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Abstract

Background: Bisphenol A (BPA) is an endocrine disruptor that it is present in numerous products of daily use. The
aim of this study was to assess the potential association of serum BPA concentrations and the risk of incident
breast and prostate cancer in a sub-cohort of the Spanish European Prospective Investigation into Cancer and
Nutrition (EPIC).

Methods: We designed a case-cohort study within the EPIC-Spain cohort. Study population consisted on 4812
participants from 4 EPIC-Spain centers (547 breast cancer cases, 575 prostate cancer cases and 3690 sub-cohort
participants). BPA exposure was assessed by means of chemical analyses of serum samples collected at recruitment.
Borgan II weighted Cox regression was used to estimate hazard ratios.

Results: Median follow-up time in our study was 16.9 years. BPA geometric mean serum values of cases and sub-
cohort were 1.12 ng/ml vs 1.10 ng/ml respectively for breast cancer and 1.33 ng/ml vs 1.29 ng/ml respectively for
prostate cancer. When categorizing BPA into tertiles, a 40% increase in risk of prostate cancer for tertile 1 (p = 0.022),
37% increase for tertile 2 (p = 0.034) and 31% increase for tertile 3 (p = 0.072) was observed with respect to values
bellow the limit of detection. No significant association was observed between BPA levels and breast cancer risk.

Conclusions: We found a similar percentage of detection of BPA among cases and sub-cohort from our
population, and no association with breast cancer risk was observed. However, we found a higher risk of prostate
cancer for the increase in serum BPA levels. Further investigation is needed to understand the influence of BPA in
prostate cancer risk.
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Background
Cancer incidence is increasing worldwide with 18.1 mil-
lion new cancer cases and 9.6 million cancer deaths in
2018 [1]. In Europe, breast and prostate cancers lead
cancer incidence as they account for 13.5 and 12.6% of
the newly diagnosed cases in 2018 respectively [2]. The
same is observed in Spain, with 32,536 incident breast
cancer cases and 34,394 prostate cancer cases in 2019
[3]. Some risk factors of these hormone dependent can-
cers are related to lifestyle: diet, smoking habit, weight,
alcohol consumption and physical activity [4, 5]. How-
ever, owing to the hormonal dependence of these tu-
mors, some environmental pollutants have the potential
to act as carcinogens. In this regard, Bisphenol A (BPA)
is considered an endocrine disruptor (ED) first devel-
oped in the 1890s. BPA is widely produced for the
manufacture of polysulfones and polycarbonate plastic,
polymers and epoxy resin, and thermal paper and it is
one of the highest volume chemicals produced world-
wide with 372,000 t produced in 2012 [6]. Therefore its
presence is considered to be ubiquitous in the environ-
ment and human exposure is continuous [7, 8]. BPA has
been detected in the urine (> 0.4 ng/ml) [9–12] of nearly
90% of adults and children as well as in the serum of
general population, pregnant women, placenta, breast
milk and amniotic fluid [13–18]. Humans are exposed to
BPA through several routes: food (oral), occupation (in-
halation) and contact materials, plastic type and medical
devices (dermal) [7, 19]. However, the main exposure
route of BPA is through diet, as many food packaging
like tins, cans, plastic boxing etc. have BPA in their com-
position and it migrates to the food [7, 20–24].
BPA is considered a non-persistent chemical, i.e., as it

is degraded in the organism and there is evidence that
BPA acts as an endocrine disruptor with estrogenic ef-
fects in the rodent mammary gland [25–27]. Moreover,
prenatal BPA exposure in rats induces preneoplastic le-
sions in the mammary [28]. Thus, studies conducted
in vitro have shown that the exposure of the human
breast cancer cell line to BPA increased its proliferation
and caused increased oxidative stress [29]. In this regard,
in vitro and animal studies have shown that BPA in-
duces the proliferation of the androgen-sensitive human
prostate cancer cells and increases epididymis weight
[14, 30]. However, although BPA has been linked to hor-
mone dependent cancer risk in animals its evidence in
human is scare [31–33]. However, the number of epi-
demiological studies addressing this issue is growing
[34–39]. Tough some of them have showed certain suf-
fers from limitations the samples were collected after
breast cancer diagnosis or have the limitation character-
istic of retrospective case–control studies. In this study
we have sought to avoid these limitations in our sample
design and sampling.

