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Abstract

Background: Asthma patients suffer from periodic acute worsening of symptoms (i.e. loss of asthma control or
exacerbations), triggered by a variety of exogenous stimuli. With the growing awareness that air pollutants impact
respiratory diseases, we investigated whether particulate matter (PM) derived from various livestock farms (BioPM)
differentially affected innate and oxidative stress responses in asthma and health.

Methods: Peripheral blood mononuclear cells (PBMCs), collected from patients sequentially before and during loss
of asthma control and from healthy individuals, were exposed to BioPM collected from chicken, goat and pig farms
(1 and 5 μg/ml), with or without pre-treatment with antioxidants. Cytokine release and oxidative stress were
assessed.

Results: PBMCs produced IFNγ, IL-1β, IL-10 and TNFα upon stimulation with BioPM, with that from pig farms
inducing the highest cytokine levels. Overall, cytokine production was irrespective of the presence or state of
disease. However, PBMCs from stable asthma patients upon exposure to the three BioPM showed more extreme
TNFα responses than those from healthy subjects. Furthermore, PBMCs obtained during loss of asthma control that
were exposed to BioPM from pig farms showed enhanced IFNγ release as well as decreased oxidative stress levels
upon pre-treatment with N-acetylcysteine (NAC) compared to stable disease. NAC, but not superoxide dismutase
and catalase, also counteracted BioPM-induced cytokine release, indicating the importance of intracellular reactive
oxygen species in the production of cytokines.

Conclusions: BioPM triggered enhanced pro-inflammatory responses by PBMCs from both healthy subjects and
asthma patients, with those from patients during loss of asthma control showing increased susceptibility to BioPM
from pig farms in particular.
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Introduction
Asthma is a chronic inflammatory lung disease associated
with reversible airway obstruction and increased respon-
siveness of the airways to a variety of stimuli (also known
as bronchial hyperresponsiveness). It is a heterogeneous
disease with e.g. differences in treatment, severity and time
of onset. To some extent this heterogeneity is reflected in
airway inflammation, like a more eosinophilic versus a
more neutrophilic inflammation, but increased levels of
oxidative damage are seen in virtually all patients. Asthma
patients may suffer from periodic acute worsening of
symptoms, referred to as loss of asthma control or exacer-
bations, that can be triggered by several exogenous factors,
including viruses and allergens [1].
Recently, air pollution from ozone, nitrogen dioxides

and particulate matter (PM), including traffic- and
livestock-related emissions, has received increasing atten-
tion as it exacerbates and even may induce asthma [2–4]
and was shown to contribute to asthma mortality [5].
Traffic-related PM drives the transcription of inflamma-
tory mediators relevant to asthma and is a potent inducer
of oxidative stress [6], as many of its components may act
as a source of free radicals. This is unlikely to be the case
for PM collected from specific livestock farms (BioPM).
BioPM, however, was shown to contain multiple Toll-like
receptor (TLR) ligands and even microorganisms or parts
thereof, with distinct microbiota profiles associated with
corresponding animal species [7].
In this study, we evaluated whether BioPM triggers

distinct innate responses by peripheral blood mono-
nuclear cells (PBMCs) from clinically stable asthma
patients as compared to healthy controls. As airway
inflammation worsens during loss of asthma control, we
have also collected PBMCs from those patients of whom
stable samples were obtained, but now during cortico-
steroid withdrawal-induced loss of asthma control. This
allowed us to determine whether the innate responses to
BioPM in asthma were modulated compared to baseline.
BioPM derived from chicken, goat and pig farms, which
are considered major sources of BioPM in The
Netherlands, were compared. In addition, we aimed to
clarify whether BioPM exerts its effects via oxidative
stress-dependent mechanisms.

Methods
BioPM sampling period, sites and procedure
Ambient fine (< 2.5 μm, Mass Medium Aerodynamic
Diameter) PM was collected at three livestock farms in
The Netherlands from July 2016 to July 2017, including
one chicken, one goat and one pig farm, all located in
the central region of The Netherlands. Per site, sampling
was carried out for two to 6 days and for 6 hours per
day (between 09:00 and 16:00 h) in order to collect suffi-
cient material. The daily collected BioPM from each site

was pooled in order to carry out the current study.
Characteristic features of the collected BioPM for each
site and detailed description of the sampling dates and
procedures during the sampling collection is described
elsewhere [7]. All BioPM were collected in deminera-
lized water using a Versatile Aerosol Concentration En-
richment System as described previously [8].

