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Abstract 

Background:  Much of the current evidence of associations between long-term PM2.5 and health outcomes relies on 
national or regional analyses using exposures derived directly from regulatory monitoring data. These findings could 
be affected by limited spatial coverage of monitoring data, particularly for time periods before spatially extensive 
monitoring began in the late 1990s. For instance, Pope et al. (2009) showed that between 1980 and 2000 a 10 μg/m3 
reduction in PM2.5 was associated with an average 0.61 year (standard error (SE) = 0.20) longer life expectancy. That 
analysis used 1979–1983 averages of PM2.5 across 51 U.S. Metropolitan Statistical Areas (MSAs) computed from about 
130 monitoring sites. Our reanalysis re-examines this association using modeled PM2.5 in order to assess population- 
or spatially-representative exposure. We hypothesized that modeled PM2.5 with finer spatial resolution provides more 
accurate health effect estimates compared to limited monitoring data.

Methods:  We used the same data for life expectancy and confounders, as well as the same analysis models, and 
investigated the same 211 continental U.S. counties, as Pope et al. (2009). For modeled PM2.5, we relied on a previ‑
ously-developed point prediction model based on regulatory monitoring data for 1999–2015 and back-extrapolation 
to 1979. Using this model, we predicted annual average concentrations at centroids of all 72,271 census tracts and 
12,501 25-km national grid cells covering the contiguous U.S., to represent population and space, respectively. We 
averaged these predictions to the county for the two time periods (1979–1983 and 1999–2000), whereas the origi‑
nal analysis used MSA averages given limited monitoring data. Finally, we estimated regression coefficients for PM2.5 
reduction on life expectancy improvement over the two periods, adjusting for area-level confounders.

Results:  A 10 μg/m3 decrease in modeled PM2.5 based on census tract and national grid predictions was associated 
with 0.69 (standard error (SE) = 0.31) and 0.81 (0.29) -year increases in life expectancy. These estimates are higher than 
the estimate of Pope et al. (2009); they also have larger SEs likely because of smaller variability in exposure predictions, 
a standard property of regression. Two sets of effect estimates, however, had overlapping confidence intervals.

Conclusions:  Our approach for estimating population- and spatially-representative PM2.5 concentrations based on 
census tract and national grid predictions, respectively, provided generally consistent findings to the original findings 
using limited monitoring data. This finding lends additional support to the evidence that reduced fine particulate 
matter contributes to extended life expectancy.
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Background
Evidence of the association between long-term expo-
sure to particles less than or equal to 2.5 µm in diameter 
(PM2.5) and adverse health outcomes, first reported in 
early 1990s [1, 2], has continued to grow [3–9]. Many of 
these epidemiological studies were conducted in the U.S., 
Canada, and Europe, and relied on regulatory monitor-
ing data; however, nationwide and population-focused 
regulatory monitoring for PM2.5 did not begin until 1999. 
Lack of available monitoring data affects the time period 
available to investigate the health effects of PM2.5. The 
influence could be particularly large for studies evaluat-
ing the impact of changing PM2.5 on health over several 
decades.

The limited historical monitoring data for PM2.5 is 
more challenging when research considers concentration 
variability in both space and time. As an example of an 
effort that was restricted to regions with available moni-
toring data over a long time period, Pope et  al. (2009) 
investigated the association between the change in PM2.5 
from 1980s through 2000s and the change in life expec-
tancy. They concluded that improved life expectancy was 
attributed to decreased PM2.5 concentrations [10]. This 
20-year change in PM2.5 was characterized directly from 
regulatory monitoring data. For the 2000s, the data came 
from approximately 1,000 sites in more than 900 major 
metropolitan areas over the continental U.S. in the Fed-
eral Reference Methods (FRM) network [11]. However, 
for the 1980s they relied on measurements from the 
Inhalable Particulate Network (IPN) at only about 130 
sites which were located in 51 major metropolitan areas 
[12, 13]. Given these limited monitoring data, PM2.5 
exposure was aggregated to the Metropolitan Statistical 
Area (MSA) and the analysis was restricted to 211 out 
of more than 3,000 counties. While many cohort studies 
have improved spatial coverage by estimating exposure 
at people’s residences from air pollution prediction mod-
els, they have been unable to develop predictions in the 
1980’s. For instance, a recent study expanded Pope et al.’s 
analysis to all U.S. counties by using predicted PM2.5 
concentrations; however, because of the unavailability 
of spatially extensive monitoring data before 1999, they 
focused on the change during 1999–2015 [14].

