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Dibutyl phthalate promotes juvenile Sertoli
cell proliferation by decreasing the levels of
the E3 ubiquitin ligase Pellino 2
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Abstract

Background: A previous study showed that dibutyl phthalate (DBP) exposure disrupted the growth of testicular
Sertoli cells (SCs). In the present study, we aimed to investigate the potential mechanism by which DBP promotes
juvenile SC proliferation in vivo and in vitro.

Methods: Timed pregnant BALB/c mice were exposed to vehicle, or DBP (50, 250, and 500 mg/kg/day) from 12.5
days of gestation until delivery. In vitro, CCK-8 and EdU incorporation assays were performed to determine the
effect of monobutyl phthalate (MBP), the active metabolite of DBP, on the proliferation of TM4 cells, which are a
juvenile testicular SC cell line. Western blotting analysis, quantitative PCR (q-PCR), and flow cytometry were
performed to analyse the expression of genes and proteins related to the proliferation and apoptosis of TM4 cells.
Coimmunoprecipitation was used to determine the relationship between the ubiquitination of interleukin 1
receptor-associated kinase 1 (IRAK1) and the effect of MBP on promoting the proliferation of TM4 cells.

Results: In the 50 mg/kg/day DBP-exposed male mice offspring, the number of SCs was significantly increased.
Consistent with the in vivo results, in vitro experiments revealed that 0.1 mM MBP treatment promoted the
proliferation of TM4 cells. Furthermore, the data showed that 0.1 mM MBP-mediated downregulation of the E3
ubiquitin ligase Pellino 2 (Peli2) increased ubiquitination of IRAK1 by K63, which activated MAPK/JNK signalling,
leading to the proliferation of TM4 cells.

Conclusions: Prenatal exposure to DBP led to abnormal proliferation of SCs in prepubertal mice by affecting
ubiquitination of the key proliferation-related protein IRAK1 via downregulation of Peli2.
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Background
Dibutyl phthalate (DBP) is a widely used plasticizer that
has a negative effect on the development and function of
male reproductive organs in humans and laboratory ani-
mals [1, 2]. As DBP binds to the matrix by non-covalent
bond, it easily leaches into the environment and then
migrates into the food [2]. The toxicological effects of
DBP are complex and diverse. Among them, the impact
of in utero exposure to DBP on foetal reproduction and
development is particularly worthy of concern. Some
studies confirmed that in utero exposure to DBP caused
testicular malformations in male offspring [3–5], but the
underlying mechanism has not yet fully investigated. As
one of the target cells of DBP/MBP [5–9], Sertoli cells
(SCs) are the first that are recognized to differentiate in
the foetal indifferent gonad, and they play a critical role
in foetal testis formation and sexual differentiation as
well as in adult spermatogenesis [10–12]. Because of the
fixed number of germ cells supported by SCs, the prolif-
erative capability of immature SCs during prepuberty
determines the number of mature SCs, testis size and
output of germ cells in the mature testis. Our recent
study suggested that monobutyl phthalate (MBP), the
metabolite of DBP, could disrupt the growth of juvenile
SCs [9], however, the underlying molecular mechanism
still needs to be further explored.
Based on the data generated by screening a high-

throughput mRNA microarray, downregulation of E3
ubiquitin ligase Pellino 2 (Peli2) was found in SCs after
exposure to 0.1 mM MBP [9]. Peli2, a member of the
Pellino protein family, is a novel E3-RING ubiquitin
ligase involved in the ubiquitination and degradation of
interleukin-1 receptor-related kinase 1 (IRAK1). Previ-
ous studies revealed that Peli2 mediated K63-linked
IRAK1 polyubiquitination and reduced K48-linked
IRAK1 polyubiquitination, thereby leading to the activa-
tion of downstream MAPK/JNK signalling pathways
[13–15]. The activation of IRAK1 downstream of the
MAPK/JNK signalling pathway is related to many cellu-
lar processes, such as cell proliferation, migration, and
regeneration [16, 17]. Meanwhile, both the extrinsic
apoptotic pathway involving the Fas/FasL proteins, such
as FADD, and the intrinsic pathway (mitochondria-me-
diated through the Bax/Bcl-2 family proteins) can regu-
late cell growth by inducing the apoptosis of SCs [18].
Given these previous studies, we raised the question of
whether the Peli2-mediated proliferation pathway as well
as apoptotic pathways were involved in MBP-mediated
growth disruption of immature SCs.
In this study, we first evaluated the effect of DBP/

MBP on proliferation and apoptosis in vivo and
in vitro, and then we investigated the molecular
mechanism by which MBP promotes the proliferation
of TM4 cells.