Subjects
Patients with mild to moderate allergic asthma origi-
nated from a standardized prospective inhaled cortico-
steroid (ICS) interruption study [9–11]. All were current
non-smokers, treated with a stable dose of ICS (≥500 μg
fluticasone or equivalent) and no systemic steroids, anti-
immunoglobulin E (IgE) or antibiotic therapy. The study
design included a baseline visit and a loss of disease con-
trol visit. Following baseline measurements, patients
were instructed to abruptly discontinue the use of ICS
until loss of asthma control occurred (or for a maximum
of 8 weeks), which was defined as meeting two out of
the three criteria mentioned below. Then, the second
visit was scheduled. Criteria for loss of asthma control
included: (1) morning peak expiratory flow < 80% of
baseline on at least two consecutive days, (2) wakening
due to asthma on at least two consecutive nights and (3)
use of more than eight puffs short-acting β2-agonist per
day on at least two consecutive days. The study was ap-
proved by the AMC Medical Ethics Committee (2011_
082#B201152) and registered at the Netherlands Trial
Register (NTR3316). All participants provided written
informed consent. Healthy controls were recruited in ac-
cordance with a study protocol that was reviewed by the
AMC Medical Ethics Committee (2015_074). The need
for ethical approval was waived. Prior to sample dona-
tion, all donors gave informed consent. In the present
study, we compared 10 asthma patients at stable disease
and during loss of control and 10 healthy volunteers.

Processing and analysis of blood
Venous blood was collected in serum and heparin tubes.
Total IgE in serum was determined by ImmunoCAP (Pha-
dia AB, Uppsala, Sweden). PBMCs were isolated from
heparin blood using standard density gradient techniques
and stored in liquid nitrogen until further analysis.

PBMC stimulation
For stimulations, PBMCs were thawed, washed, counted
on the Coulter counter (Beckman Coulter, Brea, CA,
USA) and diluted to 106/ml culture medium. The opti-
mal BioPM concentration (range: 0.01 to 50 μg/ml) was
determined based on cell viability and cytokine produc-
tion. For experiments described here, PBMCs were
plated in the presence or absence of BioPM collected
from chicken, goat or pig farms (1 or 5 μg/ml), with or
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without 1 h pre-treatment with N-acetylcysteine (NAC)
(Sigma-Aldrich, Saint Louis, MO, USA; 1 or 10 mM) or
a combination of superoxide dismutase (SOD) (Sigma-
Aldrich; 100 μg/ml) and catalase (Boehringer Mannheim
GmbH, Mannheim, Germany; 50 μg/ml) and incubated
for 20 h. Supernatant was collected for subsequent
assays.

Viability
To assess the potential cytotoxic effect of BioPM and
NAC, PBMC viability was determined using Cell Prolif-
eration Reagent WST-1 (Roche Diagnostics GmbH,
Mannheim, Germany) according to the instructions of
the manufacturer.

Luminex
Interferon (IFN) γ, interleukin (IL)-10, IL-1β and tumor
necrosis factor (TNF) α were measured using R&D Sys-
tems (Minneapolis, MN, USA) reagents according to the
instructions of the manufacturer and read on a Bioplex
200 (Bio-Rad, Hercules, CA, USA). Possible interference
of NAC with Luminex antibodies was excluded by direct
addition of 10 mM NAC to the standards.

Mass spectrometry
Malondialdehyde (MDA) was determined by ultra-
performance liquid chromatography-tandem mass spec-
trometry as described previously [12].

Statistical analysis
Statistical analysis was performed using GraphPad Prism
8.0 (GraphPad Software, La Jolla, CA, USA). Data are
presented as mean ± SEM and were analyzed using
paired or unpaired t-tests, F-tests to compare variances,
RM one-way ANOVA or mixed-effects analysis where
appropriate. P-values < 0.05 were considered statistically
significant.