The present study aims to assess the potential associ-
ation of serum BPA concentrations and the risk of inci-
dent breast and prostate cancer in a sub-cohort of the
Spanish European Prospective Investigation into Cancer
and Nutrition (EPIC).

Methods
Study design
We designed a case-cohort study within the EPIC-Spain
cohort. EPIC is a prospective multi-centric cohort study
planned to investigate the relationship between diet, life-
styles and cancer. It involves 23 research centers in 10
European countries, including five Spanish centers: As-
turias, Granada, Murcia, Navarra and Gipuzkoa [40].
Study participants reported information about dietary,
lifestyle, reproductive and anthropometric factors at
baseline.

Study population
The EPIC-Spain included 41,446 participants (62%
women) aged 29–69 years enrolled between 1992 and
1996 in five provinces of Spain. Participants were re-
cruited mostly among blood donors (about 60%) and the
study population covered a broad range of socioeco-
nomic and educational levels. Furthermore, they signed
an informed consent and the study was approved by
Ethics Committee of the Bellvitge Hospital (Barcelona).
EPIC study populations and data collection were ex-
plained elsewhere [41].
Study population in the present study consisted of

3690 sub-cohort participants, 547 breast cancer cases
and 575 prostate cancer cases from four EPIC-Spain
centers (Gipuzkoa, Granada, Murcia and Navarra) with
available data on BPA exposure. Participants selected for
the sub-cohort included, by design, an overlap of 57
breast cancer cases and 111 prostate cancer cases
(Fig. 1).
The sub-cohort was selected among participants regis-

tered as alive in the EPIC cohort until 30/12/2013 using
stratified random sampling by sex (50% men and 50%
women) and age (quintiles), excluding persons with can-
cer at recruitment. In our sub-cohort, 79.6% of the par-
ticipants provided a fasting blood sample at recruitment
and 85.6% of them were extracted between 6 am and 11
am. However, we can generalize and assume most of our
samples were taken during the mornings and in fasting
conditions.
Follow-up time began at EPIC recruitment and cancer

cases were defined as participants with a diagnosis of
breast or prostate cancer (i.e. ICD10 codes C50 and C61
respectively) during the study period. Incident cancer
cases are identified by linkage with the Population Can-
cer Registries. Incidence date was determined by the
date of cancer diagnosis and prevalent cases were
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excluded (participants with a cancer diagnosis prior to
recruitment). Dates of end of follow-up for cases identi-
fication were: 31/12/2012 for Granada, 31/12/2013 for
Murcia, 31/12/2011 for Navarra and 30/12/2013 for
Gipuzkoa. For sub-cohort participants, the end of
follow-up date was the lowest among date of diagnosis,
date of death, date of loss of follow-up or the center-
specific end-of-follow-up, whatever happened first.
Vital status and date of death of participants in our

sub-cohort was determined by linking EPIC data base
with the National and regional Registries, IND (death
national index), INE (statistical national institute) and
regional mortality register until 30/12/2013 (maximum
date of identification of incident cases).

Covariate assessment
Information on lifestyle and other health-related factors was
obtained by an interviewer-administered questionnaire at

baseline. All interviewers had received appropriate training
for this task.
Measurements of height, weight, and hip and waist cir-

cumferences were taken at recruitment using standar-
dised procedures [41]. The questionnaire included items
on educational level, history of previous illnesses, history
of tobacco use, alcohol consumption, physical activity,
and reproductive history [41]. The participants were
classified into three categories by body mass index
(BMI): < 25 kg/m2, 25- < 30 kg/m2, ≥30 kg/m2. Educa-
tional level was classified according to five categories:
none, primary school, secondary school, technical or vo-
cational training and university degree. Smoking status
was summarised in three categories: never smoked,
former smoker and current smoker. Alcohol consump-
tion at recruitment in grams per day was categorized as
no drinker (0 g/day), drinker (≤30 g/d in men and ≤ 20 g/
d in women) and heavy drinker (> 30 g/d in men and >