Methods
Animals and processing method
Nine-week-old male (n = 12) and female (n = 24) spe-
cific pathogen-free (SPF) BALB/c mice were obtained
from the Experimental Animal Center of the Acad-
emy of Military Medical Science, Beijing, China.
Time-mated females (day of vaginal plug = gestational
day (GD) 0.5) were randomized into 4 groups (n = 6
for each group). Pregnant mice were treated with 0
(control), 50, 250, or 500 mg/kg/day DBP (Sigma, St.
Louis, USA) in 1 ml/kg corn oil, which was adminis-
tered daily by oral gavage from GD 12.5 until birth.
Because seminiferous cord and gonocyte development
of offspring were damaged under the daily oral dose
of 500 mg/kg/day DBP given to pregnant mice from
GD 16–18 [19], we set 500 mg/kg/day as the highest
concentration group. The 22-day-old males were
euthanized by CO2 asphyxiation. The testes were
carefully removed and fixed in 4% paraformaldehyde.
All procedures performed on animals were approved

by the Animal Care and Use Committee of Nanjing
University under the animal protocol number SYXK
(Su) 2009–0017. The animal experiments were per-
formed in accordance with the Guide for the Care and
Use of Laboratory Animals (The Ministry of Science
and Technology of China, 2006).

Reagents and cell culture
Foetal bovine serum (FBS), Triton® X-100, DMEM-F12
and MBP were purchased from Sigma-Aldrich Inc. (St.
Louis, MO, USA). MBP (2.2224 g) was dissolved in 1 mL
of DMSO to prepare a stock solution (10M). SP600125
(JNK inhibitor) and an IRAK1 inhibitor were purchased
from MedChemExpress (Monmouth Junction, NJ, USA).
The antibodies used in this study are listed in
Additional file 1: Table S1. TM4 cells were cultured in
DMEM/F12 containing 10% FBS and 1% penicillin-
streptomycin with a 5% CO2 atmosphere in a humidified
incubator at 37 °C. TM4 cell lines were obtained from
the American Type Culture Collection (Manassas, VA,
USA).

Immunohistochemical analyses
Immunohistochemical analyses were carried out as
previously described [20]. The primary and secondary
antibodies used in this study were SOX9, Peli2, and
HRP-conjugated secondary antibodies (Zhongshan
Biotechnology, Beijing, China). For each section, ten
images were randomly captured at 200× magnification
under a light microscope. The total cells and the
SOX9- or Peli2-positive cells in each image were
counted automatically using ImageJ software. After
calculating the average of ten images, excluding the
minimum and maximum values, the positive ratio of
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SOX9- or Peli2-expressing cells was determined; six
sections per group of mice were taken for statistical
analysis.

Cell growth assay
A Cell Counting Kit-8 (CCK-8) (Dojindo Lab., Kuma-
moto, Japan) test was used to test cell growth after
treatment with MBP according to the manufacturer’s
instructions. Briefly, TM4 cells were plated at 2 × 103

cells per well in 96-well culture plates. After 24 h,
cells were treated with MBP at concentrations of 0,
0.1, 1 or 10 mM for various times (1, 2, 3, 4, or 5
days). Based on our previous study of cell viability,
the median effective concentration (EC50) of MBP
was determined to be 16.21 mM [21]. In this study,
the highest concentration of MBP used was 10 mM.
Following MBP treatment, 100 μL of a mixed solution
of 1:10 (v/v) CCK-8:DMEM/F12 was added to each
well, and the cells were incubated for an additional 4
h. Absorbance was measured at the indicated time
points at 450 nm with a microplate reader (Versamax,
Chester, PA, USA). CCK-8 contains WST-8, which
can be reduced by dehydrogenases in cells to generate
an orange-coloured product (formazan), which is
soluble in the tissue culture medium. Therefore, the
amount of formazan dye generated by dehydrogenases
in cells is directly proportional to the number of
living cells. Measurements were performed at least
three times on six samples in parallel. Cell survival
rate = (As-Ab)/(Ac-Ab) * 100%, and the terms are
defined as follows: As: experiment well; Ab: blank
well; and Ac: control well.

