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Abstract

Background: Current and projected increases in global temperatures and extreme climate events have led to
heightened interest in the impact of climate factors (i.e. ambient temperature, season/seasonality, and humidity) on
human health. There is growing evidence that climate factors may impact metabolic function, including insulin
sensitivity. Gestational diabetes mellitus (GDM) is a common pregnancy complication, with an estimated global
prevalence of up to 14%. While lifestyle and genetic risk factors for GDM are well established, environmental factors
may also contribute to GDM risk. Previous reviews have summarized the growing evidence of environmental risk
factors for GDM including endocrine disrupting chemicals and ambient air pollution. However, studies of the effects
of climate factors on GDM risk have not been systematically evaluated. Therefore, we conducted a systematic
review to summarize and evaluate the current literature on the associations of climate factors with GDM risk.

Methods: We conducted systematic searches in PubMed and EMBASE databases for original research articles on
associations of climate factors (i.e. ambient temperature, season/seasonality, and humidity) with GDM and/or related
glycemic outcomes for all publication dates through September 20th, 2020.

Results: Our search identified 16 articles on the associations of ambient temperature and/or season with GDM and
maternal glycemic outcomes during pregnancy, which were included in this review. Despite inconsistencies in
exposure and outcome assessment, we found consistent evidence of a seasonal effect on GDM risk, with higher
prevalence of GDM and higher pregnancy glucose levels in summer months. We found suggestive evidence of an
association between higher ambient temperature and elevated glucose levels from GDM screening tests.

Conclusion: Climate factors may be associated with GDM risk. However, further research is needed to evaluate
these associations and to elucidate the specific mechanisms involved.
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Background

Increased awareness of global climate change has led
to heightened interest in the impact of climatic fac-
tors on human health [1]. Historically, much of the
research on the human health effects of climate
change focused on extreme temperature events and
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infectious diseases [2-4]. However, there is growing
evidence indicating that climate factors (i.e. season,
ambient temperature, and humidity) may alter meta-
bolic function, including insulin sensitivity [1, 5]. The
insulin resistant state of pregnancy may be particu-
larly sensitive to climate factors, which could impact
the body’s metabolism, increasing gestational diabetes
(GDM) risk. Thus, it is important to review the state
of the literature on climate factors and GDM.

GDM, defined as glucose intolerance that is less than
overt diabetes first occurring during pregnancy, is one of
the most common pregnancy complications [6]. The

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12940-020-00668-w&domain=pdf
http://orcid.org/0000-0003-3589-5169
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:tjtodd@hsph.harvard.edu

Preston et al. Environmental Health (2020) 19:112

prevalence of GDM has increased over the past 20 years
and is currently estimated to affect up to 14% of preg-
nancies worldwide [7], though estimates vary based on
the population and diagnostic criteria [6, 8—10]. GDM is
associated with both short- and long-term adverse preg-
nancy, maternal and neonatal outcomes, including pre-
eclampsia, cesarean section, preterm birth, macrosomia
and neonatal hypoglycemia [7, 11]. Mothers are at in-
creased risk of developing type 2 diabetes [12-14] and
cardiovascular disease [15, 16] in later life. Recent stud-
ies demonstrate that offspring may be at increased risk
of higher adiposity and abnormal glucose metabolism in
mid-childhood [6, 11, 17].

Lifestyle and genetic factors such as diet, body mass
index (BMI), physical activity, parity, age, and family his-
tory may not fully account for GDM risk [18-20]. Re-
cent reviews have examined the potential role of
environmental exposures including endocrine disrupting
chemicals [21, 22], toxic metals [21], and air pollution
[23, 24] in the development of GDM. However, climate
factors may also play a role in GDM risk [25-27]. With
the current and projected rise in global surface tempera-
tures and increased frequency of extreme weather events
[28], we aim to review the role of climate factors on this
significant pregnancy complication.

Rationale for climate factors as a risk factor for
gestational diabetes

Previous meta-analyses and primary research studies
have found associations between ambient temperature,
season, and humidity with type 1 and/or type 2 diabetes
[29-31]. Potential physiologic explanations for these as-
sociations include several different mechanisms, which
have also been discussed as possible mechanisms for as-
sociations between climate factors and GDM. Cold am-
bient temperature may cause activation of brown
adipose tissue leading to improved insulin sensitivity
[32]. On the other hand, high ambient temperatures and
relative humidity could cause dehydration and result in
hemoconcentration during the summer, leading to spuri-
ous increased blood glucose concentrations [33]. Sea-
sonal fluctuations in serum vitamin D levels could also
contribute to the observed association between season
and type 2 diabetes risk [34]. In fact, vitamin D may aid
in glucose regulation by increasing insulin secretion and
sensitivity, aiding in beta-cell function, and decreasing
systemic inflammation [35]. Alternatively, changes in
diet and physical activity levels related to ambient
temperature, season, and humidity may contribute to
observed seasonal fluctuations in diabetes risk.