A historical PM2.5 prediction model such as the 
one we previously developed can help overcome this 
space–time limitation. Our pointwise spatio-temporal 
prediction model allows estimation of annual average 
concentrations of PM2.5 at arbitrary point locations in 

the continental U.S. for 1980–2010; this temporal range 
includes the years when extensive spatial monitoring data 
are unavailable [15]. In external validation with PM2.5 
data measured before 1999, from the Interagency Moni-
toring of Protected Visual Environments (IMPROVE) 
network and the Southern California Children’s Health 
Study, the model generally performed well, with R2 val-
ues over 0.7. These modeled PM2.5 exposures over the 
30-year period can provide representative exposure esti-
mates, and thus advance our understanding of the effec-
tiveness of PM2.5 reduction for human health.

Using population-representative exposure estimates 
from the historical PM2.5 prediction model, we aimed to 
re-examine the association between PM2.5 reduction and 
life expectancy increase for 1980–2000. Our hypothesis 
is that modeled PM2.5 in 1980s at finer spatial resolution 
provides more accurate estimates of the association with 
changes in life expectancy compared to limited PM2.5 
measurements. Specifically, we replaced PM2.5 MSA 
averages (which were derived from limited monitoring 
data) in Pope et  al. (2009) with modeled population- 
and spatially-representative county-average exposure 
while maintaining the same data for life expectancy and 
covariates, as well as the health analysis models used in 
the original analysis. Then, we compared the estimates of 
association with life expectancy between the new and the 
original findings.

Methods
Historical prediction model for PM2.5
The historical prediction model uses the same PM2.5 
prediction model framework as in the Multiethnic 
Study of Atherosclerosis and Air Pollution (MESA Air) 
[16–19]. These MESA Air exposure model predicted 
2-week average concentrations at any location in six 
U.S. metropolitan cities, using monitoring data from 
two PM2.5 regulatory monitoring networks, the FRM 
and IMPROVE, and a cohort-focused monitoring cam-
paign. In contrast, the historical prediction model relied 
only on regulatory monitoring data for 1999–2010 and 
predicted annual average concentrations in the conti-
nental U.S. between 1980 and 2010 including the period 
before spatially extensive monitoring for PM2.5 began. 
For this paper, we extended the extrapolation to 1979. 
Details in the input data and modeling procedure were 
described elsewhere [15]. In brief, this model consists 
of three components to characterize temporal and spa-
tial patterns of annual average concentrations of PM2.5: 
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a spatially-varying long-term mean, a spatially-varying 
temporal trend, and temporally-independent and spa-
tially-dependent spatio-temporal residuals. We estimated 
the single temporal trend, which approximates linearity, 
using the data for 1999–2010. Then, to estimate the tem-
poral trend before 1999 we explored various data sources 
using emissions, meteorology, visibility, and PM2.5 sul-
fate: our findings suggested that the back-extrapolated 
trend was also linear. Based on these extensive explora-
tory analyses, we extrapolated the linear trend to the 
period prior to 1999. The temporal trend was scaled by 
a spatially-varying trend coefficient to reflect spatial het-
erogeneity of the temporal trend, as identified in monitor 
levels. We characterized the spatially varying long-term 
mean and trend in a universal kriging framework with 
dimension-reduced summary predictors. These sum-
mary predictors were estimated from more than 800 geo-
graphic variables using partial least squares (PLS). These 
geographic variables computed based on distances and 
multiple buffers characterize potential pollution sources 
such as traffic, land use, population, emissions, and veg-
etation. PLS finds the linear combination of geographic 
variables which is most correlated with PM2.5 annual 
averages [20].