EdU incorporation assay
EdU assay kits were used to determine cell prolifera-
tion (Click-iT® EdU Imaging Kits; Invitrogen). Accord-
ing to the kit’s instructions, 1 mL of proliferation
media containing 20 μM EdU (final concentration
10 μM) was added to 6 wells of the plate, containing
cells to be incubated with final concentrations of 0,
0.1, 1 or 10 mM MBP for 24 h. Cells were then fixed
with 4% paraformaldehyde for 15 min. The fixative
was removed, and the cells were washed twice with 1
mL of 3% bovine serum albumin (BSA), which was
followed by incubation with 0.5% Triton X-100
(Sigma-Aldrich, St. Louis, MO,USA) for 10 min at
room temperature. The cells were then washed twice
and incubated with 1 mL of Click-iT® reaction cocktail
for 30 min at room temperature. The cells were then
incubated with 100 μL of 5 μg/mL DAPI (Sigma-Al-
drich) for an additional 30 min in the dark. After
staining, the cells were captured at 600× magnifica-
tion under a microscope (Olympus, Tokyo, Japan).
DAPI is a nuclear stain used to determine total cell

counts. Normally, DAPI bound to DNA is most
strongly excited by ultraviolet (UV) light at 358 nm
and produces the strongest emission in the blue range
at 461 nm. Six fields for each sample were randomly
captured. EdU-positive cells were counted using Ima-
geJ software (NIH, Bethesda, MD).

Flow cytometry for apoptosis assay
TM4 cell apoptosis after treatment with different MBPs
was analysed using Annexin V-FITC and PI staining
kits (Vazyme, Nanjing, China) according to the manu-
facturer’s requirements. Flow cytometry was performed
on a FACSCalibur flow cytometer (BD Biosciences),
and the data were analysed using Paint-A-Gate software
(Becton-Dickson, San Jose, CA).

Quantitative PCR (q-PCR) validation analyses of target
genes
Analyses of q-PCR were performed as previously
described [20]. Total RNA was extracted using
TRIzol reagent (Invitrogen, Carlsbad, CA) according
to the manufacturer’s protocol. HiScript Q RT
SuperMix for q-PCR kit (Vazyme, Nanjing, China)
was used for reverse transcription polymerase chain
reactions, and then q-PCR assays were conducted
with SYBR Green I mix (Takara, Dalian, China) on
an ABI ViiA 7 Q-PCR System (Applied Biosystems,
Waltham, MA). In all cases, mRNA levels were nor-
malized to the expression of GAPDH, which served
as an endogenous control. The relative expression of
target genes was calculated by the 2-△△Ct method
[22]. The primer sets used in this study are listed in
Additional file 1: Table S2.

Western blotting, coimmunoprecipitation (Co-IP)
Western blotting analyses were executed as previously
described [23]. Specific antibody immunological
complexes such as Peli2, IRAK1, Bax, Bcl-2, FADD,
cl-Caspase 8, cl-Caspase 3, cyclin dependent kinase 1
(CDK1), Caspase 3, p-JNK, JNK, c-Jun, p-c-Jun and
GAPDH, were observed by enhanced chemilumines-
cence. To detect the ubiquitination of IRAK1, an
anti-IRAK1 antibody was used to first isolate IRAK1
from TM4 cells by immunoprecipitation, and then
ubiquitination of IRAK1 was analysed by immuno-
blotting using an antibody against ubiquitination (Ub)
or K63-Ub.

Statistical analyses
SPSS 18.0 (SPSS, Chicago, IL) was used for statistical
analysis. The normality and homogeneity of variances in
the data were checked by using Levene’s test. The
Student’s t-test was used for paired comparisons. To
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compare more than two groups, we used one-way
ANOVA with Duncan’s post hoc test. P < 0.05 was
considered statistically significant.

Results
The effect of DBP on the proliferation of SCs
Following in utero exposure to 50 mg/kg/day DBP,
the number of SOX9 (a marker of SCs)-positive cells
in the testes of pups from the resulting male offspring
at postnatal day (PND) 22 was significantly increased
compared with the vehicle treatment group; SOX9
was detected by immunohistochemical assay (Fig. 1a,

b). These in vivo results suggested that DBP stimu-
lated the proliferation of SCs at a dose of 50 mg/kg/
day.