A growing number of studies have evaluated climate
factors as they relate to GDM; however, these studies
have not been systematically reviewed. Therefore, we
conducted a systematic review of epidemiological studies
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evaluating the associations of climate factors with GDM
and glycemic outcomes during pregnancy, to assess how
climate factors were associated with the continuum of
glucose intolerance. We evaluated epidemiological stud-
ies identified in PubMed and EMBASE, summarized the
state of the literature, identified research gaps, and sug-
gested key next steps for future studies of the influence
of climate factors on GDM. To our knowledge, this is
the first systematic review of climate factors as they re-
late to GDM.

Methods

Search strategy

We conducted a systematic literature search in PubMed
and EMBASE databases for original research articles for
all publication dates through September 20th, 2020,
based on the guidelines of the PRISMA statement [36].
We considered original epidemiologic studies in preg-
nant women written in the English language with avail-
able full-text. Studies were included in the review if they
related one or more climate factors to one or more
glucose-related outcomes during pregnancy. Maternal
glycemic outcomes included gestational glucose levels,
markers of insulin sensitivity, beta cell function, categor-
ies of glucose tolerance derived from glucose challenge
test (GCT) and/or oral glucose challenge test (OGTT)
screenings (e.g. abnormal GCT or OGTT values), or
GDM diagnosis.

In PubMed we searched using the following combin-
ation of Medical Subject Headings (MeSH) terms and
freetext title or abstract terms (tiab): ((diabetes, gesta-
tional [MeSH] OR gestational diabetes [tiab]) OR ((Dia-
betes Mellitus [Mesh:NoExp] OR glucose tolerance test
[MeSH] OR blood glucose [MeSH] OR hyperglycemia
[MeSH] OR diabetes [tiab] OR diabetic [tiab] OR blood
glucose [tiab] OR glucose intolerance [tiab] OR glucose
tolerance [tiab] OR hyperglycemia [tiab]) AND (Preg-
nancy [Mesh:NoExp] OR Pregnancy Outcome [Mesh:
NoExp] OR Pregnancy, High-Risk [Mesh] OR Pregnancy
Complications [Mesh:NoExp] OR pregnanc*[tiab] OR
pregnant [tiab]))) AND (climate [MeSH] OR weather
[MeSH] OR climate [tiab] OR seasonality [tiab] OR sea-
son [tiab] OR ambient temperature [tiab] or dew point
[tiab] OR humidity [tiab]). We restricted our PubMEd
search using the following search terms: NOT (Animals
[MeSH] NOT Humans [MeSH]) NOT (Case Reports
[ptyp] OR Comment [sb] OR Editorial [ptyp] OR Guide-
line [ptyp] OR Letter [ptyp] OR News [ptyp] OR Prac-
tice Guideline [ptyp]). In EMBASE, we searched using
the following combination of Emtree and text search
terms: (‘pregnancy diabetes mellitus’/exp. OR ‘gestational
diabetes’:ti,ab,kw) OR ((diabetes:ti,ab,kw OR ‘glucose tol-
erance’:tiabkw OR ‘glucose intolerance’ti,abkw OR
hyperglycemia:ti,abkw OR ‘blood glucose’:ti,ab,kw OR
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‘diabetes mellitus’/de OR ‘impaired glucose tolerance’/de
OR ‘hyperglycemia’/de) AND (‘pregnant woman’/exp.
OR ‘pregnancy’/exp. OR pregnancy:ti,abkw OR ‘preg-
nant women’:ti,ab,kw)) AND (‘seasonal variation’:ti,ab,kw
OR season:tiabkw OR ‘ambient temperature’ti,ab,kw
OR ‘environmental temperature’:tiabkw OR weather:ti,
ab,kw OR climate:ti,abkw OR ‘climate change’:ti,ab,kw
OR ‘climate’/exp. OR ‘meteorological phenomena’/exp.
OR ‘environmental temperature’/exp. OR ‘seasonal vari-
ation’/exp). In EMBASE, we used the following search
restrictions: AND ([article]/lim OR [article in press]/lim)
AND [humans]/lim AND [english]/lim.

Articles were excluded if they were not available in
English, were duplicates, conducted in animals, had ir-
relevant exposures, or irrelevant outcomes, were irrele-
vant study types (i.e. case-reports, reviews, meta-
analyses), were not in pregnant women, or the study
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outcomes occurred outside of pregnancy (e.g. postpar-
tum glucose levels) (see Fig. 1). In addition to our data-
base searches, we manually checked the listed references
of identified articles and relevant reviews for additional
articles that we may have missed in our search in order
to maximize the likelihood of identifying all relevant
articles.