County‑average PM2.5 estimation
Using the pointwise historical prediction model, we esti-
mated PM2.5 annual average concentrations in 1979–
1983 and 1999–2000 at 1) 72,271 census tract centroids 
based on the year 2010 census and 2) 12,501 national grid 
coordinates that cover the contiguous lower 48 states. We 
obtained census tract boundaries from the National His-
torical Geographic Information System (www.​nhgis.​org), 
and calculated the centroid, as the geometric center, for 
each of the census tracts using ArcGIS 10.2 Geographic 
Information System software (Additional file  1: Figure 
S1). The 12,501 grid coordinates were obtained from a 
25-km grid in the continental U.S. Pope et al. (2009) used 
the PM2.5 concentrations averaged to 51 MSAs for the 
health analysis of life expectancy estimates in 211 coun-
ties. Pope and coauthors computed average PM2.5 con-
centrations for 1979–1983 with available data measured 
at about 130 IPN sites [7], and at more than 500 FRM 
sites for 1999–2000 [10] (“measured” PM2.5). Using our 
predicted PM2.5 concentrations at 72,271 census tract 
centroids and 12,501 national grid coordinates, we aver-
aged PM2.5 to the same 211 counties to be directly com-
parable with the spatial scale of Pope et  al. (2009) life 
expectancy estimates for our primary analysis (“modeled” 
PM2.5). As census tract centroids represent populated 
locations while national grid coordinates represent spa-
tially evenly distributed locations, we treated the county-
level averages of those predictions as population- and 

spatially-representative concentrations, respectively. 
Then, we also computed the averages across the 51 MSAs 
to be directly comparable with the spatial scale of their 
exposure estimates for a sensitivity analysis. We aver-
aged predictions across 4 to 2,343 (median = 56) and 6 to 
2,343 (372) census tract centroids to obtain 211 county 
and 51 MSA averages, respectively.

Life expectancy reanalysis
To compare against results from Pope et  al. (2009), we 
examined the association between PM2.5 reduction and 
life expectancy increase for 1980–2000 using the same 
data for life expectancy and covariates in 211 U.S. coun-
ties (Additional file  1: Figure S2), and the same seven 
health analysis models. The only difference from the orig-
inal analysis was the replacement of MSA-average PM2.5 
exposure based on IPN and FRM measurements with our 
county-average historical predictions. The life expectancy 
estimates were for two five-year periods (1978–1982 and 
1997–2001) and were estimated using mortality statistics 
from the National Center for Health Statistics and popu-
lation from the U.S. Census. The detailed procedure for 
the computation of annual-average life expectancy and 
area-level characteristics has been described elsewhere 
[21].

Using multiple linear regression with the new exposure 
predictions, we assessed the association between PM2.5 
and life expectancy in each time period separately, and 
for differences between the two periods. We estimated 
robust standard errors by clustering on MSA. The seven 
confounder models included progressively expanded 
sets of county-level socio-demographic variables, proxy 
variables for smoking prevalence, and smaller subsets 
of counties as we describe here. Whereas Model 1 only 
included PM2.5, Models 2 and 3 additionally adjusted 
for progressively expanded sets of confounders. While 
Model 2 consisted of average income, total population, 
and proportions of 5-yr in-migration, high-school gradu-
ates, urban residence, black population, and Hispanic 
population, Model 3 also added two surrogate variables 
for smoking: mortality rates for lung cancer and chronic 
obstructive pulmonary disease (COPD). Model 4, as the 
primary model in our analysis as well as in Pope et  al. 
2009, included income, population, proportion of black 
population, and mortality rates for lung cancer and 
COPD. In addition, confounders used in Models 3 and 4 
were applied to the restricted study area with high popu-
lation. Out of the 211 counties included in the primary 
analysis, we applied Model 4 to 127 counties with popu-
lation greater than 100 thousand in 1986 (Model 5) and 
Models 3 and 4 to the 51 counties that had the largest 
population in each MSA (Models 6 and 7).

http://www.nhgis.org
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Sensitivity analysis
We performed two sensitivity analyses to test the robust-
ness of our results to address the role of spatially-refined 
exposure and exposure averaging period, respectively. 
First, we used MSA-average estimates of our census 
tract or national grid historical predictions instead of 
county-average estimates. Second, we investigated differ-
ent exposure time periods, using one or multiple years of 
PM2.5 averages in the two five-year time periods (1979–
1983 and 1999–2004) and compared these to our main 
findings that were based on the same averaging periods 
as Pope et  al. 2009’s (1979–1983 and 1999–2000). This 
analysis examined whether our findings were affected by 
the number of years included in the exposure averages or 
the selection of specific years in each period.