Fig. 1 Flow chart: Case-cohort design of the study and the number of participants included in the analysis
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20 g/d in women). Information on the domains of phys-
ical activity was compiled taking seasonal variation into
account. A simple four-level physical activity index (low,
medium, high, very high) was derived and validated by
combining recreational and household activity [42]. Re-
productive history was additionally measured for
women, including menopausal status at recruitment,
number of pregnancies, breastfeeding (yes/no regardless
of the duration), and use of oral contraceptive or hor-
mone replacement therapy sometime in life.

Sample collection and chemical analyses
Blood samples were drawn from each participant at re-
cruitment, which were subsequently centrifuged, and ali-
quots of plasma, serum, red blood cells and buffy coat in
0.5 mL straws were stored in liquid nitrogen (− 196 °C).
BPA levels were quantified in serum samples using two of

0.5mL straws, in an adaptation of a previously-validated
methodology [43]. In brief, BPA was analysed by dispersive
liquid–liquid micro-extraction (DLLME) and ultra-high per-
formance liquid chromatography with tandem mass spec-
trometry detection (UHPLC-MS/MS). Samples were thawed
completely at room temperature, centrifuged at 2600 g for
10min and 0.75mL was extracted for analysis. In order to
determine total BPA (free plus conjugated) in serum, each
sample was spiked with 50 μL of enzyme solution (β-glucu-
ronidase/sulphatase) and incubated at 37 °C for 24 h. The
treated serum was placed in a 15mL screw-cap glass tube
and spiked with 30 μL of the surrogate standard solution
(1.25mg/L of BPA-d16). The serum was then diluted to
10.0mL with 5% NaCl aqueous solution (w/v) and the pH
was adjusted to 2.0. Next, 0.75mL of acetone and 0.75mL of
trichloromethane were mixed and injected rapidly into the
aqueous sample with a syringe. After manual shaking, centri-
fugation and evaporation of the extract, the residue was dis-
solved with 100 μL of a mixture consisting of water (0.1%
ammonia)/acetonitrile (0.1% ammonia), 70:30 (v/v), and fi-
nally 10 μL was injected into the LC system. Limit of detec-
tion (LOD) was 0.2 ng/ml. Values below LOD were assigned
the LOD divided by the square root of 2.
Chemical analyses were performed at Centro de Exce-

lencia en Investigación de Medicamentos Innovadores
en Andalucía MEDINA (https://www.medinadiscovery.
com/, which has been assessed and certified for the stan-
dards of ISO 9001:2015, and routinely performs internal
and external quality control analyses. In addition, the
present analyses are encompassed in the activities of our
research group within the The Human Biomonitoring
Initiative (HBM4EU, https://www.hbm4eu.eu/).

Statistical analysis
Geometric means and 95% confidence intervals of the
BPA levels (in ng/ml) were calculated for cases and sub-
cohort and according to center, sex, age group,

educational level, body mass index, physical activity and
alcohol consumption and smoker status. Statistical dif-
ferences were assessed through the Mann-Whitney or
Kruskall-Wallis tests.
Time to cancer event were modelled by means of Bor-

gan II weighted Cox proportional hazard models [44],
stratified by center. Robust standard errors were used as
recommended in such case-cohort design [45]. Hazard
ratios and 95% confidence intervals were derived from
these Cox models. BPA levels acted as principal inde-
pendent variable, and were treated as continuous vari-
able, transformed by base 2 logarithm to smooth their
strong asymmetric distribution and categorized into ter-
tiles to assess non-linear relationship. Multivariate Cox-
regression models were always stratified by center and
age group, and constructed using three strategies: A) lin-
ear BPA as independent variable; B) log2-transformed
BPA as independent variable; C) categorized BPA as in-
dependent variable (considering a category with values <
LOD as a reference and distributing the rest of the de-
tectable values into terciles). The last two models
allowed us to evaluate the non-linear relationship, which
was also verified by the analysis of the martingale-based
residuals in model A. All models were adjusted by age,
education level, BMI, physical activity, smoking status,
and alcohol consumption. For women, models were also
adjusted by menopause, number of pregnancies, breast-
feeding, oral contraceptives and hormone replacement
therapy (HRT). An interaction term between BMI and
menopause status was additionally included, since the
join effect of these two factors can act as a modifier of
breast cancer risk. The confounders were selected based
on the evidence on factors potentially associated with
the risk of the studied cancers among the variables avail-
able in the EPIC cohort. Statistical analysis was con-
ducted with Stata v14 (Stata Statistical Software: Release
14. College Station, TX: StataCorp LP).