Results

Our systematic search strategy returned 847 articles, 229
from PubMed and 618 from EMBASE (Fig. 1). We iden-
tified one additional article by reviewing article reference
lists. After excluding duplicate articles (1 =83), we ex-
cluded an additional 734 articles through title and ab-
stract screening. We included 31 articles in our full text
review, and excluded an additional 15 based on our in-
clusion/exclusion criteria (non-pregnant population: n =
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Fig. 1 PRISMA flow diagram illustrating the selection process for studies included in this review [adapted from Moher et al. 2009 [36]]
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3, wrong exposure: n = 7, wrong outcome: # = 5). We did
not find any articles on humidity and GDM or maternal
glycemic outcomes. Additionally, our search did not
identify any articles that investigated other maternal or
neonatal short and long-term health outcomes as conse-
quences of GDM and/or glycemic outcomes during
pregnancy associated with climate factors. In total, we
included 16 articles on the associations of ambient
temperature and/or season with GDM (Table 2) and
maternal glycemic outcomes (Table 3) during pregnancy
in this review.

Glucose related study outcomes

There was significant heterogeneity in method of GDM
screening/diagnosis across the included studies. Table 1
summarizes the GDM screening methods and diagnostic
criteria used by the included studies. The majority of
screening methods fall into two categories: (1) a one-step
approach, where GDM is diagnosed based on results of a
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single fasting oral glucose tolerance test (OGTT), or (2) a
two-step approach, where women are pre-screened, gen-
erally with a non-fasting glucose challenge test (GCT),
and only women with abnormal GCT glucose levels (e.g.
> 140 mg/dL) receive a subsequent OGTT to diagnose
GDM. The International Association of Diabetes in Preg-
nancy Study Group (IADPSG) criteria follows a one-step
approach using a fasting 2-h 75-g OGTT with relatively
low glucose level thresholds, requiring only one abnormal
value for a positive test. Many countries and organizations,
including the WHO, have adopted the IADPSG criteria.
Conversely, in the United States, GDM is generally
screened and diagnosed using a more conservative two-
step approach, consisting of [1] a non-fasting 50-g GCT,
followed by [2] a fasting 3-h 100-g OGTT, with higher
glucose level thresholds than the IADPSG criteria, requir-
ing two abnormal values for a positive test [8]. Differences
in GDM screening and diagnostic criteria are important
factors to consider when comparing study results below.

Table 1 Gestational diabetes mellitus screening and diagnostic criteria

Guidelines Year Approach GCT GCT OGTT OGTT Glucose Threshold Values GDM
Glucose X Diagnosis
Threshold Fasting 1-h 2-h 3-h
One-step approaches
International 2010 1-step - - 75-g 5.1 mmol/L (92mg/ 10 8.5 mmol/L (153 mg/ - 21
Association of dL) mmol/ dL) abnormal
Diabetes and L (180 OGTT
Pregnancy Study mg/dL)
Group (IADPSG) [48]
World Health 1999 1-step - - 75-g  7mmol/L (126 mg/ - 78 mmol/L (140mg/ - 21
Organization (WHO) db) db) abnormal
[49] OGTT
WHO - Modified [45, 2006 1-step - - 75-g  DIP: 7mmol/L (126 DIP: 11.1 mmol/L DIP or
50] mg/dL); GDM: 5.1- (200 mg/dL); GDM: GDM: 21
6.9 mmol/L (92— 8.5-11 mmol/L abnormal
124 mg/dL) (153-198 mg/dL) OGTT
Two-step approaches
Australian Diabetes in 1991 2-step 50-g 78 mmol/  75-g  55mmol/L (9 mg/ - 8mmol/L (144 mg/ - 2]
Pregnancy Society L (140 dL) dL) abnormal
(ADIPS) [51] mg/dL) OGTT
Carpenter and 1982 2-step 50-g 78mmol/  100-g 53 mmol/L (95mg/ 10 8.6 mmol/L (155mg/ 7.8 22
Coustan [52] L (140 dL) mmol/ dL) mmol/ abnormal
mg/dL) L (180 L (140 OGTT
mg/dL) mg/
db)
National Diabetes 1979 2-step 50-g 78mmol/ 100-g 5.8 mmol/L (105 10.5 9.2 mmol/L (166 mg/ 8.0 22
Data Group (NDDG) L (140 mg/dL) mmol/ dL) mmol/ abnormal
Criteria [53] mg/dL) L (189 L (144 OGTT
mg/dL) mg/
du)
WHO - Modified [46, 1999 2-step Random 65mmol/ 75-g 6mmol/ (108 mg/ - 78 mmol/L (140 mg/ - >1
49] glucose L (117 dL) dL) abnormal
mg/dL) OGTT
WHO - Modified [37] 1999 2-step 50-g 77 mmol/  75-g 6.1 mmol/L - 7.8 mmol/L - 21
L (139 abnormal
mg/dL) OGTT