Results
Measured and modeled PM2.5
Modeled county- and MSA-average PM2.5 estimated 
by the historical prediction model tended to be lower 
than measured MSA-averages derived by PM2.5 regu-
latory monitoring data in both periods. The average 
concentration of census tract predictions was 17.85 μg/
m3 in 1979–1983 and 12.90 μg/m3 in 1999–2000, com-
pared to 20.62 and 14.10 μg/m3 for the measurements; 
national grid predictions were slightly lower than cen-
sus tract predictions, with the average concentration of 
16.29 and 11.95  μg/m3 in 1979–1983 and 1999–2000, 
respectively (Table 1). While variability was also lower 
in modeled PM2.5 than measured PM2.5 in 1979–1983, 
the more recent 1999–2000 period gave similar vari-
ability. Despite the consistent means between MSA and 

county averages in predictions, variability was slightly 
larger for county averages than MSA averages. For cen-
sus tract and national grid predictions, national grid 
predictions, many of which were estimated at non-res-
idential locations, were more variable than census tract 
predictions.

Across 51 MSAs, measured versus modeled PM2.5 
tended to be more dissimilar as concentration increased. 
Figure  1 shows MSA-average concentrations of mod-
eled PM2.5 compared to measured PM2.5 in each of the 
two periods and their differences between the periods. 
Correlation between MSA averages of modeled and 
measured PM2.5 was lower in the early period for 1979–
1983 (Pearson correlation coefficient = 0.76–0.83) than 
in the recent period for 1999–2000 (0.93–0.94) (Fig. 1). 
The difference between the two periods gave poor cor-
relation (0.42–0.44), although both PM2.5 showed a 
decreasing trend between the two time periods. When 
county-average predictions were compared to MSA 
measurements, the pattern of lower correlation in the 
early period than in the recent period was consistent, 
with lower correlation coefficients (Pearson correlation 
coefficient = 0.68–0.70 and 0.88–0.89 for 1979–1983 
and 1999–2000, respectively) than those for MSA-aver-
age predictions (Additional file 1: Figure S3-S4). Predic-
tion maps of county-average PM2.5 in 1980, 1990, 2000, 
and 2010 based on census tract predictions also showed 
the overall decreasing trend in most counties for 1980–
2010 (Additional file  1: Figure S5). The concentrations 
were higher in the eastern region and California’s Cen-
tral Valley, and the reduction over time was also large in 
these areas.

Table 1  Summary statistics of average PM2.5 concentrations (μg/m3) in 51 Metropolitan Statistical Areas (MSAs) based on 
measurements from regulatory monitoring networks (Inhalable Particulate Network (IPN) or Federal Reference Method (FRM)), and in 
211 counties or 51 MSAs based on estimates by the historical prediction model for 1979–1983 and 1999–2000

a  Inhalable Particulate Network
b  Federal Reference Method
c  MSA and county averages appear the same due to rounding; 1979–1983 IPN values differ slightly from Pope et al. (2009) due to rounding

Period Exposure assessment PM2.5

Min Median Max Meanc SD

1979–1983 Measurement (IPN)a: MSA average 10.77 20.81 30.01 20.62 4.36

Census tract prediction: MSA average 10.61 18.46 24.84 17.85 2.42

Census tract prediction: county average 9.73 18.09 24.84 17.85 2.89

National grid prediction: MSA average 5.14 17.12 23.00 16.29 3.32

National grid prediction: county average 3.66 16.92 24.77 16.29 3.75

1999–2000 Measurement (FRM)b: MSA average 5.80 14.50 20.20 14.10 2.86

Census tract prediction: MSA average 5.90 13.51 19.77 12.90 2.65

Census tract prediction: county average 5.54 12.94 19.77 12.90 2.82

National grid prediction: MSA average 3.00 12.79 16.93 11.95 3.11

National grid prediction: county average 2.32 12.36 19.62 11.95 3.28
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The census tract and national grid PM2.5 predictions 
were highly correlated in both time periods (Pearson cor-
relation coefficient = 0.89–0.96 and 0.86–94 for MSA and 
county averages, respectively) (Fig.  1, Additional file  1: 
Figure S3). Compared to measured PM2.5, national grid 

predictions showed consistently lower concentrations in 
the full range of concentrations, as opposed to census 
tract predictions which were lower only at the higher 
concentrations, as many national grid are non-residential 
locations.

