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Abstract

Background: Ambient temperature observations from single monitoring stations (usually located at the major
international airport serving a city) are routinely used to estimate heat exposures in epidemiologic studies. This
method of exposure assessment does not account for potential spatial variability in ambient temperature. In
environmental health research, there is increasing interest in utilizing spatially-resolved exposure estimates to
minimize exposure measurement error.

Methods: We conducted time-series analyses to investigate short-term associations between daily temperature
metrics and emergency department (ED) visits for well-established heat-related morbidities in five US cities that
represent different climatic regions: Atlanta, Los Angeles, Phoenix, Salt Lake City, and San Francisco. In addition to
airport monitoring stations, we derived several exposure estimates for each city using a national meteorology data
product (Daymet) available at 1 km spatial resolution.

Results: Across cities, we found positive associations between same-day temperature (maximum or minimum) and
ED visits for heat-sensitive outcomes, including acute renal injury and fluid and electrolyte imbalance. We also
found that exposure assessment methods accounting for spatial variability in temperature and at-risk population
size often resulted in stronger relative risk estimates compared to the use of observations at airports. This pattern
was most apparent when examining daily minimum temperature and in cities where the major airport is located
further away from the urban center.

Conclusion: Epidemiologic studies based on single monitoring stations may underestimate the effect of
temperature on morbidity when the station is less representative of the exposure of the at-risk population.
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Introduction

Studies of the relationship between ambient temperature
and adverse health outcomes routinely utilize observa-
tions at single airport weather stations to derive expos-
ure estimates. While airport stations have long
time series and high-quality data, their measurements
may not accurately reflect average exposure experienced
by the surrounding study population. Specifically, airport
monitors cannot capture intra-urban spatial variability
driven by features of the built and natural environment
[1, 2], especially when there exist urban-rural gradients
due to urban heat island effects (3, 4].

Exposure measurement error that arises from insuffi-
cient characterization of exposure spatial variability may
lead to attenuated health effect estimates [5, 6]. Previous
investigations in air pollution epidemiology have demon-
strated that using more spatially-resolved exposure esti-
mates can result in stronger associations compared to
using a single air quality monitor in the study region [7—
9]. Accurate exposure assessment is an important com-
ponent of population-based health studies, in part be-
cause the health association estimates are frequently
used in subsequent risk assessment and health impact
analyses [10, 11]. While the use of spatially-resolved ex-
posures has become common in air pollution epidemi-
ology, only a few studies on temperature and mortality
have considered heat exposure’s spatial variation in
short-term health effect studies [12-14]. Though
spatially-resolved estimates have been utilized in studies
that focus on spatial exposure contrasts [15—18].

Our study has two objectives. The first is to evaluate
the potential benefits of using fine-scale meteorology
data products when estimating acute health effects of
high temperature, as opposed to a single monitoring sta-
tion. We are particularly interested in comparing health
effect estimates obtained from exposure assessment
methods that account for spatial variability and those
that assume spatially homogenous exposures. The sec-
ond objective of this paper is to fill an important know-
ledge gap on the association between high temperature
and morbidity as measured by emergency department
(ED) visits. Previous work has predominantly focused on
mortality [19-21], and hospitalizations [22-25], and
many of the multi-city US morbidity studies have been
restricted to the Medicare population ages 65 or above.

To achieve these objectives, we conducted time-series
analyses of warm-season daily temperature (maximum
and minimum) and all-age ED visits in five US cities
from different climatic regions: Atlanta, Los Angeles,
Phoenix, Salt Lake City, and San Francisco. To estimate
exposures, we used Daymet [26], a publicly available
product that provides gridded daily meteorology esti-
mates at 1 km spatial resolution starting in 1980. Daymet
data have been found to accurately describe ambient
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temperature and mean heat index at weather stations
across the contiguous United States [27]. Daymet also
provides complete spatial coverage over the United
States such that spatial variability in at-risk population
size can also be incorporated when analyzing aggregated
health outcomes [28]. To our knowledge, this is the first
study to explore the impact of spatially-resolved expos-
ure variables in estimating short-term temperature-
morbidity associations.