Abbreviations: GCT glucose challenge test, OGT oral glucose tolerance test, GDM gestational diabetes mellitus, DIP diabetes in pregnancy
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In addition to GDM diagnosis, we included studies
with maternal glycemic outcomes such as additional cat-
egories of glucose intolerance based on GCT and/or
OGTT screening results [e.g. abnormal GCT (> 140 mg/
dL), or hyperglycemia in pregnancy]. As with GDM, the
definitions and thresholds used in these classifications
varied across studies. Multiple studies assessed glucose
levels, analyzed as continuous outcomes, usually from
GCT and/or OGTT screenings. Two studies also
assessed various markers of insulin resistance (IR) [e.g.
Matsuda index and homeostasis model assessment of in-
sulin (HOMA-IR, HOMA S)] and beta cell function [e.g.
insulin sensitivity index 2 (ISSI-2), insulinogenic index
(IGI)/HOMA-IR, and HOMA B].

Timing of outcome assessment also varied by study
(Tables 2 & 3), with GDM screening and glycemic out-
come measurement typically occurring between 24 and
28 weeks gestation, but as early as 16—18 weeks in some
studies [42]. Differences in outcome assessment could
also impact observed associations with climate factors as
well as variability across studies.

Climate factors & GDM

Seasonality of GDM Twelve studies evaluated associa-
tions between season and GDM (Table 2) [25-27, 37—
40, 42, 44-46, 54]. Despite differences in geographical
location and seasonal definitions, the majority of studies
consistently reported higher incidence or prevalence of
GDM diagnosis in the summer and lower incidence or
prevalence of GDM diagnosis in the winter [21, 25, 27,
37, 38, 42, 45], while only three studies, two Australian
studies (7 =2749 [26]; n=2120 [40]) and one in the
United Kingdom (n = 1074 [39]) reported no association
between season of screening and GDM. A population-
based study of 4852 pregnancies located in Plymouth,
UK, reported higher prevalence of GDM in the spring
(2.3, 95% CI: 1.5, 3.2) rather than the summer but con-
sistently lower GDM prevalence in the winter (1.4, 95%
CI: 0.8, 2.3) compared to other seasons, although the dif-
ferences were not statistically significant [46]. In a large
South Australian study (n =60,306), incidence of GDM
was significantly associated with season of estimated
date of conception, where adjusted incidence of GDM
was highest in pregnancies with estimated conception
dates in August (6.6%) (Australian winter), with women
entering second trimester—the time period of increasing
insulin resistance—during the months of increasing
temperature [44]. The lowest prevalence of GDM was
among pregnancies with estimated conception dates in
January (5.4%) (Australian summer) [44], with women
entering second trimester during the months of decreas-
ing temperatures.
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Seasonality of glycemic outcomes As with GDM, sea-
sonal variations in gestational glucose levels have been
reported as early as 1995 [26]. Eleven studies assessed
the relationship between seasonality and maternal gly-
cemic outcomes (Table 3) [25-27, 33, 37-40, 42, 45, 46].
Associations of season with blood glucose levels have
been somewhat less consistent across studies compared
to those with GDM, but studies have generally reported
higher glucose levels in the summer. Two UK-based
studies, one population-based study in Plymouth, UK
(n=4852) and one smaller cohort in Cambridge, UK
(n=1074) reported no associations of month or season
of screening with glucose levels from fasting 2-h 75-g
OGTTs [39, 46]. A much larger Israeli retrospective co-
hort study (n =59,882) also reported no associations of
season of screening with glucose levels from a fasting 3-
h 100-g OGTT [33]. However, the authors did observe
lower glucose levels from a non-fasting 50-g GCT in
winter and higher GCT glucose levels in summer, as well
as significantly higher odds of elevated GCT glucose
levels (> 140 mg/dL) in summer compared to winter (OR
1.58, 95% CI: 1.51, 1.66) [33]. Five studies in Italy (5473)
[42], Greece (n=7618) [27], Spain (1 =2366) [38], and
two in Australia (n = 7343, [45]; n = 2120, [40]), observed
higher 1h and 2h glucose levels from 2-h 75-g (3-h
100-g, [27, 38]) OGTTs in the summer and/or lower
levels in the winter (autumn, [38]) compared to other
seasons. Two studies in Sweden (7 =11,538) [25] and
Australia (n=2749) [26] reported higher 2h glucose
levels from a 75-g OGTT in the summer, but did not
see differences in 1h glucose levels by season [25, 26].
However, the majority of these studies did not find vari-
ations in fasting glucose by season, except for a cohort
in Australia that reported lower fasting glucose levels in
summer compared to winter [40], which may reflect dif-
ferent regulation or sensitivity compared to postprandial
glucose levels.