Fig. 1  Scatter plots of PM2.5 concentrations based on measurements from regulatory monitoring networks (Inhalable Particulate Network (IPN) 
or Federal Reference Method (FRM)) and predictions at census tract centroids and national grid coordinates estimated by the historical prediction 
model across 51 Metropolitan Statistical Areas by 1980s (1979–1983), 2000s (1999–2000), and 1980s-2000s (1979–1983 minus 1999–2000) (green 
and red lines for the identity and best-fitted lines, respectively; the 1st to 3rd row displaying measured vs. census tract-based modeled PM2.5, 
measured vs. national grid-based modeled PM2.5, and modeled census tract-based vs. modeled national grid-based PM2.5, respectively)
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Life expectancy reanalysis
In unadjusted and adjusted models, the association pat-
terns with measured vs. modeled PM2.5 were consistent. 
In the cross-sectional analyses, PM2.5 concentrations 
from monitoring data and historical predictions were 
negatively associated with life expectancy in each time 
period, whereas in the change on change analyses, the 
reduction in PM2.5 was positively associated with the 
increase in life expectancy (Table  2, Fig.  2, Additional 
file  1: Table  S1). In the unadjusted model, the regres-
sion coefficients for modeled PM2.5 were much higher 
(1.39 and 1.04 for census tract and national grid predic-
tions, respectively) than measured PM2.5 (0.72). Across 
the four models based on 211 counties, regression coef-
ficients were consistent for measured PM2.5 but dra-
matically dropped for modeled PM2.5 particularly in 
Model 3 when lung cancer/COPD mortality was added. 
In the primary model (Model 4), with county-specific 
confounders included, a 10  μg/m3 reduction in PM2.5 
based on census tract predictions was associated with 
0.69  year increase in life expectancy (standard error 
(SE) = 0.31) (Table  2). This estimated improvement 
in life expectancy was slightly higher and had a larger 
SE than the estimate reported by Pope et  al. (2009) 
(0.61  years [SE = 0.20]). National grid prediction gave 
a higher estimate of 0.81 than census tract prediction, 
with slightly smaller SE (0.29). In the analyses restricted 
to the 51 counties with the largest population (Models 
6 and 7), estimates corresponding to measured PM2.5 
consistently increased, whereas estimates for mod-
eled PM2.5 both decreased and increased. Uncertainty 
of these estimates increased for modeled PM2.5 due to 
smaller exposure variability, as the smaller variance of 
predictor variables results in larger standard errors of 
regression coefficient estimates.

In the sensitivity analysis that replaced county aver-
ages of PM2.5 with MSA averages in order to compare the 
same exposure averaging scale as Pope et al. (2009), the 
patterns were generally consistent, but the significance 
of the association for census tract predictions in the pri-
mary model disappeared. Regression coefficients of both 
census tract and national grid predictions remained 
higher with larger SEs than those of measured PM2.5 
(Additional file 1: Table S2, Additional file 1: Figure S6). 
The magnitude of estimates increased compared to those 
of county averages, but their SEs also increased possibly 
because of reduced variability in MSA-average PM2.5, 
resulting in statistically non-significant effect estimates. 
Using different years of exposure for averaging, life 
expectancy estimates were generally larger when PM2.5 
averages included recent years of predictions between 
1999 and 2003 (Additional file 1: Figure S7). However, the 
95% confidence intervals were wide and overlapped with 

the original estimates, indicating that they are not statis-
tically different [22].

Discussion
This study re-analyzed the change in life expectancy asso-
ciated with the reduction in PM2.5 in the continental U.S. 
from 1980 to 2010 using modeled exposure estimates. 
We compared these to the original findings, which were 
affected by the limited availability of regulatory moni-
toring data, particularly in 1980s. We hypothesized that 
predicted exposures, derived from a historical prediction 
model that was able to extend the spatial and temporal 
coverage of PM2.5 estimates, can provide more accurate 
health effect estimates and in turn better inform whether 
decades of improved air quality improved life expectancy. 
Our estimated improvement in life expectancy attributed 