The effect of MBP on TM4 cell growth and DNA synthesis
The results showed that 0.1 mM MBP promoted cell
proliferation, but 10 mM MBP inhibited the proliferation
of TM4 cells (Fig. 2a). Compared with no treatment, 0.1
mM MBP increased the number of EdU-positive cells,
indicating that 0.1 mM MBP promoted DNA synthesis
in TM4 cells (Fig. 2b, c). Collectively, these in vitro data

Fig. 1 The effect of dibutyl phthalate (DBP) on Sertoli cell (SC) proliferation. a The effect of DBP on the number of Sertoli cells per testis in mice
after prenatal exposure to DBP. Testicular sections were collected from pups 22 days after mice were exposed in utero (GD12.5 - birth) to corn oil
or DBP doses of 50, 250 or 500 mg/kg/day. Immunohistochemical staining for SOX9 was performed (scale bar 50 μm). Arrows represent the
expression of SOX9 in the testes of DBP-treated and control male pups. b The ratio of SOX9-positive cell was detected by ImageJ (n = 6). The
results are expressed as the means ± SEM. * p < 0.05; ** p < 0.01, compared with control
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confirmed that 0.1 mM MBP stimulated the proliferation
of TM4 cells.

The effect of MBP on the apoptosis of TM4 cells
The results of flow cytometry showed that the apop-
tosis rates of TM4 cells were significantly increased in
the 1 mM and 10 mM MBP treatment groups (Fig. 3a,
b). To elucidate the mechanism by which MBP induced
apoptosis, we examined the effects of MBP on Bcl-2
and Bax expression as well as cytochrome c (Cyt c) re-
lease, which are indicators of the intrinsic apoptotic
pathways. The Bax/Bcl-2 ratio, as an apoptotic index, is
used to evaluate the balance between apoptotic and
anti-apoptotic proteins. The results showed that the
Bax/Bcl-2 ratio was markedly decreased after exposure
to 0.1 mM MBP (Fig. 3c). However, the Bax/Bcl-2 ratio
increased in the 10 mM MBP group. Furthermore, the
release of Cyt c into the cytosol was significantly in-
creased in TM4 cells after exposure to 10 mM MBP
(Fig. 3d, Additional file 1: Fig. S1). We also detected the
activation of the extrinsic apoptotic pathway in TM4
cells and found that the extrinsic apoptosis pathway
was inhibited after exposure to 10 mM MBP (Add-
itional file 1: Fig. S2). These data indicated that expos-
ure to 10 mM MBP induced apoptosis of TM4 cells by
activating the intrinsic apoptotic pathway.

The effect of DBP/MBP on Peli2 expression
Based on microarray data in the GEO (Gene Expression
Omnibus) database from our previous report [9], Peli2
was chosen for further study because of its important
role in cell proliferation. We demonstrated that
prenatal exposure to DBP (50 mg/kg/day) reduced the
levels of Peli2 in the mouse testes, as shown by immu-
nohistochemical staining (Fig. 4a, b). Moreover, the q-
PCR results showed that Peli2 expression in the 0.1
mM MBP group was significantly lower than it was in
the control, whereas it was increased in the 10 mM
group (Fig. 4c), which was further confirmed by
Western blotting (Fig. 4d, e).

The effect of MBP on the ubiquitination of IRAK1 in TM4
cells
Peli2 protein, a RING E3-ubiquitin ligase, can lead to
the degradation of IRAK1 by promoting IRAK1 ubiquiti-
nation [24, 25], which eventually inhibits the activation
of the downstream MAPK/JNK signalling pathway [26].
In this study, we found that the mRNA level of IRAK1
was significantly increased at 0.1 mM MBP, whereas it
was suppressed at 10 mM (Fig. 5a). Western blotting
results also showed that the protein level of IRAK1 was
increased after exposure to 0.1 mM MBP (Fig. 5b, c). A
previous study showed that Peli2 played a key role in IL-