Ambient temperature & GDM Eight studies evaluated
the association between ambient temperature at vary-
ing time points during pregnancy and GDM (Table 2)
[21, 25-27, 37, 38, 41, 43]. Three studies found no
association between various measures of ambient
temperature and GDM [25-27]. An older Australian
study (n=2749) [26] and a larger Swedish cohort
study (n=11,538) [25], reported no association be-
tween mean monthly temperature during the month
of glucose screening and GDM, and a small Greek
study (n=768) reported no association between daily
temperature at time of glucose screening and GDM
[27]. The remaining five studies reported associations
of various ambient temperature variables with in-
creased odds or risk of GDM [21, 37, 38, 41, 43].
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Three studies reported associations of mean
temperature on the day of OGTT screening with in-
creased odds or risk of GDM ([21, 37, 38]. Mean
temperature in the days and weeks leading up to the
OGTT was also associated with increased odds or risk of
GDM in some studies [21, 38, 43]. For example, a large
Canadian registry-based cohort of 555,911 pregnancies
from the greater Toronto area, higher ambient
temperature averaged over the 30-days preceding rou-
tine GDM screening (~ 27 weeks gestation) was signifi-
cantly associated with higher odds of GDM [43].
Specifically, each 10-degree increase in mean 30-day
temperature was associated with a 6% increased odds of
GDM [43]. A separate smaller Toronto-based cohort
study (n=1464), found no association between mean
ambient temperature and GDM when outdoor
temperature was modeled as mean temperature in the
weeks prior to GDM screening (i.e. 7, 14, 21, 28, 35, 42,
49, 56 days pre-screening) [41]. However, researchers
did see associations between average daily change in
ambient temperature (defined as the difference be-
tween the daily minimum and maximum tempera-
tures) over the weeks pre-GDM screening and
increased odds of GDM. For example, the odds of
GDM were 1.20 (95% CI 1.05, 1.37) per degree in-
crease in average daily change in ambient temperature
(°C) over the 14 days pre-GDM screening, with similar
results over different time windows. These associa-
tions were only seen in the seasons where daily tem-
peratures were increasing (February—July, i.e. Spring-
Summer) not in the seasons where daily temperatures
were decreasing (August—January, i.e. Fall-Winter)
[41]. Similarly, a Spanish cohort reported associations
between higher mean temperatures on the day of the
OGTT as well as 14- and 28-days pre-OGTT and in-
creased risk of GDM (e.g. mean temp day of OGTT:
OR 1.029, 95% CI: 1.005-1.054), but in stratified ana-
lyses these associations were present only during sea-
sons where daily temperatures were increasing [38],
which may indicate the importance of other seasonal
and physiological factors such as acclimatization, be-
yond ambient temperature alone.

Of note, all three of the studies reporting no asso-
ciation between temperature and GDM used 1-step
screening approaches to diagnose GDM (Tables 1 &
2), whereas the five studies that reported positive
associations between temperature variables and
GDM reported using a 2-step screening approach or
were located in countries where a 2-step screening
approach is most commonly used [55], although all
women underwent both a GCT and 3h OGTT as
part of the study protocol in Retnakaran et al. [41]
and both the IADPSG and Carpenter and Coustan
criteria are used in Taiwan [21].
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Ambient temperature & glycemic outcomes Eight
studies assessed associations of ambient temperature
measures with maternal glycemic outcomes, including
glucose levels as continuous outcomes, abnormal glu-
cose screening results, insulin resistance, and beta cell
function (Table 3) [25-27, 38, 40-42, 47]. Three co-
horts, one in Greece (n=768) [27], one in Brazil (n=
1030) [47], and one in Spain (n = 2366) [38] found asso-
ciations between higher ambient temperatures measured
on the day of glucose screening (fasting 2-h 75-g OGTT
[27, 47]; 3-h 100-g OGTT [38]) and higher 1 h and 2h
OGTT glucose levels. In four larger cohorts from
Sweden (n=11,538) [25], Italy (n=5473) [42], and two
from Australia (7 =2749 [26], mean temperature of the
calendar month of glucose testing (fasting 2-h 75-g
OGTT) was positively associated with 2h OGTT glu-
cose levels, but only with 1h OGTT glucose levels in
two of the cohorts [40, 42].

In contrast, a recent Canadian study (#=1464) only
found suggestive covariate-adjusted associations of mea-
sures of mean temperature in the weeks prior to glucose
testing (ie. 7, 14, 21, 28, 35, 42, 49, 56days pre-
screening) with higher glucose levels from a fasting 3-h
100-g OGTT [41]. However, they observed stronger and
significant  positive associations of mean daily
temperature change in the weeks prior to glucose testing
(defined as the difference between the daily minimum
and maximum temperatures) with both OGTT fasting
glucose levels and AUCgyjycose (fasting, 30, 60, 120, and
180 min) in covariate-adjusted models [41]. Increased
mean daily temperature change in the weeks prior to
glucose testing was also associated with decreased beta
cell function based on measures of ISSI-2 and (IGI)/
HOMA-IR. When stratified by season, they found that
these associations were only present in the season where
daily temperatures were increasing (February — July, i.e.
Spring-Summer) and not in the season where daily tem-
peratures were decreasing (August — January, ie. Fall-
Winter) [41], indicating the potential importance of
other seasonal factors, such as magnitude and direction
of temperature fluctuations, rather than simple static
temperature. Similar to results of the seasonality studies,
the majority of the above studies found no association
between temperature and fasting glucose levels, however
two recent studies found inverse associations between
temperature and fasting glucose levels [38, 40].