Table 2  Estimates of the increase in life expectancy associated 
with a reduction in PM2.5 of 10  μg/m3 over approximately 
20  years between 1979–1983 and 1999–2000, adjusted 
for socioeconomic, demographic, and proxy indicators for 
prevalence of smoking across 211 U.S. counties, using PM2.5 
concentrations based on Metropolitan Statistical Area (MSA) 
averages of Inhalable Particulate Network (IPN) or Federal 
Reference Method (FRM) monitoring data vs. county averages 
of predictions at census tract centroids and national grid 
coordinates estimated by the historical prediction model

a  Model 1: PM2.5

Model 2: Model 1 + income + population + 5-yr in-migration + high-school 
graduates + urban residence + black population + Hispanic population

Model 3: Model 2 + lung-cancer mortality rate + COPD mortality rate

Model 4: Model 1 + income + population + black population + lung-cancer 
mortality rate + COPD mortality rate

Model 5: Model 4 in 127 counties with the population greater than 100 
thousand

Model 6: Model 3 in 51 counties each of which had the large population in each 
MSA

Model 7: Model 4 in 51 counties each of which had the large population in each 
MSA
b  The same number of counties to that in Pope et al. (2009)’s analysis including 
some combined counties to have sufficient numbers of deaths for computing 
life expectancy as described in Pope et al. (2009)
c  P < 0.05

Modela N of counties Regression coefficient ± standard error

Measured 
PM2.5

Modeled PM2.5

Census tract National grid

1 211b 0.72 ± 0.29c 1.39 ± 0.55c 1.04 ± 0.56

2 211 0.83 ± 0.20c 1.14 ± 0.49c 1.02 ± 0.38c

3 211 0.60 ± 0.20c 0.54 ± 0.40 0.64 ± 0.31c

4 211 0.61 ± 0.20c 0.69 ± 0.31c 0.81 ± 0.29c

5 127 0.55 ± 0.24c 0.06 ± 0.41 0.54 ± 0.35

6 51 1.01 ± 0.25c 0.16 ± 0.94 0.34 ± 0.64

7 51 0.94 ± 0.23c 0.46 ± 0.76  0.63± 0.50



Page 7 of 10Kim et al. Environ Health          (2021) 20:102 	

to PM2.5 reduction was largely consistent with the origi-
nal analysis estimate.

There have been further studies that attempted to con-
firm the initial findings in Pope et al. (2009). These studies 
focused on the assessment of fine-spatial scale exposure 
at the county level rather than the MSA level and the 

expansion of counties from 211 to the more than 3,000 
counties in the contiguous U.S. [14, 23]. However, their 
evaluation was limited to the current century and did 
not incorporate data back in the 1980s and 1990s when 
major regulatory actions were established and a dra-
matic change in PM2.5 occurred. Using PM2.5 regulatory 

Fig. 2  Scatter plots of PM2.5 (μg/m3) and life expectancy for 1980–2000 across 211 U.S. counties using Metropolitan Statistical Area (MSA) average 
PM2.5 concentrations based on measurements from regulatory monitoring networks (Inhalable Particulate Network (IPN) or Federal Reference 
Method (FRM)) vs. county average PM2.5 concentrations based on predictions at census tract centroids (CT) and national grid coordinates (NG) 
estimated by the historical prediction model by 1990s, 2000s, and 1980s-2000s
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monitoring data in 545 counties for 2000–2007, Correia 
et al. (2011) found 0.35 year increase in life expectancy for 
10 μg/m3 reduction in PM2.5; these estimates were similar 
in Bannett et al. (2019) that used predicted PM2.5 in 3,082 
counties for 1999–2015. For the recent study periods with 
a slower decline in PM2.5 and lower concentrations over-
all, their estimates of life expectancy improvement were 
lower compared to ours of 0.67 years. Relying on our vali-
dated historical modeling approach, we were able to esti-
mate the change during this critical time period.