Results
Asthma patients were on average 28.3 ± 2.9 years of age
and 70% of them was female. Clinical characteristics at
stable disease and during loss of control are summarized
in Table 1. The average time until loss of asthma control
was 31.5 ± 4.8 days and this was associated with a signifi-
cant increase in Asthma Control Questionnaire and
Wisconsin Upper Respiratory Symptom Survey scores
and a significant decrease in forced expiratory volume in
1 second (FEV1) % predicted compared to baseline. Fur-
thermore, loss of asthma control was accompanied by
increased sputum eosinophils, whereas neutrophils
remained unaffected. For the healthy controls, 30% had
total IgE levels over 100 kU/L and were considered aller-
gic. Monocyte percentages in thawed PBMCs did not
differ between asthma patients and healthy volunteers

(14.87 ± 1.22 versus 12.37 ± 0.85; p = 0.11) and were not
affected by loss of asthma control (14.38 ± 0.83; p = 0.51
versus stable asthma).
For all three groups, no cytokine levels were detected

when PBMCs were cultured in medium only (not shown).
One and 5 μg/ml BioPM collected from chicken, goat and
pig farms induced the production of IFNγ, IL-10, IL-1β and
TNFα by PBMCs from stable asthma patients and healthy
volunteers in an apparent concentration-dependent manner
(except for TNFα production induced by BioPM from the
goat farm) (Fig. 1). Cell viability remained > 80% (not
shown). The source of BioPM determined the magnitude
of cytokine production, with exposure to the pig farm gen-
erally inducing the highest cytokine production and expos-
ure to the chicken farm the lowest. The response to BioPM
in healthy controls was not associated with allergic status,
suggesting that the results for asthma patients are not
allergy-related. No significant differences in response were
detected between stable asthma patients and healthy con-
trols. Yet, PBMCs from the asthma group compared to
those from healthy controls showed more variability with,
for the same patients, extreme (high and low) TNFα re-
sponses to the three BioPM (p < 0.01, p = 0.11 and p = 0.07
for 1 μg/ml and p = 0.13, p < 0.05 and p = 0.12 for 5 μg/ml
BioPM from chicken, goat and pig farms, respectively).
We then questioned whether PBMCs would respond

differently when obtained from the same patients experi-
encing loss of asthma control compared to stable dis-
ease. Again, BioPM induced cytokine production in a
concentration-dependent manner by PBMCs from pa-
tients during loss of asthma control (with the exception
of IFNγ and TNFα production induced by BioPM from
the goat farm) (Fig. 2). PBMCs from asthma patients
during loss of control showed enhanced IFNγ levels

Table 1 Clinical characteristics of asthma patients at stable
disease and during loss of control

Stable Loss of control P-value

ACQ 6.30 ± 1.04 20.60 ± 0.88 < 0.0001

WURSS 41.10 ± 8.97 60.10 ± 10.48 0.04

FEV1% predicted 103.0 ± 3.70 90.30 ± 5.89 0.01

FeNO (ppb) 39.40 ± 13.33 61.70 ± 15.40 0.24

Sputum eosinophils (%) 2.58 ± 1.45 13.46 ± 4.62 0.03

Sputum neutrophils (%) 41.90 ± 12.20 44.56 ± 8.30 0.65

Blood eosinophils (%) 3.39 ± 0.85 6.33 ± 2.15 0.07

Blood eosinophils (109/L) 0.22 ± 0.06 0.43 ± 0.17 0.13

Blood neutrophils (%) 55.19 ± 3.58 52.86 ± 3.23 0.19

Blood neutrophils (109/L) 3.80 ± 0.72 3.34 ± 0.32 0.35

Data (mean ± SEM) for the 10 asthma patients of whom PBMCs were used.
Data for all patients included in the corticosteroid interruption study is
provided elsewhere [9–11]. ACQ, Asthma Control Questionnaire; WURSS,
Wisconsin Upper Respiratory Symptom Survey; FEV1, forced expiratory volume
in 1 second; FeNO, fraction exhaled nitric oxide
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compared to stable disease after exposure to 1 μg/ml
BioPM collected from the pig farm, but no other differ-
ences in BioPM-induced cytokine production were
found between the two groups.
Pre-treatment of PBMCs with the antioxidant NAC at-

