 3086 53.7 5080 50.7

More than once a week 1549 36.3 510 8.9 2059 20.6

Physical activity < 0.0001

No 2338 54.7 2201 38.3 4539 45.3

Yes 1929 45.2 3546 61.7 5475 54.7

Smoking < 0.0001

Never smoked 873 20.5 5160 89.8 6033 60.2

Past 1703 39.9 265 4.6 1968 19.7

Current 1691 39.6 322 5.6 2013 20.1

Obesity < 0.0001

Underweight (BMI: < 18.5 kg/m2) 96 2.2 301 5.2 397 63.5

Normal (BMI: ≥18.5 and < 25.0 kg/m2) 2601 61.0 3753 65.3 6354 4.0

Obesity (BMI: ≥25.0 kg/m2) 1570 36.8 1693 29.5 3263 32.5
ap-values were obtained by comparing the groups using the chi-square test or Fisher’s exact test. ‡ Participants with FBG levels above 126 mg/dL or taking
diabetes medications, who received insulin injections, or who had been diagnosed with DM by a physician were classified as being diabetic

Table 2 Exposure to air pollutants and meteorological indexes
during the study period

Mean SD Min Percentile Max IQR

25th 50th 75th

Daily exposures

PM10 (μg/m3) 42.1 22.0 3.6 27.2 37.0 50.7 152.9 23.5

PM2.5 (μg/m3) 32.1 17.7 2.8 19.8 28.4 39.2 147.8 19.4

NO2 (ppb) 23.5 13.7 0.8 13.8 20.4 30.5 76.2 16.7

Temperature (°C) 9.8 10.5 −19.5 1.3 9.8 19.7 28.8 18.3

Humidity (%) 58.0 18.5 12.3 44.4 57.7 73.1 95.1 28.7
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Fig. S1 (Additional file 2). PM10 and NO2 were measured
at all AQMSs, but the PM2.5 was only monitored in Seoul
metropolitan city during 2012 and 2013. The results of
the cross-validation for daily mean PM10, PM2.5 and NO2

are summarized in Fig. S2 (Additional file 2). They showed
that CMAQ model could reproduce observations for en-
tire region in South Korea with R2-square was 0.78 for
PM10, 0.59 for PM2.5 and 0.86 for NO2 respectively.
We examined the FBG and HbA1c levels of the

study participants to determine the lag effect. Figure 1
shows the changes in FBG levels per 1unit increment
of PM10 and PM2.5 with a lag of up to 6 days and
NO2 with a lag of up to 7 days. GAM analysis dem-
onstrated the dose-response relationship between air
quality and glucose metabolites. An increase in the
FBG level was evident at PM10 of above 75 μg/m3 and
PM2.5 of above 30 μg/m3. The relationship was more
linear for NO2. Considering that the level of HbA1c
represents blood glucose levels 6 to 8 weeks before
the test, we observed changes in the moving average
concentrations of all pollutants at 0–60 days. As the
concentration of air pollutants increased, the level of

HbA1c also increased, with PM10 and PM2.5 showing
a clear dose-response effect.
We divided all participants into non-diabetic and

diabetic and under 65 years and 65 years or over
groups to identify effect modifications. As shown in
Table 3, the level of FBG was significantly increased
by 0.85 mg/dL (95% CI: 0.23–1.47) per IQR increment
of NO2 and the level of HbA1c was increased by
0.07% (95% CI: 0.02–0.11) per IQR increment of
PM2.5 in all participants. The FBG level increased by
0.36 mg/dL (95% CI: 0.11–0.62) per IQR increment of
NO2 in non-diabetic participants, with the peak in-
creased being 3.32 mg/dL (95% CI: 0.64–6.00) in dia-
betic individuals; however, the HbA1c levels showed
no such significant changes. Conversely, exposure to
PM10 and PM2.5 increased the HbA1c levels in the
non-diabetic group by 0.04% (95% CI: 0.02–0.06) and
0.06% (95% CI: 0.03–0.08), respectively. Overall, the
daily change in FBG and HbA1c levels were higher in
the diabetic participants.
In participants aged ≥65 years, exposure to NO2