Materials and methods

Emergency department visit and meteorological data
Multi-year, patient-level ED records were obtained from
individual hospitals in the Atlanta metropolitan area
(1993-2004) and the Georgia Hospital Association
(2005-2012), the Arizona Department of Health Ser-
vices, Bureau of Public Health Statistics (2008-2016),
the California Health and Human Services Agency, Of-
fice of Statewide Planning and Development; 2005—
2016), and the Utah Department of Health, Office of
Health Care Statistics (2005-2016). Records included
admission date and International Classification of Dis-
eases (ICD) diagnosis codes. ICD 9th revision (ICD-9)
codes were used for ED visits prior to October 1, 2015,
followed by the use of ICD 10th revision (ICD-10) codes.
Our definition of an ED visit included patients seen in
the ED as outpatients and discharged, as well as patients
admitted as inpatients from the ED. The analysis was re-
stricted to the warmest 6 months of the year, May to
October.

We used both the primary and secondary diagnosis
codes to identify ED visits for specific health outcomes
that have been found to be associated with high
temperature in previous studies [29]. The health out-
comes of interest for this study were fluid and electrolyte
imbalance (ICD-9: 276, ICD-10: E86-E87), acute renal
injury (ICD-9: 584, ICD-10: N17), circulatory disease
(ICD-9: 390-459, ICD-10: 100-199), respiratory disease
(ICD-9: 460-519, ICD-10: J00-J99), gastrointestinal in-
fections (ICD-9: 001-009, ICD-10: A00-A09), and heat-
related illnesses (ICD-9: 992, ICD-10: T67). For each of
these outcomes, ED visits were aggregated over the
metropolitan statistical area (MSA) by admission date.

Analytic datasets of daily ED visit counts for each city
were obtained by aggregating ED visits by day based on
patient residential location in each corresponding MSA.
Specifically, an ED visit was included in the study if the
patient’s residential ZIP code corresponded to a ZIP
code tabulation area (ZCTA) that overlapped with the
MSA definition for a city, defined by the U.S. Office of
Management and Budget based on contiguous counties.
The five MSAs varied in the number of counties (and
area size): 20 counties (15,013 km?) for Atlanta, 2 coun-
ties (11,809 km?) for Los Angeles, 2 counties (35,406
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km?) for Phoenix, 3 counties (23,577 km?) for Salt Lake
City, and 5 counties (6136 km?) for San Francisco. Based
on the Koppen-Geiger climate classification [30], the five
cities are classified as: Atlanta (humid subtropical), Los
Angeles (Mediterranean hot summer), Phoenix (acrid
climate), San Francisco (Mediterranean warm/cool sum-
mer), Salt Lake City (hot summer continental).

Daily maximum temperature, minimum temperature,
and average dewpoint temperature observations were
obtained from monitors at the major international air-
port serving each MSA. We also obtained Daymet
(https://daymet.ornl.gov/) gridded surfaces and identified
all 1kmx1km grid cells that are within the MSA
boundary. The Daymet temperature product ingests all
surface observations from the Global Historical Climat-
ology Network. The algorithm also performs spatial-
temporal interpolation using surrounding observations,
as well as information on other weather variables, eleva-
tion, and land/water masks. A Daymet grid cell is linked
to an MSA if the centroid of the 1km grid cell falls
within any of the MSA’s county boundary. Daymet
temperature data were used to develop three different
daily exposure temperature metrics: a daily simple
spatial average of all 1km grid cells over each MSA, a
daily weighted average based on county population, and
a daily weighted average based on ZCTA population.
For time-series analysis of aggregated health outcomes,
the optimal exposure metric should correspond to the
average of exposures of all at-risk individuals. Data on
population size were obtained from the US Census at
the county-level (1990, 2000, and 2010) and at the
ZCTA-level (2000 and 2010). Annual populations were
based on linear interpolation of decadal Census data.
Daily minimum and maximum temperature from the
different exposure assessment methods were also aver-
aged to obtain daily mean temperature.