Fig. 2 The effect of monobutyl phthalate (MBP) on the proliferation of TM4 cells. a Cell viability was measured by CCK-8 assay and showed the
viability of TM4 cells after treatment with different concentrations of MBP for 5 days (n = 3). b Immunofluorescence staining showed EdU
incorporation in TM4 cells without treatment (control) or following treatment with 0.1, 1, or 10 mM for 24 h. DAPI was used to counterstain cell
nuclei. c Quantification of the average percentage of EdU+ cells for B (n = 6). The results are expressed as the means ± SEM. * p < 0.05; ** p < 0.01,
compared with control
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1- and LPS-induced K63- and K48-linked IRAK1 ubiqui-
tination [27]; thus, we explored IRAK1 ubiquitination by
Co-IP. The results showed that after exposure to 0.1
mM MBP, total polyubiquitination of IRAK1 was attenu-
ated compared with that in control cells, while K63-
mediated polyubiquitination of IRAK1 was increased
(Fig. 5d). To determine whether IRAK1 was upstream of
MAPK/JNK, we examined the effects of an IRAK1 in-
hibitor on MAPK/JNK activation. The IRAK1 inhibitor
reduced p-JNK expression at the protein level (Fig. 5e, f).
These data suggested that K63-mediated polyubiquitina-
tion of IRAK1 might play a key role in DBP/MBP-medi-
ated proliferation of TM4 cells.

MBP promoted TM4 cell proliferation by MAPK/JNK
signalling
We detected the activation of the MAPK/JNK signalling
pathway by assessing downstream members of the path-
way by Western blotting. The results showed that the
phosphorylation of both JNK (p-JNK) and c-Jun (p-c-
Jun) was significantly increased in TM4 cells treated
with 0.1 mM MBP (Additional file 1: Fig. S3a, S3b). Add-
itionally, the phosphorylation of c-Jun in the testis after
in utero exposure to 50mg/kg/day DBP was significantly
increased (Additional file 1: Fig. S3c, S3d). Furthermore,
0.1 mM MBP also induced marked enrichment of c-Jun
in the nuclei of TM4 cells (Fig. 6a, b). To identify

Fig. 3 The intrinsic apoptotic pathway participated in MBP-induced apoptosis of TM4 cells. a Annexin V-FITC/PI was used to stain apoptotic cells,
which were analysed by flow cytometry at 24 h. b The level of apoptosis in TM4 cells was calculated (n = 3). c The protein levels of Bax and Bcl-2
in TM4 cells treated with different concentrations of MBP were measured by Western blotting; the Bax/Bcl-2 ratio was determined by ImageJ
(lower panels, n = 3). GAPDH was assessed as an internal control. d Cytochrome c (Cyt c) release was detected in the cytosolic (Cytosol) fraction
of MBP treated TM4 cells 24 h by Western blotting. The densitometry data were quantified with ImageJ (lower panels, n = 3). GAPDH was
assessed as an internal control. The results are expressed as the means ± SEM. ** p < 0.01; * p < 0.05
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Fig. 4 The effects of DBP/MBP exposure on Peli2 expression. a, b Testicular sections were collected from pups 22 days after they were exposed in
utero (GD12.5 - birth) to corn oil or DBP doses of 50, 250 or 500 mg/kg/day. The expression of Peli2 in mouse testicular tissues was carried out by
immunohistochemistry. Arrows represent the expression of Peli2 in the testes of DBP-treated and control male pups. The ratio of positive cells
was detected by ImageJ (n = 6). The expression of Peli2 in SCs after exposure to different concentrations of MBP for 24 h. c The mRNA levels of
Peli2 were measured with quantitative PCR (q-PCR), and GAPDH was measured as a loading control. d, e Peli2 protein levels were measured by
Western blotting. The densitometry data were quantified with ImageJ (n = 3). GAPDH was assessed as an internal control. The results are
expressed as the means ± SEM. ** p < 0.01; * p < 0.05
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whether MAPK/JNK was responsible for the proliferation
of TM4 cells, we examined the effects of the JNK inhibitor
SP600125 on cell proliferation. The activation of the
MAPK/JNK pathway was inhibited after pretreatment
with the JNK inhibitor SP600125 (Fig. 6c, d). Furthermore,

the MBP-induced increased expression of CDK1 was
reduced after pretreatment with the JNK inhibitor
SP600125, suggesting that MAPK/JNK participated in
MBP-induced TM4 cell proliferation. These results were
further confirmed by flow cytometry (Fig. 6e, f).