strongly increased the level of FBG (0.39 mg/dL; 95%

Fig. 1 Change in fasting blood glucose (mg/dL)a and hemoglobin A1c (HbA1c, %)a levels per unit increment of air pollutants in the diabetic
group. aAdjusted for sex, age, education level, smoking, alcohol consumption, physical activity, obesity, daily mean temperature, and humidity.
PM10, particulate matter < 10 μm; PM2.5, particulate matter < 2.5 μm; NO2, nitrogen dioxide; ppb, parts per billion. a Changes in fasting blood
glucose (FBG) levels at a moving average of 0–6 days for PM10 and PM2.5, and 0–7 days for NO2. b Changes in HbA1c level at a moving average
of 0–60 days for each pollutant
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CI: 0.12–0.66) not only in non-diabetic but also in
diabetic individuals (4.92 mg/dL; 95% CI: 1.27–8.57)
(Table 4). In all participants, the HbA1c level in-
creased by 0.07% (95% CI: 0.03–0.09) with exposure
to PM10 and by 0.09% (95% CI: 0.04–0.14) with ex-
posure to PM2.5. When classified according to the
presence of diabetes, significant associations were
noted in the non-diabetic group (0.07% [95% CI:
0.01–0.12] in PM10 and 0.08% [95% CI: 0.03–0.14] in
PM2.5). In the diabetic group, the peak change in

HbA1c levels was 0.12% (95% CI: 0.03–0.20) with ex-
posure to PM2.5. Analysis of the relative moving aver-
age concentration of air pollutants considering its
half-life in the human body revealed that, overall, the
increase in HbA1c level was greater in the diabetic
group than that in the non-diabetic group. At the
same time, while mid-term exposure leads to a sig-
nificant increase in the HbA1c level in the non-
diabetic group. However, exposure to NO2 did not
show any significant results, and the patterns of

Table 3 Estimated changes in fasting blood glucose (mg/dL) and hemoglobin A1c (percentage) levels per interquartile range
increment of PM10, PM2.5, and NO2 in all participants according to the presence of diabetes

Pollutant Fasting blood glucose (mg/dL)a HbA1c (percentage points)a

β (95% CI) p-value β (95% CI) p-value

Total

PM10 (μg/m3) 0.22 (−0.31–0.75) 0.419 0.05 (0.00–0.10) 0.075

PM2.5 (μg/m3) 0.31 (−0.20–0.82) 0.227 0.07 (0.02–0.11)* 0.002

NO2 (ppb) 0.85 (0.23–1.47)* 0.006 0.01 (−0.02–0.02) 0.579

No diabetes

PM10 (μg/m3) 0.00 (−0.22–0.22) 0.729 0.04 (0.02–0.06)* p < 0.0001

PM2.5 (μg/m3) −0.09 (− 0.30–0.12) 0.383 0.06 (0.03–0.08)* p < 0.0001

NO2 (ppb) 0.36 (0.11–0.62)* 0.004 0.01 (−0.01–0.01) 0.618

Diabetes

PM10 (μg/m3) 3.28 (0.60–5.97)* 0.016 0.16 (−0.08–0.41) 0.194

PM2.5 (μg/m3) 2.83 (0.27–5.38)* 0.030 0.15 (−0.07–0.37) 0.186

NO2 (ppb) 3.32 (0.64–6.00)* 0.015 0.05 (−0.11–0.21) 0.529
*p-value < 0.05. The level of fasting blood glucose (mg/dL) per interquartile range increment at a moving average of 0–6 days in PM10 and PM2.5 and 0–7 days in
NO2. The level of HbA1c (percentage) per interquartile range increment at a moving average of 0–60 days for each pollutant. aModel 3, adjusted for sex, age,
education level, physical activity, smoking, alcohol consumption, obesity, daily mean temperature, and humidity. CI, confidence interval; PM10, particulate matter
< 10 μm; PM2.5, particulate matter < 2.5 μm; NO2, nitrogen dioxide; ppb, parts per billion

Table 4 Estimated changes in fasting blood glucose (mg/dL) and hemoglobin A1c (percentage) level per interquartile range
increment of PM10, PM2.5, and NO2 in participants aged ≥65 years according to the presence of diabetes