Statistical analysis

To estimate the association between temperature and
ED visits during warm seasons in each city, we used an
over-dispersed Poisson log-linear model. The primary
analysis focuses on the associations between same-day
(lag 0) temperature and ED visit outcome counts, mod-
eled using natural cubic splines with 4 degrees of free-
dom (3 equidistant interior knots). While mortality
studies have usually utilized longer lags (e.g., 7 days),
previous analyses have found that acute effects of heat
on ED visits operate on shorter lags [29, 31]. We fitted
separate models for each city, each ED visit outcome,
each exposure variable (maximum, average or minimum
temperature), and each exposure assessment method
(airport observations, Daymet simple average, Daymet
county population weighted average (PWA), and Daymet
ZCTA PWA).
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All time-series models included the following variables
for confounder adjustments. We controlled for daily
mean dew-point temperature using natural cubic splines
with 4 degrees of freedom. Long-term and seasonal tem-
poral trends were modeled as a smooth function of day-
of-year with 6 degrees of freedom. We added interaction
terms between time spline coefficients and indicators for
year, resulting in year-specific seasonal trends. For heat-
related illnesses, we only included interactions between
linear day-of-year and indicators of year due to the
smaller number of events. We also included indicators
for day-of-the-week, federal holidays, and hospital-
specific indicators to account for hospitals’ contributions
to the total ED visits in the city.

To better compare the strength of non-linear associa-
tions between ED counts and temperature across differ-
ent exposure assessment methods, we report relative risk
based on two different contrasts along the exposure
range: 75th percentile versus 25th percentile, and 95th
percentile versus 50th percentile. The percentile values
were specific to each city and exposure metric. Some
studies have defined a common reference temperature
by identifying the temperature value that corresponds to
the minimum risk on the non-linear function [32]. We
opted for a percentile-based method because of the re-
striction to the warm season and because the range of
exposure varied across exposure methods.

It is difficult to statistically assess differences in relative
risks estimated from to the use of different exposure as-
sessment methods because these models were fit to the
same health outcome and were non-nested. In addition
to qualitatively examining the magnitude of associations,
we considered two model comparison tools: (1) the
Akaike information criterion (AIC) assuming the out-
come is Poisson and (2) the estimated overdispersion
parameter. Lower values of AIC and overdispersion are
preferred, and may indicate better model fit and out-of-
sample prediction performance. We note that these are
general model comparison tools that do not necessarily
reflect the accuracy and precision in inference for the
relative risk parameters of interest. We conducted three
sensitivity analyses to examine the robustness of the esti-
mated associations and comparison across exposure as-
sessment methods. First, we varied the natural cubic
spline’s degrees of freedom for the exposure of interest
to 3, 5, or 6. Second, we evaluated an additional expos-
ure assessment method by considering only the Daymet
grid cell linked to the airport monitor. Third, we modi-
fied the temperature exposure metric to a 3-day moving
average (same-day, lag-1, lag-2).

Results
Descriptive statistics (mean and standard deviation) of
the four temperature metrics are given in Table 1. Study
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Table 1 Mean (standard deviation) in °C of daily maximum (TMX), mean (AVG) and minimum (TMN) temperature during May to
October by study city for four exposure metrics: airport observations, simple average of Daymet 1 km data, and Daymet population-