The primary life expectancy estimate in our reanalysis 
using modeled PM2.5 was slightly higher and had larger 
uncertainty than the estimate in the original analysis, 
although estimates and confidence intervals from both 
analyses are consistent with increased PM2.5 being asso-
ciated with lower life expectancy. The larger uncertainty 
can be attributed to reduced variability of our popula-
tion-representative PM2.5 predictions. Reasons for their 
reduced variability include averaging over 70,000 cen-
sus tract centroids and the degree of smoothing that is 
typical of prediction models. Smoothing in prediction 
may play a significant role particularly in the 1980s 
when spatially extensive monitoring data did not exist. 
The larger variability of measured PM2.5 could be due 
to some monitoring sites located at extremely polluted 
and/or unpolluted locations as well as those IPN sites 
that operated in only a few seasons. Our previous study 
showed that 102 IPN sites for 1979–1982 decreased to 
16 for 1980–1981, when the site inclusion criteria for 
computing representative annual average concentra-
tions of PM2.5 were applied [15]. Changes over time in 
locations of monitoring sites and different sampling 
schedules among monitors might also have affected the 
variability in the originally reported PM2.5 difference. 
We note that exposure measurement error driven by 
these spatial and/or temporal misalignments could lead 
to biases in either direction, as well as incorrect stand-
ard errors of health effect estimates [24–26]. In addi-
tion, when we replaced our county-average predictions 
with MSA-average predictions in our sensitivity analysis 
to match to the exposure averaging scale of the original 
analysis, standard errors of estimates increased and the 
primary model estimate became statistically non-signif-
icant. As opposed to limited monitoring data in 1980s, 
our prediction model allowed us to estimate county 
averages, resulting in good alignment of the exposure 
and the outcome and increased exposure variability.

By expanding the temporal and spatial scales of PM2.5 
to cover the entire continental U.S. back to 1980, our 
study provides a mechanism for future high-quality pol-
icy-relevant analyses of PM2.5 health impacts. Mortality 
and morbidity data are often available much earlier than 

the establishment of the extensive spatial monitoring 
of PM2.5. Our PM2.5 estimates linked to administrative 
health data allow the assessment of the health benefits 
achieved from the reduction of PM2.5 over time to be 
evaluated [27]. In addition, areas with no nearby regu-
latory monitoring sites have been shown to have differ-
ent demographic characteristics than areas represented 
by monitors [28]. It may be inadequate to rely on sim-
pler area averages computed directly from regulatory 
monitoring sites to capture the differences in susceptibil-
ity depending on the sociodemographic subgroup. For 
example, only 567 (18%) of the 3,109 counties in the con-
tinental U.S. in 2000 had at least one regulatory monitor 
with sufficient daily measurements to provide represent-
ative annual averages (Additional file  1: Figure S8). The 
median number of monitoring sites per MSA based on 
the 2000 Census was 1 (interquartile-range: 1 – 3), with 
median area and population per monitoring site of 2,232 
km2 and 198,306 people.

The higher and less uncertain estimates of the PM2.5 
effect on life expectancy when PM2.5 was obtained from 
national grid-based predictions, in comparison to census 
tract-based predictions, could be due to exposure meas-
urement error because grid locations do not adequately 
represent locations where people live. National grid coor-
dinates possibly include many non-residential locations 
with low concentrations in addition to residential loca-
tions, whereas most census tract centroids are likely to 
fall in residential areas and better represent residential 
exposure. On average, the grid-based estimates underes-
timated area-average PM2.5 concentrations compared to 
the census tract-based estimates.

One limitation of this study is that we restricted the life 
expectancy analysis study period to 1980–2000 to facili-
tate comparison with the results in the original analysis. 
Future analyses could leverage updated life expectancy 
data to investigate other time periods including more 
recent time periods and ascertain whether the results 
are consistent. Furthermore, the two estimates of PM2.5 
reduction from monitored vs. modeled PM2.5 on the 
improvement in life expectancy are likely to have dif-
ferent measurement error impacts. Future studies also 
should quantify these differences.

Conclusions
Using modeled PM2.5 concentrations expanded spatially 
and temporally to overcome limited coverage of moni-
toring data, we replicated Pope et  al.’s life expectancy 
analysis, work that has been influential in environmen-
tal policy and regulatory accountability. Our analysis 
confirmed the previous findings of the contribution of 
improved air quality to improved life expectancy.



Page 9 of 10Kim et al. Environ Health          (2021) 20:102 	

Abbreviations
COPD: Chronic obstructive pulmonary disease; FRM: Federal Reference Meth‑
ods; IPN: Inhalable Particulate Network; IMPROVE: Interagency Monitoring 
of Protected Visual Environments; MSA: Metropolitan Statistical Area; MESA 
Air: Multi-ethnic Study of Atherosclerosis and Air Pollution; PLS: Partial least 
squares; PM2.5: Particulate matter with a diameter equal to or less than 2.5 μm; 
SD: Standard deviation; SE: Standard error.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12940-​021-​00785-0.