Results
In our study, median follow-up time was 17 years. We had
547 cases of breast cancer and 575 prostate cancer cases and
3690 sub-cohort participants (1918 women and 1772 men).
Table 1 shows the main characteristics of cancer patients
and sub-cohort participants of the study.

Breast cancer
Among breast cancer patients, there were more smokers
(18.1% vs 10.3%) than in the sub-cohort. Regarding
physical activity, the sub-cohort had more participants
in the “very high” classification than the cases: 58.7% vs
50.3% respectively. Other significant differences were ob-
served in education level, BMI, menopausal status, num-
ber of pregnancies, breastfeeding and oral contractive
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Table 1 Characteristics at recruitment of EPIC cancer cases and sub-cohort participants

Breast Cancer Prostate Cancer

Total Cases Sub-cohort *p Cases Sub-cohort *p

N (%) 4812 (100) 547 (22.1) 1918 (77.8) 575 (24.5) 1772 (75.5)

Center 0.035 < 0.001

Gipuzkoa 1.239 (25.7) 123 (22.4) 467 (24.3) 225 (39.1) 424 (23.9)

Granada 1159 (24.1) 116 (21.2) 501 (26.1) 63 (10.9) 479 (27.0)

Murcia 1177 (24.4) 157 (28.7) 477 (24.8) 102 (17.7) 441 (24.8)

Navarra 1237 (25.7) 151 (27.6) 473 (24.6) 185 (32.1) 428 (24.1)

Sex – 575 (24.5) 1772 (75.5) –

Male 2347 (48.7) – –

Female 2465 (51.2) 547 (22.2) 1918 (77.8) – –

Age < 0.001 < 0.001

< 45 936 (19.4) 174 (31.8) 367 (19.1) 34 (5.9) 361 (20.3)

45–49 824 (17.1) 125 (22.8) 309 (16.1) 101 (17.5) 289 (16.3)

50–54 994 (20.6) 96 (17.5) 399 (20.8) 120 (20.8) 379 (21.4)

55–59 948 (19.7) 82 (14.9) 372 (19.4) 168 (29.2) 326 (18.4)

60+ 1110 (23.1) 70 (12.8) 471 (24.5) 152 (26.4) 417 (23.5)

Education level < 0.001 0.008

None 1908 (39.9) 204 (37.6) 928 (48.7) 215 (37.5) 561 (31.9)

Primary school 1696 (35.5) 221 (40.7) 677 (35.5) 207 (36.1) 591 (33.6)

Technical school 363 (7.6) 33 (6.0) 92 (4.8) 46 (8.0) 192 (10.9)

Secondary school 279 (5.8) 29 (5.3) 67 (3.5) 36 (6.2) 147 (8.3)

University 531 (11.1) 55 (10.1) 141 (7.4) 69 (12.0) 266 (15.1)

Unknown 35 (0.7)

BMI < 0.001 0.475

Normal weight 889 (18.6) 167 (30.5) 424 (22.11) 67 (11.6) 241 (13.6)

Overweight 2401 (49.9) 214 (39.1) 826 (43.07) 341 (59.3) 1020 (34)

Obese 1512 (31.4) 166 (30.3) 668 (34.83) 167 (29.0) 511 (28.8)

Smoking habit < 0.001 0.110

Never 2795 (58.1) 397 (72.5) 1584 (82.6) 205 (35.6) 609 (34.4)

Former 903 (18.7) 51 (9.3) 136 (7.0) 156 (27.1) 560 (31.6)

Smoker 1111 (23.1) 99 (18.1) 197 (10.2) 214 (37.2) 601 (33.9)