weighted averages (PWA) using county or ZIP code population

City Exposure Airport Obs. Daymet Average Daymet County PWA Daymet ZCTA PWA
Atlanta TMX 282 (4.6) 286 (44) 286 (43) 28.7 (44)
AVG 225 (43) 228 (44 226 (43) 234 (44)
TMN 16.6 (4.8) 18.6 (4. 16.6 (4.8) 16.5 (4.8)
Los Angeles TMX 23.1 (33) 275 (4. 280 (4.3) 24.6 (3.5)
AVG 21.7 (3.5) 205 (2. 21.7 3.8) 19.9 (2.5)
TMN 15.1 (3.3) 16.6 (2. 16.0 (2.6) 154 (3.1)
Phoenix TMX 379 (49) 373 (4. 36.0 (4.5) 378 (4.7)
AVG 28.1 (4.6) 30.1 (4. 28.7 (4.6) 315 @47)
TMN 21.0 (5.0) 250 (4. 221 (5.0) 203 (49)
Salt Lake City TMX 275 (74) 25.5 (6. 23.1 (6.6) 274 (7.1)
AVG 15.8 (5.8) 20.3 (6. 17.5 (6.0) 20.5 (6.6)
TMN 108 (55) 135 (6. 119 (56) 85 (5.3)
San Francisco TMX 21.7 (3.7) 234 (3. 239 (3.9 21.1.33)
AVG 180 (2.8) 16.6 (2. 18.5 (3.0) 17.2 (2.5)
TMN 124 (2.2) 12.8 (1. 123 (20) 120 2.1)

locations showed clear geographical differences in
temperature. For all exposure metrics, San Francisco
and Los Angeles had lower temperatures, while Phoenix
had considerably higher temperatures. Supplementary
Figure S1 shows the spatial variability in average Daymet
maximum and minimum temperature (May to October)
at 1 km resolution and locations of airport monitors. We
assessed spatial variability by computing the standard
deviation of Daymet values within each MSA on each
day. Across the study period, the average standard devi-
ation for maximum (minimum) temperature were: 0.33
(0.27) for Atlanta, 1.94 (0.99) for Los Angeles, 2.19
(1.76) for Phoenix, 3.29 (2.13) for Salt Lake City, and
0.79 (0.45) for San Francisco. Greater within-MSA vari-
ability was observed for cities with larger area and with
more heterogeneous topography.

Pairwise correlations between the four temperature
metrics are given in Supplementary Table S1. The three
Daymet metrics were highly correlated (> 0.90) with

airport observations, except for Los Angeles and San
Francisco. For example, correlations between Daymet
average and airport observations for minimum
temperature were 0.93 for Atlanta, 0.87 for Los Angeles,
0.95 for Phoenix, 0.97 for Salt Lake City, and 0.79 for
San Francisco. Airport monitors in Los Angeles and San
Francisco are located by the water (Figure S1) and this
likely contributed to their weaker correlations with other
exposure metrics [33]. We also calculated correlations
between on the subset of days when airport monitor ob-
servations were above its the 75th percentile. The corre-
lations were consistently lower when restricted to the
highest quartiles of temperature, especially for daily
maximum temperature in Los Angeles.
Outcome-specific total and mean daily ED visits are
shown in Table 2. Relative risks (RRs) of daily ED
visits associated with same-day temperature between
the 95th and the 50th percentiles are shown in Fig. 1
for minimum temperature and in Fig. 2 for maximum

Table 2 Total counts of emergency department visits during May to October in five US cities. Daily average counts are provided in