Pollutant Fasting blood glucose (mg/dL)a HbA1c (percentage points)a

β (95% CI) p-value β (95% CI) p-value

Total

PM10 (μg/m3) 0.76 (−0.18–1.71) 0.112 0.07 (0.03–0.09)* p < 0.0001

PM2.5 (μg/m3) 0.84 (−0.10–1.77) 0.078 0.09 (0.04–0.14)* p < 0.0001

NO2 (ppb) 1.09 (0.11–2.06)* 0.029 0.00 (−0.02–0.01) 0.445

No diabetes

PM10 (μg/m3) 0.23 (−0.28–0.74) 0.380 0.07 (0.01–0.12)* 0.015

PM2.5 (μg/m3) 0.36 (−0.15–0.87) 0.169 0.08 (0.03–0.14)* 0.001

NO2 (ppb) 0.39 (0.12–0.66)* 0.004 0.00 (−0.03–0.04) 0.670

Diabetes

PM10 (μg/m3) 3.64 (0.69–6.59)* 0.015 0.11 (0.02–0.20)* 0.021

PM2.5 (μg/m3) 3.96 (0.06–7.85)* 0.046 0.12 (0.03–0.20)* 0.016

NO2 (ppb) 4.92 (1.27–8.57)* 0.008 0.02 (−0.03–0.08) 0.440
*p-value < 0.05. The level of fasting blood glucose (mg/dL) per interquartile range increment at a moving average of 0–6 days for PM10 and PM2.5 and at 0–7 days
for NO2. The level of HbA1c (percentage points) per interquartile range increment at a moving average of 0–60 days for each pollutant. aModel 3, adjusted for sex,
age, education level, physical activity, smoking, alcohol consumption, obesity, and daily mean temperature and humidity. CI confidence interval; PM10 particulate
matter < 10 μmM, PM2.5, particulate matter < 2.5 μm; NO2 nitrogen dioxide, ppb parts per billion
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change in blood glucose markers were similar for
PM10 and PM2.5.
Based on the overall results, we performed a subgroup

analysis based on sex and found that FBG levels were
the highest in diabetic male aged 65 years and over (5.32
mg/dL [95% CI: 1.22–9.41] for PM10 and 4.69 mg/dL
[95% CI: 0.48–8.91] for PM2.5) with a lag of up to six
days and five days, respectively, but did not differ signifi-
cantly in female (Fig. 2). In particular, according to the
level of daily exposure to NO2, the highest increase was
by 7.83 mg/dL (95% CI: 2.80–12.87) in males with a lag
of up to 6 days. Although the HbA1c level did not in-
crease significantly with exposure to NO2, it increased
with exposure to PM10 and PM2.5. The highest increase
(0.57, 95% CI: 0.04–1.09) occurred for PM10 at a moving
average of 0–60 days and at 0–75 days and 0–90 days for

PM2.5 (0.34, 95% CI: 0.04–0.63 and 0.34, 95% CI: 0.05–
0.64, respectively).

Discussion
We explored the effects of short-term exposure to air
pollution on changes in FBG levels and mid-term ex-
posure on changes in HbA1c levels considering effect
modifiers using the KNHANES data combined with
CMAQ modeling to determine the level of exposure
to air pollution. The level of exposure was calculated
according to the same administrative districts in
which the survey had been conducted. The findings
obtained from our study indicated that the levels of
FBG and HbA1c were more sensitive to exposure to
air pollution in males and that the susceptible groups
were the elderly with diabetes.

Fig. 2 Associations between changes in fasting blood glucose (mg/dL)a and HbA1c (%)a levels per interquartile range increment of PM10, PM2.5,
and NO2 in diabetic male aged ≥65 years. *p < 0.05. aAdjusted for age, education level, smoking, alcohol consumption, physical activity, obesity,
daily mean temperature, and humidity. PM10, particulate matter < 10 μm; PM2.5, particulate matter < 2.5 μm; NO2, nitrogen dioxide; ppb, parts per
billion. 0, date of blood test; 0–15, moving average from days 0 to 15; 0–30, moving average from days 0 to 30; 0–45, moving average from days
0 to 45; 0–60, moving average from days 0 to 60; 0–75, moving average from days 0 to 75; 0–90, moving average from days 0 to 90; 0–120,
moving average from days 0 to 120; 0–150, moving average from days 0 to 150
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Previous studies showed the association of pathophysi-
ologic pathways and glucose metabolism with air pollu-
tion. Inhaled air pollutants induce oxidative stress and
inflammation in the lungs and damage other organ sys-
tems, including the adipose tissue [41–44]. This inflam-
mation negatively affects the insulin signaling pathways
that regulate glucose metabolism, resulting in disruption
of blood glucose regulation and an abnormal increase in
glucose level. In diabetic participants with high insulin
insensitivity, a dramatic increase in FBG and HbA1c
levels occurs due to the influx of harmful substances.
Based on this evidence, epidemiological studies on the
increased prevalence of DM due to exposure to harmful
substances in ambient air and changes in biological fac-
tors related to diabetes are actively conducted. The find-
ings of the present study were consistent with those of
previous studies. Kim and Hong [5] reported that in eld-
erly Koreans with a history of DM, based on IQR incre-
ments of PM10 and NO2, the FBG levels were elevated
by 7.74 mg/dL and 9.90mg/dL, respectively. In compari-
son, we observed an increase of 8.74 mg/dL per 23.5 μg/
m3 increment in PM10 and 15.32 mg/dL per 16.7 ppb in-
crement of NO2 in diabetic male aged 65 years and over
in the present study. Although our values were slightly
lower, the results were similar to those reported in Kim
and Hong’s study. While the sensitivity of the vulnerable
groups varied according to the level of air pollution ex-
posure in each country and differences in living environ-
ments, we compared the sensitivity with that reported in
studies from other countries. Liu et al. reported increase
in FBG level of 2.20 mg/dL and HbA1c level of 0.04%
with a 19.4 μg/m3 increment in PM2.5 [17]. Chuang et al.
reported an estimated change in HbA1c level of 0.06%
per 34 μg/m3 increment following short-term exposure
to PM10 [20]. When the IQR values of our study were
applied, the change of HbA1c in Chuang et al.’s study
was 0.04%, which was slightly lower than that in our
study. In the study by Lucht et al., the same exposure
period as in our study was applied but not in the dia-
betic group [23]. For 91-day exposure, a 4 μg/m3 incre-
ment in PM2.5 elevated the HbA1c level by 0.07%, while
a 5.5 μg/m3 increment in PM10 increased the HbA1c
level by 0.04%; no significant changes were observed
with exposure to NO2, as in our results. In a study in
northern France, which accessed long-term exposure to
air pollution and HbA1c levels, based on which we con-
verted the exposure level in South Korea, the level of
HbA1c increased by 0.52% per 23.5 μg/m3 increment of
PM10, similar to that shown in the current study [45].
The FBG level was altered with short-term exposure,