Unknown 3 (0.1)

Physical activity < 0.001 0.389

Low 1077 (22.4) 54 (9.9) 100 (5.2) 210 (36.5) 713 (40.2)

Medium 798 (16.6) 65 (11.9) 182 (8.5) 141 (24.5) 410 (23.1)

High 1160 (24.1) 153 (28.0) 510 (26.6) 132 (23.0) 365 (20.6)

Very high 1777 (8.54) 275 (50.3) 1126 (58.7) 92 (16.0) 284 (16.0)

Alcohol consumption 0.085 0.177

None 1504 (31.3) 237 (43.3) 932 (48.5) 72 (12.5) 263 (14.8)

Drinker 2329 (48.4) 272 (49.7) 874 (47.60) 280 (48.7) 903 (51.0)

Heavy drinker 979 (20.3) 38 (6.9) 73 (3.81) 223 (38.8) 606 (34.2)

Menopausal status < 0.001

Premenopausal 906 (36.7) 276 (50.5) 630 (32.8)

Postmenopausal 1188 (48.2) 193 (35.3) 995 (51.9)
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use comparing breast cancer cases and sub-cohort par-
ticipants (Table 1).
Percentage of detection was similar between cases and

sub-cohort, around 68% of the samples showed levels above
LOD (Supplementary material, Table 1). BPA geometric
mean was slightly higher in cases than in participants of the
sub-cohort (1.12 ng/ml vs 1.10 ng/ml) (p= 0.754)

(Supplementary material, Table 1). Breast cancer cases pre-
sented higher percentage of detection above LOD (75.7% vs
63.4%) and higher GM (1.51 ng/ml vs 0.90 ng/ml) than par-
ticipants from the sub-cohort (p= 0.010) between smoker
(Supplementary material, Table 1). We found significant dif-
ferences in serum BPA concentrations in the participants
with secondary school when comparing cancer cases and

Table 1 Characteristics at recruitment of EPIC cancer cases and sub-cohort participants (Continued)

Breast Cancer Prostate Cancer

Total Cases Sub-cohort *p Cases Sub-cohort *p

N (%) 4812 (100) 547 (22.1) 1918 (77.8) 575 (24.5) 1772 (75.5)

Perimenopausal 218 (8.8) 51 (9.3) 167 (8.7)

Surgical Postmenopausal 153 (6.2) 27 (4.9) 126 (6.6)

Number of pregnancies < 0.001

0 253 (10.4) 67 (12.5) 186 (9.8)

1–2 762 (31.4) 194 (36.2) 568 (30.)

≥3 1414 (58.2) 275 (51.3) 1139 (60.2)

Unknown 36 (1.5)

Breastfeeding 0.010

No 464 (19.1) 123 (22.9) 341 (18.0)

Yes 1964 (80.9) 412 (77.1) 1551 (82.0)

Unknown 37 (1.5)

Oral contraceptive ever < 0.001

No 1645 (66.7) 329 (30.1) 1316 (68.6)

Yes 819 (33.2) 218 (39.9) 601 (31.4)

Unknown 1 (0.04)

Hormone replacement therapy 0.491

No 2071 (87.7) 473 (88.6) 1598 (87.5)

Yes 290 (12.3) 61 (11.4) 229 (12.5)

Unknown 104 (4.2)

*Chi-square

Table 2 Cox regression and risk of breast and prostate cancer

Breast cancer Prostate cancer

N HR SE p 95% CI N HR SE p 95% CI

Model A BPA levels (for 5 ng/ml increase) 2306 1.047 0.037 0.200 0.98–1.12 2328 0.989 0.036 0.749 0.92–1.06

Model B log2(BPA) 2306 1.011 0.024 0.655 0.97–1.06 2328 1.035 0.021 0.093 0.99–1.08

Model C Categorized BPA (values in ng/ml)

<LOD 705 1 – – – 658 1 – – –

Tertile 1 [0.2–1.8) 562 0.820 0.123 0.185 0.61–1.10 534 1.404 0.208 0.022 1.05–1.88