Discussion

In this systematic review, we summarized the current
epidemiologic evidence evaluating climate factors and
GDM. We found consistent evidence for an association
of the summer season with GDM incidence or preva-
lence [21, 25, 27, 37, 38, 42, 44—46] and 2h glucose
levels on the OGTT [25-27, 38, 40, 42, 45]. Evidence of
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an association between temperature and GDM was less
consistent across studies. However, despite some hetero-
geneity in study findings, collective results suggest that
higher ambient temperatures may be associated with
higher glucose levels from GDM screening tests [25-27,
38, 40, 41, 47] and higher odds or risk of GDM [21, 37,
38, 41, 43]. Current study findings suggest that climate
factors may be important to consider in the study and
prevention of GDM, especially in the context of current
and projected global climate change.

The consistent association of season with glycemic
outcomes is supported by findings that season is associ-
ated with diabetes risk outside of pregnancy. Seasonal
patterns have been observed for type 1 diabetes inci-
dence [30]. However, unlike GDM incidence, which
peaks in the summer, incidence of type 1 diabetes diag-
nosis generally peaks in the winter months. Type 1 dia-
betes and GDM have different pathophysiology, which
may explain the discrepancy in seasonal patterns be-
tween diseases. Glycemic control among individuals with
type 2 diabetes also varies by season in a similar pattern
as with type 1 diabetes, with winter months showing
higher hemoglobin Alc levels [56, 57]. Conversely, in-
creased ambient temperature and heat stress have been
consistently associated with increased risk of diabetes
(type 1 and 2) and glucose intolerance in non-pregnant
populations, supporting the association between
temperature and increased glucose levels and GDM
odds/risk during pregnancy [29]. For example, a large
Spanish cohort of non-pregnant adults reported positive
associations between higher mean annual ambient
temperature and higher prevalence of prediabetes, dia-
betes, and insulin resistance, as well as higher fasting
and 2-h glucose levels and HOMA-IR [58]. The fact that
season is associated with the incidence of type 1 dia-
betes, glycemic control in type 2 diabetes, and GDM,
coupled with the relatively consistent findings of effects
of ambient temperature on diabetes odds/risk and glu-
cose intolerance in pregnant and non-pregnant popula-
tions, suggest the need for future studies of seasonality
and temperature related to diabetes risk, with a particu-
lar focus on the mechanisms and reasons for the dis-
cordant seasonal results across diabetes types.

The studies included in this review varied considerably
in terms of exposure assessment, of GDM diagnostic cri-
teria, glucose measurement, methodological approaches,
and geographic location, which may explain some of the
heterogeneity in study results. Results from the included
studies on ambient temperature and GDM were incon-
sistent, which may partially be due to differences in
GDM screening methods across studies (Table 1). Dif-
ferent diagnostic criteria across studies can affect esti-
mated GDM prevalence, and could affect observed
associations between climate factors and GDM. While
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the studies that found no association between ambient
temperature and GDM all utilized 1-step diagnostic cri-
teria with 2 h 75-g OGTTs, the studies that reported as-
sociations between temperature variables and GDM
reported using a 2-step diagnostic approach and/or were
located in countries where a 2-step approach is generally
used, although one study administered OGTTs to all
women, and 3h 100-g OGTTs were administered. Dif-
ferences in glucose screening method (e.g. 75-g vs. 100-g
OGTT) or timing of testing during pregnancy, could
also contribute to the inconsistencies observed between
associations of ambient temperature or season with dif-
ferent OGTT glucose levels. Some studies reported asso-
ciations for certain OGTT glucose levels but not others
(e.g. 2h but not the 1h values) [25, 26], while another
study reported associations with the GCT glucose levels,
but not with OGTT glucose levels [33]. Differences in
ambient temperature patterns and ranges across geo-
graphic regions could also have contributed to inconsist-
encies in study findings. GDM prevalence is highly
variable across geographic regions and is highest in the
Middle East (median 15.2%) and South-East Asia
(15.0%), regions with extreme high temperatures, and
noticeably lower in Europe (6.1%) and North America
(7.0%), regions with relatively lower temperatures [59].
However, no studies have investigated associations of ab-
solute ambient temperatures and GDM across geo-
graphic regions.