especially in diabetic males aged 65 years or more. This
population was sensitive to exposure to PM10 and PM2.5

but more responsive to NO2 exposure, with an increase
of 7.83 mg/dL (95% CI: 2.80–12.87) per IQR increment

of NO2. Considering that HbA1c represents the average
blood glucose level over a few months, it revealed sig-
nificant changes according to exposure at a moving aver-
age of 0–45, 60, and 75 days in diabetic males aged 65
years or more, which is consistent with the results of
previous studies. Considering that an increase in HbA1c
level of 1% corresponds to an average FBG level increase
of 35 mg/dL, a change in HbA1c level cannot be consid-
ered small. This observation also suggests that both
short-term and mid-term exposure can significantly in-
crease the risk of diabetes. Although most significant re-
sults were shown in males aged over 65 years in the
present study, the risk of DM in females cannot be
neglected. The sexual difference in the health effects of
air pollutants may be attributable to hormonal charac-
teristics in addition to the differences in the frequency of
exposure to pollutants over their lifetime. In a previous
study, middle-aged males with higher serum testosterone
levels and sex hormone-binding globulin had high insu-
lin sensitivity, which was independent of baseline insulin
levels, body weight, and fat [46]. Lower than normal
serum testosterone levels caused by hypogonadism in-
creased the risk of developing glucose metabolic disor-
ders and metabolic syndrome [47]. Previous studies
reported that the serum testosterone levels in nearly
80% of men, age 60 to 80 years, decrease rapidly every
ten years until such time that they become testosterone
deficient [48, 49]. The effects of these factors could be
more pronounced owing to synergistic and cumulative
effects in an elderly male with relatively high exposure
to hazardous substances due to ambient air pollution.
Results of the present study confirm this association
based on the observed increased effect of air pollution
exposure on diabetes-related blood markers in vulner-
able groups in contrast to that in non-diabetic individ-
uals. The inhalation of toxic substances in individuals
with compromised metabolic function due to chronic
diseases may disrupt glucose homeostasis by weakening
the immune system and further decreasing metabolic
function.
We observed changes in diabetes-related parameters

caused by exposure to air pollution in consideration of
effect modifiers; such effects were also noted in the ab-
sence of diabetes. Peng et al. and Lucht et al. observed
significantly elevated FBG levels in non-diabetic partici-
pants; they concluded that the effects of air pollution
might be relatively minor in diabetic individuals who
consume a well-balanced diet, who perform physical ac-
tivities, and who receive insulin or hypoglycemic agents
[18, 23]. These findings suggest that more attention
should be paid in managing the susceptible groups in a
community rather than for early screening of the entire
population. The trend of changes in FBG and HbA1c
levels caused by air pollution were not similar. In
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particular, unlike FBG, the HbA1c level did not show
any significant effect of exposure to NO2 and was more
affected by fine particulate matter, as shown in some
previous studies [23, 50].
Most studies on the health effects of air pollution in