tenuated cytokine production induced by BioPM from
all three farms in all three groups (Fig. 3). NAC at a con-
centration of 10 mM was generally more efficient than 1
mM, with 1 mM in some cases not having any effect or
even resulting in a minor increase in cytokine produc-
tion. NAC by itself did not induce cytokine release, nor
did it affect cell viability (not shown). The effect of NAC
appeared to be most pronounced for IL-10, where cyto-
kine production was almost completely abolished when
PBMCs were pre-treated with 10mM NAC. In general,
again no differences between healthy controls and
asthma patients during stable disease and during loss of
control were found, although 5 μg/ml pig farm BioPM-
exposed PBMCs from asthma patients were less respon-
sive to pre-treatment with 1 mM NAC in terms of IL-10
production. The effect of NAC was, especially at 1 mM,

most pronounced in the chicken farm, which inversely
parallels the magnitude of cytokine production.
In order to discriminate between intracellular (e.g.

mitochondrial) and extracellular reactive oxygen species
(ROS), we used the antioxidant combination of SOD and
catalase, both large molecules that will not directly enter
cells. In contrast to NAC, the combination of SOD and
catalase did not inhibit BioPM-induced release of cytokines
(Fig. 4). In fact, the combination of SOD and catalase, with-
out additional exposure to BioPM, resulted in enhanced
cytokine production compared to unstimulated PBMCs
(not shown). Why SOD and catalase induced cytokine pro-
duction by itself remains unclear, but since both commer-
cially acquired enzymes were purified from tissues this
increase could possibly be related to contaminants.
Oxidative stress assessed by the lipid peroxidation

product MDA in culture medium from PBMCs was not
affected by exposure to BioPM and no differences were
detected between groups or farms, although pig farm
BioPM tended to slightly increase MDA levels in the loss
of asthma control group (Fig. 5). Pre-treatment with 10
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Fig. 1 Cytokine production induced by BioPM (1 or 5 μg/ml) collected from chicken, goat and pig farms in PBMCs from healthy volunteers (H; blue
triangles; closed, non-allergic; open, allergic) and stable asthma patients (S; black dots); n = 10. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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mM NAC was able to lower levels of MDA in PBMCs
from asthma patients during loss of control after expos-
ure to BioPM collected from pig farms, but not in
PBMCs from any of the other groups or after exposure
to BioPM collected from chicken or goat farms. This
was also the only condition being significantly lower
compared to the stable disease counterparts.

Discussion
There is increasing evidence that PM from livestock af-
fects respiratory diseases including asthma [13–15].
Whereas traffic-related PM effects are claimed to be me-
diated by ROS due to the presence of carbon or quinone
species, this is less likely for BioPM. In the present study,
we demonstrated that BioPM derived from chicken, goat
and pig farms induced cytokine production by PBMCs
from healthy and asthmatic individuals (potency rank:
pig>goat> > chicken) with an apparent dose-dependency.
These inflammatory events were abrogated by pre-
treatment with NAC, but not SOD and catalase,

suggestive of a mechanism (partly) related to intracellu-
lar ROS induced by activation of TLRs. No marked dif-
ferences in inflammatory response to BioPM were
detected between PBMCs from healthy controls and
asthma patients. However, PBMCs obtained during loss
of asthma control demonstrated an enhanced IFNγ re-
sponse upon exposure to BioPM from the pig farm,
which was paralleled by oxidative stress.
In the current study we focused on mediators gener-

ated particularly by monocytes/macrophages as initial
drivers of the inflammatory response to BioPM. This
does not exclude that BioPM may also trigger e.g. T
helper 2 (Th2) responses, although in our pilot studies
we found no production of IL-4, IL-5 and IL-13 by
PBMCs after 20 h of exposure to BioPM (not shown).
We did measure increased levels of IFNγ, IL-10, IL-1β
and TNFα, which parallels earlier findings where levels
of IL-1β in PBMCs and TNFα in serum from healthy
volunteers were significantly higher after exposure to
dust from swine confinement buildings [16], indicating
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Fig. 2 Cytokine production induced by BioPM (1 or 5 μg/ml) collected from chicken, goat and pig farms in PBMCs from asthma patients at stable
disease (S; closed dots) and during loss of control (L; open dots); n = 10. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Significance for stable
disease 1 versus 5 μg/ml is not shown
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that these cytokines may be associated with regulating
the inflammatory response after inhalation of BioPM.
Furthermore, work with human U937 macrophages
showed increased TNFα mRNA levels and other pro-
inflammatory marker genes after exposure to PM col-
lected from dairy farms [17]. The large quantities of IL-
1β produced in the present study are suggestive of the
involvement of inflammasomes, which have been linked
to asthma severity and steroid resistance [18–20]. TNFα
is also of interest in the context of asthma as it was re-
ported to determine the severity of hyperresponsiveness
[21] and contribute to an exaggerated inflammatory