Fig. 5 The ubiquitination of IRAK1 in TM4 cells after exposure to MBP. (a-c) The expression of IRAK1 in TM4 cells after exposure to different
concentrations of MBP for 24 h. a The mRNA levels of IRAK1 were measured with q-PCR, and GAPDH was measured as a loading control. b, c The
protein levels of IRAK1 were measured by Western blotting. The densitometry data were quantified with ImageJ (n = 3). GAPDH was assessed as
an internal control. d MBP (0.1 mM) attenuates IRAK1 ubiquitination and stimulates K63-mediated IRAK1 polyubiquitination. Cell lysates were
immunoprecipitated (IP) with anti-IRAK1, which was followed by Western blotting analysis with anti-K63 ubiquitin (K63-Ub), anti-ubiquitin (Ub),
and anti-IRAK1 antibodies. e, f TM4 cells were pretreated with an IRAK1 inhibitor for 1 h, which was followed by 24 h treatment with 0.1 mM MBP.
The expression levels of JNK and p-JNK were determined by Western blotting. The densitometry data were quantified with ImageJ (n = 3). GAPDH
was assessed as an internal control. The results are expressed as the means ± SEM. ** p < 0.01; * p < 0.05. # p < 0.05, vs MBP exposure
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Discussion
As an endocrine disruptor found in the environment,
DBP is of concern because it is currently widely used in
many products, including latex adhesives, cellulose
acetate plastics, dyes, personal care products, and
coatings for certain oral medications [28]. Humans are
exposed to DBP on a daily basis, and daily DBP intake
for the general population is 0.007–0.01 mg/kg/day [1].
Detection of the urinary levels of MBP reveal that the
metabolites of DBP in women of childbearing age, who

are estimated to be exposed to DBP at rates that are over
200 times greater than that of a reference population, as
they frequently use oral medications with DBP-
incorporated enteric coats [29]. In addition, in some se-
vere cases, DBP metabolites are often found to be nearly
600 times higher than they are in the normal population
(10,025 μg/g creatinine vs 17 μg/g creatinine); these
patients often require enteric-coated drugs or blood
transfusions [30–33]. Furthermore, during the develop-
mental window of foetal mice, the reproductive toxicity

Fig. 6 MAPK/JNK signalling is responsible for the proliferation of TM4 cells stimulated by 0.1 mM MBP. a, b Nuclear and cytosolic fractions were
prepared from control and MBP-induced TM4 cells. Levels of c-Jun were analysed by Western blotting. GAPDH and Lamin B1 served as cytosolic
and nuclear markers, respectively. The expression levels of c-Jun in the nucleus and cytosol were quantified with ImageJ (right panel; n = 3). c, d
TM4 cells were pretreated with SP600125 for 1 h, which was followed by 24 h of treatment with 0.1 mM MBP. (c) Expression levels of c-Jun, p-c-
Jun, JNK, p-JNK and cyclin dependent kinase 1 (CDK1) were determined by Western blotting. (d) The densitometry data were quantified with
ImageJ (n = 3). GAPDH was run as an internal control. e, f Apoptotic cells were determined by flow cytometry. The level of apoptosis in TM4 cells
was calculated (n = 3). The data are expressed as the means ± SEM. ** p < 0.01; * p < 0.05, vs control. # p < 0.05, vs MBP exposure
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of the highest dose of DBP exposure in other studies
was mostly 500 mg/kg/day [19, 34, 35]. Therefore, we
established 500 mg/kg/day as the highest dose in the
in vivo experiments. A previous study showed that 8
mM MBP could inhibit HCG-induced testosterone and
insulin-like peptide 3 secretion in cultured testicular
interstitial cells in vitro [36]. It was concluded that the
in vitro cultured cells are probably insensitive to MBP
[36]. Moreover, based on the data regarding the effect of
MBP on cell viability in our previous study, the EC50 of
MBP was determined to be 16.21 mM [21]. Therefore, in
this study, the highest concentration of MBP in vitro
was set at 10 mM.
The pharmacokinetics of DBP have been investigated

in rats [37]. DBP levels in fecal excretion was found to
be low, and more than 90% of the dose was excreted via
metabolites in the urine within 48 h following either
intravenous or oral administration [37, 38]. Most DBP is
metabolized to MBP by intestinal hydrolases in the small
intestine, and then almost all MBP enters the blood-
stream [37, 39]. DBP can directly penetrate the blood-
testis barrier [40]. Clewell and his colleagues found that
peak MBP concentrations in foetal testes were 72 and
152 μM in the 100 and 500 mg/kg/day DBP exposure
groups, respectively [41].
In the present study, we confirmed that prenatal ex-

posure to 50 mg/kg/day DBP promoted SC proliferation.
To investigate the mechanism by which DBP/MBP dis-
rupted the growth of immature SCs, we employed TM4
cells derived from immature mouse SCs in an in vitro
study. Mouse TM4 cells share many characteristics of