Tertile 2 [1.8–5.1) 556 0.875 0.132 0.376 0.65–1.18 540 1.365 0.200 0.034 1.02–1.82

Tertile 3 [5.1–68.9] 483 1.127 0.169 0.425 0.84–1.51 596 1.305 0.193 0.072 0.98–1.74

Model A: linear BPA stratified by center and age group, and adjusted by age, education level, BMI, physical activity, smoking status, alcohol consumption (and
menopause, n° of pregnancies, breastfeeding, oral contraceptives, HRT and the interaction between BMI and menopause for women)
Model B: log2BPA stratified by center and age group, and adjusted by age, education level, BMI, physical activity, smoking status, alcohol consumption (and
menopause, n° of pregnancies, breastfeeding, oral contraceptives, HRT and the interaction between BMI and menopause for women)
Model C: categorized BPA (<LOD category plus tertiles based on measurable values in ng/dl) stratified by center and age group, and adjusted by age, education
level, BMI, physical activity, smoking status, alcohol consumption (and menopause, n° of pregnancies, breastfeeding, oral contraceptives, HRT and the interaction
between BMI and menopause for women)
LOD: limit of detection; CI: confidence interval
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sub-cohort (p= 0.002). However, there were no significant
differences when observing other variables, neither those
concerning women reproducibility (Supplementary material,
Table 1).
Cox regression analyses showed no statistically signifi-

cant association between BPA levels and breast cancer
incidence in our cohort in the developed models
(Table 2). There were no significant association when
analyzing linear BPA in model A (HR = 1.047; p = 0.200),
neither in logarithmic model (Models B, Table 2). In the
same way, no significant effect was observed when the
exposure variable was categorized into tertiles (Models
C, Table 2).

Prostate cancer
There were no significant differences between prostate
cancer patients and the sub-cohort concerning lifestyle
variables (Table 1).
Serum BPA levels showed no significant differences in

prostate cancer participants compared with the sub-
cohort (1.33 ng/ml vs 1.29 ng/ml; p = 0.809) (Supplemen-
tary material, Table 2). Non-significant differences in
BPA levels were observed between cases and sub-cohort
according to sociodemographic and life style characteris-
tics (Supplementary material, Table 2).
Cox regression models showed no significant associ-

ation of BPA serum levels and prostate cancer risk in
linear model (Table 2). However, the result of the ad-
justed logarithmic model showed a positive association
between an increase in BPA levels with the risk of pros-
tate cancer (HR = 1.035; p = 0.093). Moreover, when cat-
egorizing BPA in tertiles we observed an increased risk
of prostate cancer in model C: a 40% increase in risk of
prostate cancer for tertile 1 (HR = 1.40; p = 0.022), 37%
increase for tertile 2 (HR = 1.37; p = 0.034) and 31% in-
crease for tertile 3 (HR = 1.31; p = 0.072) was observed
with respect to values bellow the limit of detection (p-
trend = 0.069) (Table 2).

Discussion
This study longitudinally explores the potential contri-
bution of participants’ exposure to BPA at recruitment
in the development of breast and prostate cancer, over a
relatively large follow-up time in Spain.
In our study, 70% of the population had detectable BPA

values and its concentrations were similar among cancer
cases and sub-cohort participants which is comparable to an
epidemiological study in Korea (n= 167) were no significant
differences in blood BPA levels between breast cases and
controls were found (p= 0.42) [46].
Our results show no association for BPA serum con-

centrations and risk of incident breast cancer despite
BPA is considered an ED with carcinogenic potential
[31–33]. These results are in consonance with the study