response by bronchial epithelial cells from most asthma
patients in the presence of IL-17 [22]. Here, the BioPM-
induced TNFα response tended to be more variable with
some extremes (high and low) for PBMCs from asthma
patients compared to those from healthy subjects, al-
though no differences were observed when comparing
the asthma population as a whole. Nevertheless, as this
extreme TNFα production was found for the same pa-
tients with all three BioPM and not for the three other
cytokines, this indicates that this is a genuine finding.
This also fits the concept that asthma is a heterogeneous
disease, indicating that some asthma phenotypes may
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experience more severe inflammatory events in response
to BioPM. We did not find any other differences in cyto-
kine production between stable asthma patients and
healthy volunteers, which is in agreement with blood re-
sponsiveness upon ex vivo stimulation with EHC-93
urban dust [23] and inflammatory responses upon
in vivo exposure to ambient particles collected in Los
Angeles [24]. On the other hand, it contradicts several
other studies that found attenuated responses to diesel
exhaust in asthmatic individuals compared to healthy
controls [25, 26], which may relate to the specific nature
of this PM. Similarly, levels of the oxidative stress
marker MDA were comparable between stable asthma
patients and healthy controls, yet not affected by expos-
ure to BioPM. Previous studies, however, have shown
that high pollution/PM induced oxidative stress levels in
exhaled breath condensate and urine in healthy young
adults and schoolchildren [27, 28], although this increase
in oxidative stress was similar between non-asthmatics
and asthmatics [29].
The lack of exaggerated inflammatory and oxidative

stress events in PBMCs from asthma patients as a whole
to BioPM was surprising as subjects with pre-existing re-
spiratory disease are more susceptible to traffic-related
PM-induced injury. This discrepancy between traffic-
related PM and BioPM is presumably due to the pres-
ence of free radicals and/or chemical components in the
first. The microbiota profiles present in our BioPM were
identified previously, where it was also demonstrated
that blocking of TLR4 interfered with cytokine produc-
tion by MM6 cells stimulated with BioPM [7]. It is thus
likely that mainly liposaccharides are responsible for the
observed BioPM-induced inflammatory responses, al-
though future studies should determine whether com-
pounds that may lead to oxidative stress are truly absent
in our BioPM. Clinical consequences may therefore de-
pend on the source of PM, that may not only differ in
composition but may, dependent on size, also deposit at

different regions in the lung. Moreover, even though
monocytes are precursors of lung macrophages, the
PBMC responses examined in the current study do not
necessarily reflect the contribution of macrophages to
airway inflammation. As differences with local macro-
phages may exist, the actual damage by BioPM to the
lungs from healthy individuals and asthma patients re-
mains to be elucidated.
To the best of our knowledge, this is the first study

that includes ex vivo BioPM exposure during loss of
asthma control. The majority of BioPM-induced inflam-
matory responses was similar to that in stable asthma.
We did, however, detect increased IFNγ levels during
loss of asthma control after 1 but not after 5 μg/ml pig
farm exposure, which suggests a lower threshold for
IFNγ induction by PBMCs from these patients. En-
hanced IFNγ production by PBMCs was also seen for
asthmatic children, but despite similar seroprevalence
not in non-asthmatic children, in an in vitro response to
Chlamydia pneumoniae, which has been associated with
asthma exacerbations [30]. Still, the pathophysiological
effect of enhanced IFNγ responses is unknown, although
we have shown before that the IFN response during
rhinovirus-induced loss of asthma control correlates
with eosinophilic inflammation and drop in FEV1 [31].
Pre-treatment with the antioxidant NAC suppressed