SCs and have been widely used as a substitute for pri-
mary SCs [42]. Consistent with the in vivo results, 0.1
mM MBP promoted proliferation and DNA synthesis in
the TM4 cells, while apoptosis was significantly in-
creased after exposure to 10mM MBP. We then aimed
to investigate the molecular mechanism associated with
the proliferation and apoptosis of SCs in MBP-treated
SCs at different doses.
Apoptosis is an evolutionarily conserved mechanism for

programming cell death, and it occurs in response to
some physiological stimuli, cell damage or stress and is an
important part of various developmental processes in
metazoans [43, 44]. Previously, many investigations found
that DBP exposure caused toxicity in several cell types,
such as nerve cells, osteoblasts, and germ cells [45–47]. It
has been confirmed that MBP exposure causes apoptosis
of SCs, but the specific mechanism has not yet been dem-
onstrated [8]. In this study, we analysed the protein levels
of key components of the intrinsic pathways (Bax, Bcl-2,
and Cyt c) and extrinsic pathways (FADD, caspase 8, and
caspase 3) [18]. The results showed that 10mM MBP
could activate the intrinsic pathway, whereas the extrinsic
pathway was inhibited. Interestingly, the expression of
FADD was increased after exposure to 0.1 mM MBP
(Additional file 1: Fig. S2a). A previous study showed that
FADD played a role in regulating most of the signalosome
complexes, causing it to emerge as a newly identified actor
in innate immunity, inflammation, and cancer develop-
ment [48]. Therefore, we speculated that FADD might be
involved in other physiological processes after exposure to
MBP at a concentration of 0.1 mM.

Fig. 7 Proposed model for MBP-induced abnormal cell growth of juvenile SCs. MBP at 0.1 mM inhibits the expression of Peli2, leading to K63
ubiquitination of IRAK1, which activates the MAPK/JNK signalling pathway and promotes SC proliferation. MBP at 10 mM led to SC apoptosis
through intrinsic apoptotic signalling pathways
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Pellino proteins have various regulatory roles in cell
growth, for example, murine genetic models have re-
vealed roles for Peli1 in lung carcinogenesis [49] and for
Peli3 in TNF-induced cell killing [50]. However, there is
a notable lack of insight into the physiological roles of
Peli2. It was illustrated that polyubiquitination of both
IL-1/LPS-induced K63- and K48-linked IRAK1 was de-
creased in Peli2-knockdown cells [27]. In our study, we
found that, with decreasing Peli2 expression, the total
ubiquitination level was reduced, while K63-linked
IRAK1 polyubiquitination was increased after exposure
to 0.1 mM MBP. Therefore, we hypothesized that the
decreasing IRAK1 ubiquitination was mainly due to
K48-ubiquitination, which resulted in the degradation of
IRAK1. Studies on Peli2 revealed a role for Peli2 in IL-1/
LPS-induced activation of the MAPK/JNK pathway [27,
51]. Our data also found that 0.1 mM MBP activated
IRAK1 and the downstream MAPK/JNK signalling
pathway, suggesting that 0.1 mM MBP could promote
immature SC growth through the Peli2/IRAK1/MAPK/
JNK pathway. Taken together, it was concluded that 0.1
mM MBP promoted the abnormal proliferation of SCs
by inhibiting the expression of Peli2, disrupting the
balance of IRAK1 ubiquitination, and activating the
downstream MAPK/JNK signalling pathway.

Conclusions
In summary, we first confirmed that DBP/MBP stimulated
the proliferation of SCs in vitro and in vivo at a relatively
low concentration range. Then, we found that downregu-
lated Peli2 resulted in increased K63 ubiquitination of
IRAK1, which activated MAPK/JNK signalling pathways
in TM4 cells treated with 0.1mM MBP. In addition, we
showed that 10mM MBP caused apoptosis of TM4 cells
by activating the intrinsic apoptotic pathway. A descriptive
outline of this study is shown in Fig. 7.
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