Pregnant women may be more susceptible to the ad-
verse health effects of climate related factors including
heat and cold stress [60] and may therefore be particu-
larly vulnerable to the development of diabetes and al-
tered glycemic outcomes associated with climate factors
in the face of increases in extreme temperatures.

Multiple hypotheses exist for the observed effect of
ambient temperature and season on GDM and glycemic
outcomes. One possible mechanism is through brown
adipose tissue activation, which can induce weight
changes and insulin sensitivity [29, 61, 62]. A recent
study reported a positive association between ambient
temperature and glycated hemoglobin (HbAlc) levels in
65,535 clinical patients [63]. The researchers hypothe-
sized that these fluctuations could be due to seasonal al-
terations in brown adipose tissue (BAT) and its
activation. BAT is sensitive to temperature fluctuations.
At temperatures below the thermoneutral zone (i.e. 27—
30°C in unclothed adults), BAT is activated to produce
heat [64], consuming large amounts of glucose from the
blood in the process [65-68]. Glucose uptake during
non-shivering thermogenesis in BAT occurs through up-
regulation of mitochondrial uncoupling protein 1
(UCP1) and glucose transporters (GLUT1 and GLUT4)
[63, 69, 70]. Additionally, heat shock protein (HSP) ex-
pression in BAT is induced at cold temperatures [71—
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73]. Patients with diabetes and insulin resistance have
reduced Hsp70 expression [74]. Reduced Hsp70 has
been associated with hyperglycemia during pregnancy in
mice [75].

In rodents, BAT may be especially important in
regulating glucose metabolism during pregnancy; Qiao
et al. showed that fetuses of UCP1 knockout dams
had significantly higher blood glucose levels than
wild-type dams [76]. At higher temperatures, there is
a decrease in temperature-induced BAT activation,
which could result in a decrease in glucose uptake.
Separately, at higher temperatures beige and brown
adipocytes can shift in chromatin structure to resem-
ble white adipose tissue, leading to reduced expres-
sion of UPCl1 and down regulation of lipid
metabolism pathways [75]. In a clinical human popu-
lation, BAT, detected using positron-emission tomo-
graphic and computed tomographic (PET-CT) scans,
was inversely correlated with ambient temperature on
the day of scan [77].

Alternative hypotheses to explain the positive associ-
ation between ambient temperature and glucose levels
include increased beta-cell dysfunction, insulin resist-
ance, hemoconcentration and increased arterialization of
venous blood [5, 33, 78]. One study in our review looked
at associations between ambient temperature and
markers of beta-cell function. The authors found that
the higher mean daily temperature change in the 3-5
weeks prior to OGTT screening was significantly associ-
ated with decreased ISSI-2 and (IGI)/HOMA-IR, impli-
cating  beta-cell  dysfunction as a  potential
pathophysiological mechanism behind the parallel asso-
ciations with higher glucose levels and GDM prevalence,
although suggestive associations were also seen with in-
crease insulin resistance (i.e. Matsuda Index and
HOMA-IR) [41]. In a large Spanish cohort of non-
pregnant adults, higher annual mean temperature was
associated with increased insulin resistance (HOMA-IR)
[58]. Alternatively, higher ambient temperatures and in-
creased activity in warmer weather could lead to dehy-
dration, and resulting hemoconcentration, which could
cause an apparent increase in blood glucose concentra-
tions during glucose screening and resulting GDM diag-
noses [33]. Similarly, blood flow distribution is altered at
high temperatures, leading to increased arterialization of
venous blood, which could result in higher glucose levels
measured in venous blood samples leading to increases
in failed GDM screening tests and GDM diagnoses. In
climate chamber experiments, Moses et al. [5] and
Dumbke et al. [78] observed significantly increased levels
of OGTT glucose levels [5, 78] and insulin levels [78] at
higher temperatures in healthy male subjects. These
physiological changes at high temperatures could cause
transient elevations in measured blood glucose levels,
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leading to potential misclassification of abnormal glu-
cose tolerance and GDM.

Seasonal factors unrelated to temperature may also
contribute to the observed seasonal variation in GDM.
Circadian and thermogenic networks in BAT are con-
trolled by the nuclear receptor Rev-erba, which re-
presses UPC1 expression in BAT [79, 80]. Consequently,
studies have shown that UCP1 expression in BAT fol-
lows a circadian rhythm in rodents, peaking during the
day [63]. Seasonal changes in circadian rhythms, could
contribute to the observed seasonal patterns of GDM
risk. Alternatively, seasonal variations in physical activity
and dietary patterns, as well as access to green space
may also play a role in the observed seasonal variation in
GDM and glycemic outcomes. Vitamin D may help
regulate glucose homeostasis by increasing insulin sensi-
tivity and beta-cell function, or decreasing systemic in-
flammation [35] and lower Vitamin D levels and
Vitamin D deficiency, have been associated with in-
creased GDM risk [81-85] and higher fasting glucose
and insulin resistance during pregnancy [85]. Decreased
sun exposure in winter months during early pregnancy
could lead to decreased vitamin D levels during early
pregnancy, which has been associated with subsequent
risk of GDM during later pregnancy, at the time of rou-
tine GDM screening [82] In addition to increased GDM
risk, lower Vitamin D levels during early pregnancy have
been associated with higher HOMA-IR, lower Matsuda
index, and lower ISSI-2 during in later pregnancy (24—
28 weeks) [82].