of Aschengrau et al., which found no association be-
tween adult occupational exposure to BPA and breast
cancer diagnosis, although the exposure measure was
through questionnaires (n = 1000 participants) [36]. In
the same way, a population-based case–control study
also showed no association between the urinary BPA
levels and risk of breast cancer in postmenopausal Polish
women (n = 575) [37]. However, recent reviews conclude
that the evidence of the potential impact of BPA on hu-
man development of chronic diseases is sufficiently ro-
bust to raise concerns about BPA being an important
health problem [32, 47–49]. These reviews are mostly
based on animal and in vitro studies, due to the limited
epidemiological studies. Experimental modelling sug-
gests that BPA increases breast cancer susceptibility
[47]. Still, few epidemiological studies have linked BPA
to breast cancer. In this regard, high concentrations of
serum BPA correlated with elevated mammographic
breast density, a marker of breast cancer risk, in a study
of postmenopausal women from Wisconsin (n = 264)
[50]. Mammographic breast density increased from 12 to
17% when serum BPA levels increased to 0.55 ng/ml).
However, case-control studies present a controversial
validity when the possible risk factor is a biomarker,
since this is measured in cases when the disease is
already present and therefore the time sequence neces-
sary to impute causality is not absent.
Regarding prostate cancer, we found a significant non-

linear association with risk of prostate cancer when we
categorized serum BPA in tertiles, as individuals with
serum BPA levels in the 1st and 2nd tertile showed a 40
and 37% increased risk of prostate cancer respectively.
In this regard, a case control study conducted in men
with prostate cancer (n = 60) showed a much higher
concentration of BPA in the urine of those patients in
comparison with the control group [51]. In another
case-control study in Hong-Kong [52] showed a positive
exposure-response relationship between a cumulative
BPA exposure index and prostate cancer, with the great-
est and significant risk in the high versus reference cat-
egory (OR = 1.57, 95% CI: 1.01–2.44). This study,
however, did not had any biological measurement of
BPA, as the cumulative BPA exposure index was based
on self-reported information of the habitual use of spe-
cific type of food or beverage container including what
the container is made of, the frequency of use, the hand-
ling practice, the heating and years of usage.
On the other hand, the biological matrix used for bio-

monitoring plays an important role. Serum BPA concen-
trations can be relatively unstable, representing recent
exposures [53, 54]. In this regard, the biological matrix
most commonly used to determine BPA is urine [55].
Indeed, some authors acknowledge urine concentrations
as the best biomarker of BPA exposure, since
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metabolites in blood can be several orders of magnitude
lower than in urine and it can be indicative of a rela-
tively longer exposure period in comparison to other
matrices [53]. Some studies point out that, among the
biomonitoring matrices, urine contains the highest BPA
concentrations, followed by serum [56] which implies a
greater capacity to detect levels of exposure and also an
improved estimator of medium-term exposure. How-
ever, there is still scarce studies about the correlation be-
tween matrices [56, 57]. The different biological
matrices for measuring BPA have had many interroga-
tions and discussion. Serum BPA specifically measures
unconjugated BPA, and studies measuring BPA in blood
are scarce, due to more complex logistics than urine.
Therefore, our matrix selection could be interpreted as
well as a contribution of the study to the scarce evidence
of BPA in serum.
There is ample evidence about BPA exposure and risk

of hormone dependent cancer in animal and in vitro
studies both for breast cancer [58–70] and prostate can-
cer [71–76]. Conversely, the scarce epidemiological evi-
dence on BPA exposure and risk of breast or prostate
cancer studies have overall yielded to differing results,
most likely due to different experimental designs, timing
of exposure, and uncontrolled or residual confounding
factors, such as the route of the administration of BPA,
its degradation time or low exposure doses. The low
range of BPA concentrations (ng/ml) is a consequence
of its fast metabolism and short half-life in human body
[77]. Moreover, human exposure to many potential EDs
can be confounded because most existing cohorts and
epidemiological studies (as our study) were designed to
measure the impact of a single chemical without ac-
counting for the effects of mixtures [78]. The heterogen-
eity of the populations of the studies, the different ways
of assessing the exposure and, and the biological matrix
can have a big influence in the exposure level as well as
the different ways of evaluating the disease. In this re-
gard, our method may have advantages, such as accessi-
bility to practically the entire study population, taking
advantage of the great coverage of public clinical re-
cords. However, we could have perhaps a possible
underestimation of cases, or at least that usually happens
when we rely on clinical records. Thus, different meth-
odologies can result in inconsistent outcomes. Add-
itional larger epidemiological studies are needed to
obtain sufficient evidence and to identify the degree to
which there is an association between low-dose BPA ex-
posure and breast and prostate cancer risk.
On the other hand, some possible mechanisms of ac-