parentheses

Atlanta Los Angeles Phoenix San Francisco Salt Lake City

1993-2012 2005-2016 2008-2016 2005-2016 2005-2016
Fluid and electrolyte imbalance 593,202 (162) 1,447,202 (655) 321,448 (194) 548,596 (248) 108,112 (49)
Acute renal injury 131,444 (36) 392,949 (179) 70,735 (8) 139,685 (63) 17,035 (8)
Circulatory diseases 2,289,447 (622) 4,637,289 (2100) 875,401 (529) 1,909,559 (865) 229,422 (104)
Respiratory diseases 1,971,681 (536) 3,130,345 (1418) 715,187 (432) 1,315,687 (596) 193,141 (87)
Gastrointestinal infections 54,712 (15) 95,024 (43) 17,151 (10) 37,574 (17) 8406 (4)
Heat-related illness 12,332 (3) 9484 (4) 5986 (4) 3081 (1) 685 (0)
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Fig. 1 Relative risks (RR) of daily emergency department visits associated with same-day minimum temperature between the 95th and the 50th
percentile, comparing four different exposure assessment methods: airport observations (o), Daymet average (m), Daymet county-level
population-weighted average (o), and Daymet ZCTA population-weighted average (A). The y-axis ranges are different across outcomes
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temperature. Overall, consistent positive associations
were identified between ambient temperature and ED
visits. We also found evidence that exposure assess-
ment methods accounting for spatial variability in
temperature and population are associated with stron-
ger RR estimates compared to the use of airport
monitor observations. This pattern is most apparent
for Los Angeles and San Francisco, for outcomes that
are particularly heat-sensitive (i.e., fluid and electro-
lyte imbalance, heat-related illnesses, and acute kidney
injury), and for minimum temperature. Similar pat-
terns were found for RRs between the 75th and 25th
percentile of the exposure (Supplementary Figures S2
and S3). RRs for daily mean temperature (Supplemen-
tal Figures S4 and S5) are similar to RRs or daily
maximum temperature. We continue to see stronger
associations with the use of Daymet data projects in
Los Angeles and San Francisco, and for fluid and
electrolyte imbalance and heat-related illnesses.

To Dbetter visualize differences in the entire
exposure-response function due to exposure assess-
ment methods, Fig. 3 shows the relative risk for two
outcomes (fluid and electrolyte imbalance, and acute
kidney injury) in Los Angeles and San Francisco,
comparing the airport observations and Daymet
ZCTA PWA exposures. The exposure-response func-
tion is centered at the 50th percentile of each expos-
ure metric. We see evidence that accounting spatial
variability resulted in steeper changes in relative risks
across the entire exposure distribution in the cities
with the largest differences in temperature distribu-
tion when comparing their Daymet exposures and air-
port observations. Differences in AIC and ratios of
overdispersion for each city, outcome, and
temperature metric are given in Supplementary Table
S3. In general, we see evidence that the use of
Daymet-derived exposures resulted in smaller AIC
and overdispersion in Los Angeles and San Francisco.
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Fig. 2 Relative risks (RR) of daily emergency department visits associated with same-day maximum temperature (Max) between the 95th and the
50th percentile, comparing four different exposure assessment methods: airport observation (o), average of Daymet data (m), county-level
population-weighted average (o), and ZIP code-level population-weighted average (A). The y-axis ranges are different across outcomes
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This suggests that the differences observed in RRs
and exposure-response relationships lead to better
model fit.

In sensitivity analyses, when considering using Daymet
values at the airport monitors, we found that estimated
RRs were either similar to those using airport observa-
tions (e.g., Los Angeles and San Francisco) or similar to
those using population-weighted Daymet data (Supple-
mentary Figures S4 and S5). The estimated RRs across
exposure metrics were also robust against changing the
degrees of freedom for the exposure-response function
from 4 to 3, 5, or 6 (results for Daymet ZCTA PWA ex-
posures given in Supplementary Figures S6 and S7). RRs
of daily ED visits associated with 3-day moving-average
temperature between the 95th and the 50th are given in
Supplementary Figures S8 and S9. Generally, we found
that the use of moving average temperature data re-
duced differences between using airport observations
and Daymet ZCTA PWA exposures. One explanation

may be that additional temporal smoothing increased
the correlation between monitor measurements and
Daymet-derived exposures. However, differences in rela-
tive risk estimates across exposure metrics were still
more pronounced for minimum temperature and in San
Francisco and Los Angeles. Numerical values of all esti-
mated relative risks and 95% confidence intervals for all
primary analyses are provided in the Supplementary
Materials.