Additional file 1: Table S1. Estimates of life expectancy associated with a 
10 μg/m3 increase in long-term average PM2.5 concentrations by the two 
time periods (1979-1983 and 1999-2000), adjusted for socioeconomic, 
demographic, and proxy indicators for prevalence of smoking across 211 
U.S. counties, using PM2.5 concentrations based on Metropolitan Statistical 
Area (MSA) averages of Inhalable Particulate Network (IPN) or Federal 
Reference Method (FRM) monitoring data vs. county averages of predic‑
tions at census tract centroids and national grid coordinates estimated 
by the historical prediction model. Table S2. Estimates of the increase 
in life expectancy associated with a reduction in PM2.5 of 10 μg/m3 over 
approximately 20 years between 1979-1983 and 1999-2000, adjusted 
for socioeconomic, demographic, and proxy indicators for prevalence of 
smoking in 211 U.S. counties, using Metropolitan Statistical Area (MSA) 
average PM2.5 concentrations based on measurements from regulatory 
monitoring networks (Inhalable Particulate Network (IPN) or Federal 
Reference Method (FRM)) vs. predictions at census tract centroids and 
national grid coordinates estimated by the historical prediction model. 
Figure S1. Maps of 3,109 counties in the continental U.S., and 25-km grid 
coordinates, regulatory monitoring sites, and census tract centroids in Los 
Angeles county in 2010. Figure S2. Map of the 211 U.S. counties included 
in the life expectancy analysis in Pope et al. 2009. Figure S3. Scatter plots 
of PM2.5 concentrations using Metropolitan Statistical Area (MSA) averages 
based on measurements from regulatory monitoring networks (Inhalable 
Particulate Network (IPN) or Federal Reference Method (FRM)) vs. county 
averages based on predictions at census tract centroids (CT) and national 
grid coordinates (NG) estimated by the historical prediction model by 
1980s (1979-1983), 2000s (1999-2000), and 1980s-2000s (1979-1983 minus 
1999-2000) (green and red lines for the identity and best-fitted lines, 
respectively). Figure S4. Scatter plots of county-level annual averages 
of PM2.5 (μg/m3) predictions at census tract centroids estimated by the 
historical exposure prediction model against Metropolitan Statistical 
Area (MSA) averages of PM2.5 measurements from regulatory monitor‑
ing networks (Inhalable Particulate Network (IPN) or Federal Reference 
Method (FRM)) by 1980s (1979-1983), 2000s (1999-2000), and 1980s-2000s 
(1979-1983 minus 1999-2000) (same plots to those in the first column of 
Figure S3 but with colored dots indicating the rank of the concentration in 
1980s). Figure S5. Maps of county-level annual-average PM2.5 concentra‑
tions (μg/m3) in 1980, 1990, 2000, and 2010 based on census tract cen‑
troid predictions estimated by the historical prediction model. Figure S6. 
Scatter plots of PM2.5 (μg/m3) and life expectancy for 1980-2000 between 
1979-1983 and 1999-2000 across 211 U.S. counties using Metropolitan Sta‑
tistical Area (MSA) average PM2.5 concentrations based on measurements 
from regulatory monitoring networks (Inhalable Particulate Network 
(IPN) or Federal Reference Method (FRM)) vs. predictions at census tract 
centroids (CT) and national grid coordinates (NG) estimated by the histori‑
cal prediction model by 1990s, 2000s, and 1980s-2000s. Figure S7. Effect 
estimates and 95% confidence intervals of the life expectancy increase for 
a PM2.5 reduction of 10 μg/m3 between 1980s and 2000s across 211 U.S. 
counties, adjusted for socioeconomic, demographic, and proxy indicators 
for prevalence of smoking in four health analysis models, by different years 
of PM2.5 predictions at census tract centroids estimated by the historical 
prediction model (black closed circles indicating effect estimates of PM2.5 
reduction based on IPN and FRM measurements between 1979-1983 and 
1999-2000 in Pope et al. (2009); black open circles based on predictions for 
the same averaging periods as Pope et al. (2009) in our re-analysis; all the 
other symbols and colors based on predictions using different single start 

and end years). Figure S8. Map of 567 counties where there is at least one 
regulatory monitoring site after applying the minimum inclusion criteria 
for computing annual averages in 2000.
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