Temperature and season also affect other environmen-
tal factors known to be associated with GDM, such as
air pollution [23, 24]. For example, exposure to ambient
air pollutants, including nitrous oxides and PM,s (i.e.
particulate matter with a diameter of 2.5 pm or less), has
been consistently associated with increased GDM risk
[84, 86-91]. Additionally, potential seasonal changes in
gut microbiome could contribute to the observed sea-
sonal variation in glycemic outcomes [92, 93]; in GDM
complicated pregnancies, altered maternal gut micro-
biome have been reported [94, 95]. Overall, the exact
mechanism behind the effect of season and ambient
temperature on GDM and glycemic outcomes remains
unclear. Further research is needed to investigate the
interplay between temperature and additional meteoro-
logical factors with glucose regulation in pregnancy
using toxicologic and epidemiologic studies.

None of the identified studies assessed the associations
of other meteorological-related factors such as precipita-
tion and humidity on GDM risk. Seasonal variations in
these factors could also contribute to the observed vari-
ation in GDM and glycemic outcomes. For example, a
recent study found a positive correlation between dia-
betes incidence and precipitation in Cameroon [96].
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Exposure to ambient air pollution has also been associ-
ated with increased risk of GDM [23] and varies by sea-
son and meteorological factors. However, further
research is needed to understand the role of these add-
itional factors and how they may be related to or interact
with temperature to impact risk of GDM.

There is growing evidence that certain subsets of
the population (i.e. those with a family history of dia-
betes or individuals who are overweight/obese) may
be more susceptible to the effects of environmental
exposures compared to others [97-100]. However,
none of the reviewed studies assessed effect modifica-
tion of the associations between climate factors and
GDM or maternal glycemic outcomes by factors such
as family history of diabetes, pre-pregnancy BMI, age,
or race/ethnicity. Future studies should assess hetero-
geneity in associations across different population
subgroups.

Due to the ubiquitous nature of environmental expo-
sures, individuals are continuously exposed to complex
combinations of environmental factors. While there is
increasing awareness for the need to incorporate ana-
lyses of exposure mixtures and combinations in epidemi-
ologic studies, none of the current studies have looked
at cumulative effects of environmental exposures in the
context of multiple climate-related factors such as
temperature, humidity, and precipitation. Further re-
search is needed to understand the potential cumulative
and interactive effects of these climate factors on GDM
risk.

Strategies for Evaluating Climate Factors in Future
Studies of GDM:

1. Consider evaluating climate factors and accounting
for lag time in modeling procedures.

2. Standardize GDM diagnostic criteria and screening
methods.

3. Evaluate possible heterogeneous effects of climate
factors across population subgroups by assessing
effect modification to identify particularly
vulnerable populations.

4. Consider the impact of climate factors on various
populations based on region and space and the
differential effects in given geographic areas.

5. Evaluate the potential confounding and/or
modifying role of season of GDM diagnosis and
ambient temperature prior to GDM screening in
studies of pregnancy and neonatal outcomes in
GDM complicated pregnancies.

6. Evaluate the cumulative impact of multiple climate-
related factors (e.g. temperature, season, humidity,
precipitation, and the interplay with air pollution
and other environmental factors) on GDM and re-
lated outcomes.
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Conclusion

In summary, there is mounting evidence that exposure
to certain climate factors—ambient temperature and sea-
son—during pregnancy is associated with increased risk
of developing GDM and adverse glycemic outcomes.
The seasonality of GDM was consistent across studies,
with higher prevalence of GDM generally observed in
the summer months. Furthermore, higher ambient
temperature may be associated with elevated glucose
levels from GDM screening tests. Associations between
ambient temperature and GDM were more inconsistent;
however, this could be due to differences in GDM diag-
nostic criteria. One major limitation of the current lit-
erature is the lack of consistency in both exposure and
outcome assessment across studies; future studies should
work to standardize these methods. Furthermore, future
work should include more diverse study populations to
allow researchers to identify potential high-risk popula-
tion subgroups. Finally, future studies should include an
emphasis on evaluating effects of exposure to multiple
environmental and climate factors. Given the current
GDM epidemic coupled with current and projected glo-
bal climate change, understanding the extent to which
climate factors might affect GDM risk is imperative to
reducing the risk of this increasingly prevalent and costly
pregnancy complication.
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