Discussion

We conducted time-series analyses to examine associa-
tions between same-day temperature and ED visits in
five US cities: Atlanta, Los Angeles, Phoenix, Salt Lake
City and San Francisco. In addition to airport monitor-
ing stations, we utilized the Daymet maximum and mini-
mum temperature products at 1km spatial resolution.
Overall, we found consistent positive associations be-
tween ambient temperature and ED visits for various
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Fluid and Electrolyte Imbalance — San Francisco
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Fig. 3 Exposure-response functions and 95% pointwise confidence intervals for warm-season daily minimum temperature and same-day
emergency department visits for fluid and electrolyte imbalance and acute kidney injury, comparing two different exposure assessment methods:
airport observations and Daymet ZCTA population-weighted average (PWA). Reference level for the relative risk (RR) is the median observed

Fluid and Electrolyte Imbalance — Los Angeles
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outcomes across cities, though associations were often
stronger when using Daymet-based exposures as com-
pared to those from the airport stations. Furthermore,
incorporating spatial distributions of the at-risk popula-
tion may provide a more accurate measure of the
temperature experienced by the populations of each of
the cities.

A few recent temperature and mortality studies have
also considered spatially-varying temperature estimates
developed by various modeling approaches. For example,
a study in Brisbane, Australia showed that spatially-
resolved exposure estimates obtained from geostatistical
models gave a slightly better model fit and stronger
exposure-response functions compared to observations
at a central monitor or averages of multiple monitors
[12]. Similar findings are reported by Lee et al. [13], in a
study in Southeastern US with 1km exposure estimated
using a statistical model with satellite parameters. Fi-
nally, in a study of 113 US counties, Weinberger et al.
[14], found that associations were largely similar with
the use of weather station observations or population-
weighted temperature estimates based on a 4km
temperature product. To our knowledge, our study is
the first to compare impacts of different temperature ex-
posure metrics using spatially-resolved temperature data
products in analyzing ED visits instead of mortality.

Another unique aspect of our study is the evaluation
of daily minimum temperature. Prolonged exposure to

heat can overwork the body’s natural compensatory
mechanisms. Studies have shown that hot nights mea-
sured by daily minimum temperature preceded or
followed by hot days are associated with adverse health
outcomes and excess mortality [34—36]. This has been
attributed to the body not having time to recover from
heat exposure. In order to maintain thermal homeostasis
during heat events, cardiac output increases and the
body redirects blood flow from vital organs to the skin,
thus cooling the body [37]. Sweating also increases to
cool the body, but excessive sweating can lead to re-
duced blood volume and dehydration. These mecha-
nisms are often attenuated in the elderly or populations
with comorbidities and could be a contributing factor to
the increases seen in mortality risk when using a mini-
mum temperature threshold [36, 38]. Murage et al. [36],
found mortality risks were increased on hot nights
followed by a hot day more than on cool nights followed
by hot days. Overall, the above studies examined mini-
mum temperature and mortality risks but could help ex-
plain the strong associations seen with minimum
temperatures and morbidity for this analysis. We also
note that maximum daily temperature typically occurs
after half of the day has elapsed. Hence the weaker ob-
served associations may reflect the temporal misalign-
ment between outcome and short-term exposure. In
particular, Davis et al. [39], examined associations be-
tween hourly temperature and mortality, and found that
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yesterday’s afternoon temperature had strong associa-
tions in Boston, Philadelphia and Seattle. Hence, future
work may consider exploring the use of Daymet prod-
ucts in estimating exposure lag structures for different
outcomes and temperature characteristics.

We found that differences in estimated RR’s between
airport observations and Daymet-based exposures to be
larger for minimum temperature than maximum
temperature. One possible explanation is that minimum
temperature corresponds to night-time exposure when
individuals are most likely to be at home. Hence, using
population-weighted average may better reflect average
exposures. In contrast, population-weighted maximum
temperature exposure may still be subject to consider-
able error due to variation in between-individual time-
activity patterns. Another possible explanation is that
urbanization has stronger impacts on night time
temperature compared to daytime hours, contributing to
larger spatial variation in minimum temperature that
may not be captured by airport monitors. We also note
that distributions of Daymet-based minimum tempera-
tures exposures were more different than airport obser-
vations (Table S2). For example, in Los Angeles, the
differences between the 95th and 50th percentile were
4.25°C for Daymet ZCTA population-weighted average
versus 3.33 °C for airport observations. Hence, the larger
absolute change in exposure may also contribute to
higher risk estimates.