tion of BPA carcinogenicity could be genetic damages,
epigenetic effects, endocrine disruption, oxidative stress
and mitochondrial dysfunction and cell signaling [31,
32]. It has been shown that BPA can interact with

estrogen receptors, behaving as agonist or antagonist
through endocrine receptor dependent signaling path-
ways [79]. These actions can lead to diverse changes in
estrogen-target organs including mammary gland [9].
BPA can also regulate the proliferation and migration of
prostate cancer cells and induce DNA adducts in pros-
tate cancer cells [80–82]. Consequently, BPA plays a role
in the pathogenesis of several endocrine disorders in-
cluding female and male infertility, precocious puberty
and hormone dependent tumors such as breast and
prostate cancer [83]. Studies conducted in vitro have
shown that the exposure of the human breast cancer cell
line to BPA increased its proliferation and caused in-
creased oxidative stress [84, 85]. Growing evidence sug-
gests that BPA-induced damage is associated with
oxidative stress [32, 86, 87] as BPA can disturb oxidative
homeostasis through direct or indirect pathways, includ-
ing cancer, infertility, and neurodegenerative diseases
[88, 89]. In the epidemiological study of Yang et el., au-
thors reported that BPA exposure apparently promotes
oxidative stress and inflammation in women [90]. Re-
garding evidence for epigenetic alterations, several ani-
mal studies have identified plausible mechanisms of
action of BPA on prostate cancer risk as early life BPA
exposure provides a potential mechanism of action for
low dose BPA [91, 92]. These mechanisms could induce
the tumors of interest, which are hormone dependent as
the constant induction of estrogen / androgen receptors,
even at low doses, compared to endogenous hormones,
could activate cell proliferation or inhibit protective
mechanisms [93].
Our study has some limitations since the exposure to

BPA was estimated by using serum concentrations at re-
cruitment, and we do not have information on changes
in BPA concentrations and covariates during the follow-
up time as BPA may vary over time in our longitudinal
design. In addition, the use of one BPA point measure-
ment might not take into account intra-person and
intra-day fluctuations, which might be relevant in certain
populations [94, 95]. However, The use of one-spot sam-
ples, have been shown to be a reflection of BPA expos-
ure in the population in some studies [96]. Though, BPA
levels in the organism are not stable, as levels are higher
the moment the person has been exposed and until BPA
is metabolized and excreted 7 or 8 h after its incorpor-
ation into the body. BPA is rapidly conjugated and ex-
creted by humans due to the efficient glucuronidation of
BPA [77]. Moreover, we have to take into account that
our population have been exposed to other pollutants.
Therefore, possible associations from one single contam-
inant may be due to other highly correlated (and un-
measured) co-exposures, potentially including both
persistent and non-persistent pollutants, or even a result
of interactions among different co-exposures [97, 98].
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Finally, although we adjusted for n° of pregnancies,
breastfeeding, oral contraceptives, HRT and the inter-
action between BMI and menopause for women, we can-
not exclude a potential residual confounding. Therefore,
more research considering subclinical disease markers
would shed light on the causality of the observed
associations.
This study also has a number of strengths. The population

considered is large and well representative of exposure to
BPA in the 1990s. This characteristic is valuable, enabling us
to study possible associations between BPA exposure at re-
cruitment and certain chronic illnesses currently present in
the participants. In this respect, it is of notable importance
that 70% of the study population had detectable levels of
BPA. We used previously-validated questionnaires which
allow to have a precise characterization of the covariates. Be-
sides, BPA was screened using validated analytical method-
ologies [43].

Conclusions
We evidenced a similar percentage of detection of BPA
among breast cancer cases and sub-cohort from our
population, and slightly higher percentage of detection
in prostate cancer participants than in the sub-cohort.
We observed an increased risk of prostate cancer in the
1st and 2nd tertile of serum BPA. However, we found
no associations between serum BPA concentrations and
risk of breast cancer. Further investigation is needed to
elucidate the potential influence BPA exposure on breast
and prostate cancer risk.
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