BioPM-induced cytokine production in all groups and
counteracted oxidative stress in pig farm BioPM-
exposed PBMCs from patients during loss of asthma
control. These effects are therefore probably related to
defective antioxidant defenses as suggested previously in
mice exposed to wildfire PM [32]. Induction of antioxi-
dant defenses using vitamin supplementation has previ-
ously been demonstrated to attenuate the impact of air
pollutants in children with asthma [33] and in mouse
models of ovalbumin-induced experimental asthma [34,
35]. The complete inhibition of IL-10 release by pre-
treatment with 10mM NAC was remarkable. It is not
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unlikely that the production of IL-10 is more sensitive to
oxidative stress than that of other cytokines measured,
as was also reported before [36]. The combination of
SOD and catalase did not abolish cytokine release, indi-
cating that the induction of cytokines is mainly
dependent on intracellular ROS, though validation in a
larger cohort is necessary. This finding would also to a
certain extent exclude the presence of a free radical
source in BioPM and further supports BioPM-induced
cell activation by TLR ligands and dysfunctional or in-
creased mitochondrial respiration, leading to excessive
ROS production and inflammatory events. The associ-
ation between PM exposure and damaged mitochondria
has been described before in healthy subjects [37].
Although PBMCs released cytokines upon exposure to

BioPM from the three sources, there were some differ-
ences in response. Besides variation in potency, it be-
came clear that BioPM from pig farms uniquely induced
IFNγ production by PBMCs collected during loss of
asthma control. Furthermore, this was the only BioPM
where treatment with NAC counteracted oxidative stress
in PBMCs from these patients. There may be several ex-
planations for this, including size, (bio)chemical and mi-
crobial composition of pig farm-derived BioPM. As size
and endotoxin levels were previously excluded as signifi-
cant determinants, variation in response is possibly
linked to the microbial or fungal diversity of BioPM
from different farms as described by us before [7, 38]. In
our study we also showed that BioPM primarily contains
ligands for TLR2 and TLR4 [7]. Additional TLR5 ligands
were specific for pig farms only, which may account for
the present observations [39].
One of the strengths of this study is that we compared

PBMCs from the same asthmatic patients during stable
disease and loss of control, which allowed us to directly
determine any effects induced by acute worsening of the
disease. However, we do realize that this study also has
several limitations, including the use of PBMCs instead
of purified monocytes, monocyte-derived macrophages
or airway macrophages. Whereas airway macrophages,
as an important target for (Bio)PM, would have been the
preferred cells of choice for this study, their collection
before and during loss of control was not contemplated
due to ethical constraints. Despite the potential difficulty
in translating the findings to local effects, an advantage
would be that ICS predominantly affect local cells and
thus lung macrophages. Circulating monocytes would be
less modulated, thereby limiting the possibility that the
use of ICS may have affected our results. The use of
PBMCs over monocyte-derived macrophages in this
study was based on the potential loss of imprinting by
in vitro maturation of monocytes towards macrophages
and the potential loss of monocytes during their purifi-
cation. Furthermore, PBMCs demonstrated differential

gene expression upon diesel exhaust inhalation in
healthy volunteers, including inflammatory and oxidative
stress pathways [40, 41], indicating that PM effects are
not limited to the airways but can also be found in the
circulation. In fact, it has been suggested previously that
fine PM elicits systemic effects rather than respiratory
symptoms [42, 43]. Our findings are also based on rela-
tively small sample sizes and a predominance of female
subjects, who typically have more severe disease and
more pronounced Th2 responses [44], which may have
biased the results.

Conclusions
In summary, BioPM induced cytokine release by PBMCs
from healthy and asthmatic subjects via a mechanism
partly related to ROS that is mainly generated intracellu-
larly. At large, we found no significant differences be-
tween the responses of PBMCs from healthy controls
and asthma patients, although for asthma all three
BioPM induced extreme TNFα responses in the same
patients. Therefore, some patients may respond in an
exaggerated manner to BioPM, which likely contributes
to enhanced inflammation and possibly may lead to
enhanced loss of asthma control. Interestingly, PBMCs
from patients during loss of asthma control showed
enhanced IFNγ and oxidative stress responses upon
stimulation with BioPM from the pig farm, indicating
increased susceptibility to this particular livestock. These
observations may become even more apparent with
accumulation over time, in extreme asthma phenotypes
and with other triggers of loss of control or exacerba-
tions, with presumably major consequences for the
course of asthma. Future research should include BioPM
from a larger number of different animal farms and
focus on the actual components responsible for inflam-
mation and oxidative stress. Our findings also support
that individuals should be made aware of the potential
effect when working in or living near animal industries.
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