South Korea were conducted using atmospheric environ-
mental data measured at domestic monitoring sites,
which are mostly installed in metropolitan or industrial
areas. In terms of health administration units, only half
of the units have air monitoring posts. There is a limita-
tion in identifying health effects based on health index
generated at the local level every year. Generally, air-
borne exposure data collected from domestic monitoring
sites are lower in value than the actual exposure levels in
areas without monitoring sites [51]. To overcome these
problems, we used the KAQFS and CMAQ data to
match the survey areas of the KNHANES. Finally, the
currently available KAQFS and CMAQ data only show
the results within two years; hence, long-term data were
not available for this study. The level of air pollution
varies each year, and there is a need to understand the
longer-term variations to obtain more accurate results.
In addition, previous studies reported that the traffic-
related air pollution increase the risk of DM [9, 11, 16].
It is necessary to build a model of air pollutants emitted
from major roads such as the Land Use Regression
model to present an increased risk of diabetic-related in-
dicators following exposure to the ambient air pollution.
The greatest strength of our analysis is owing to

the nationwide survey which is well standardized with
good quality control.. In Korea, studies on diabetes-
related metabolism and exposure to ambient air
pollution have not been conducted except for that
conducted by Kim and Hong [5]. Our study was
based on a national survey of the population, allowing
a comparison with other countries. In particular, our
analysis was based on the results of blood tests ob-
tained from examinations performed during the
KNHANES, a typical nationwide survey with reason-
able quality control, which is performed annually
through a systematic quality control system [25].
Second, we generated air pollution exposure data

for health administrative districts that were surveyed
using modeling data and matched these data to the
residential address of the participants and the exact
date of the blood test. The date of the blood test was
used to identify changes in the FBG level due to
short-term exposure to air pollution and that in
HbA1c level due to mid-term exposure. Our findings
provide a potential explanation for why diabetic indi-
viduals are at a higher risk for DM due to acute ex-
posure to air pollution, although the effects on
glucose metabolism of short- and mid-term exposure
to air pollution may differ from chronic effects.

Third, we estimated the effects of air pollution on
diabetes-related indicators in terms of effect modifiers
using KNHANES data extracted based on sample design
guidelines. Although the disruption in glucose metabol-
ism owing to ambient air pollution has been reported
worldwide, these effects are observed in susceptible sub-
populations more rather than in the entire population.
Based on previous studies, we stratified all participants
according to effect modifiers to define sensitive group
and compared the effects on each vulnerable group to
estimate the representative values. The findings of the
current study suggest that the groups susceptible to DM
due to air pollution should be clearly defined and that
approaches for the prevention of chronic diseases should
be developed.
We found that there is a strong association between

the short-term exposure to air pollution and diabetes-
related factors in adults over the age of 20. This suggests
that this continuous exposure affects the metabolism of
insulin, including FBG and HbA1c, and may be a risk
factor for the development of metabolic diseases such as
glucose intolerance or type 2 diabetes later in life. In
addition, risk factors for diabetes metabolism, including
insulin resistance, are rarely perceived as harmful in
early life, but over time, such as long-term exposure, it
can be tracked the risk of DM and lead to higher risks
[52, 53]. Therefore, based on our findings, it suggests
that scientific evidence should be established based on
studies on the risks of metabolic-related factors from
short-term and long-term exposure to air pollution in
South Korea.
The rapid industrialization of South Korea and sur-

rounding East Asian areas has led to increased air pollu-
tion, which is a major environmental problem.
Specifically, there is concern regarding the adverse
health effects of long-term exposure to air pollution. In
the present study, we quantitatively assessed the health
effects at the local level by combining atmospheric data
and health behavior indices and biomarkers in the
KNHANES performed in health administrative districts
annually. Considering the increasing incidence of dia-
betes as a chronic disease and an increase in air pollu-
tion in South Korea, policy changes to reduce the health
effects caused by exposure to air pollution in the elderly
population are necessary for adequate health and envir-
onment management. Evaluation of the risk of diabetes
and chronic diseases due to exposure to air pollution in
susceptible populations in advance can be used to de-
velop customized preventive programs at the local level.

Conclusion
We found an increased risk of elevated blood glucose
levels with short- and mid-term exposure to air pollu-
tion, which was more prominent among diabetic males
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aged ≥65 years in South Korea. These results suggest
that policy changes should be made for adequate health
and environment management in order to reduce the
health effects of air pollution on elderly people and the
increasing prevalence of diabetes, taking into account
the severity of chronic diseases and air pollution.
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