Although Daymet is a well-established meteorology
product, one limitation is its incomplete representation
of urban heat islands (UHIs), which comes from several
factors. First, Daymet uses stations compiled within the
Global Historical Climatology Network-Daily (GHCN-
D) dataset, from the US National Centers for Environ-
mental Information. For the US, the GHCN-D dataset
compiles US automated surface observing stations
(ASOS) which include airports, cooperative network sta-
tions (e.g. US National Weather Service cooperative net-
work stations), and some regional mesonets (e.g. Remote
Automatic Weather Station [RAWS],), providing roughly
10-15,000 temperature observations a day across the
contiguous US through the study period [40], which
may have insufficient density in to fully observe UHIs.
Additionally, Daymet uses a truncated Gaussian filter to
perform the spatial interpolation of the station observa-
tions to the grid (on average 20 stations per grid point),
effectively smoothing small scale observed variations in
regions of high observation density. Finally, Daymet uses
elevation as a predictor within their model (as elevation
strongly influences temperature), but does not use any
other geophysical attributes such as urban fraction [26].
These three factors limit the representation of UHIs in
Daymet to resemble smooth bullseyes with possibly re-
duced magnitudes. We note that the generalized
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concepts of sparse stations, interpolation functions, and
limited geophysical predictors are common to essentially
all currently available in situ observation based gridded
meteorology products.

Possible extensions to alleviate these concerns include
use of supplemental station networks, use of other geo-
physical attributes as predictors in statistical models, or
incorporation of urban models within the general
interpolation framework to explicitly represent UHIs.
For example, there are many thousands more stations
available in the past 10-15 years through local mesonets
that may improve representation of UHIs. There are also
high-resolution land use/land cover maps that allow for
inclusion of other geophysical predictors in a statistical
model, or use of physically based urban models [41], that
explicitly model the full energy balance of urban grid
cells to better represent the spatial variability of UHIs
[42]. These extensions are the subject of current re-
search by this team [43].

Our study also has several limitations common to
those that utilize administrative health databases. First,
our exposure estimates do not account for individual ac-
tivity patterns and indoor temperature. However, by
using only temporal contrast in exposure, long-term
trends that impact personal exposures should not con-
found estimated relative risks. Moreover, quantifying
risks associated with ambient temperature is more rele-
vant for designing local heat warning systems. Second,
we did not control for ambient air pollution, such as
ozone and fine particulate matter, which have been asso-
ciated with various cardiorespiratory outcomes. Higher
temperature often increases pollutant concentrations
due to increased emission (e.g., from electricity gener-
ation) and favorable conditions for pollutant formation
and transport. Hence, controlling for ambient pollution
may reduce the total association of temperature on ED
visits [44]. However, some multi-city mortality studies
have also demonstrated that adjusting for ambient air
pollution often lead to similar health effect estimates for
temperature [20, 45, 46]. Finally, our empirical analyses
do not allow for a rigorous quantification of attenuation
in estimated relative risks due to spatial variation in heat
exposures. A simulation study will help characterize how
different degrees of spatial variation and the location of
the single observation monitor can impact health effect
estimation. The 1km spatial resolution of Daymet can
also be used to investigate whether this is an optimal
spatial aggregation most practical for short-term expos-
ure and health studies.

Conclusion

In summary, this study found positive health associa-
tions between high temperature and emergency depart-
ment visits in five US cities located in different climate
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regions. The comparison of different exposure metrics
suggests that epidemiological studies based on single
monitoring stations may underestimate the effect of
temperature on morbidity when monitoring station is
less representative of the exposure of the at-risk popula-
tion. Our results further demonstrate the potential ad-
vantages of using spatially-resolved, population-weighted
exposure estimates in estimating health effects of short-
term heat exposure, and can benefit from future studies
that examine additional locations, health outcomes, and
exposure lag structures.
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