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Abstract 

Background:  Organophosphate (OP) insecticides represent one of the largest classes of sprayed insecticides in the 
U.S., and their use has been associated with various adverse health outcomes, including disorders of blood pressure 
regulation such as hypertension (HTN).

Methods:  In a study of 935 adults from the NHANES 2013–2014 cycle, we examined the relationship between sys-
tolic and diastolic blood pressure changes and urinary concentrations of three OP insecticides metabolites, including 
3,5,6-trichloro-2-pyridinol (TCPy), oxypyrimidine, and para-nitrophenol. These metabolites correspond to the par-
ent compounds chlorpyrifos, diazinon, and methyl parathion, respectively. Weighted, multivariable linear regression 
analysis while adjusting for potential confounders were used to model the relationship between OP metabolites and 
blood pressure. Weighted, multivariable logistic regression analysis was used to model the odds of HTN for quartile of 
metabolites.

Results:  We observed significant, inverse association between TCPy on systolic blood pressure (β-estimate = -0.16, 
p < 0.001) and diastolic blood pressure (β-estimate = -0.15, p < 0.001). Analysis with para-nitrophenol revealed a sig-
nificant, positive association with systolic blood pressure (β-estimate = 0.03, p = 0.02), and an inverse association with 
diastolic blood pressure (β-estimate = -0.09, p < 0.001). For oxypyrimidine, we observed significant, positive associa-
tions between systolic blood pressure (β-estimate = 0.58, p = 0.03) and diastolic blood pressure (β-estimate = 0.31, 
p < 0.001). Furthermore, we observed significant interactions between TCPy and ethnicity on systolic blood pressure 
(β-estimate = 1.46, p = 0.0036). Significant interaction terms were observed between oxypyrimidine and ethnicity 
(β-estimate = -1.73, p < 0.001), as well as oxypyrimidine and BMI (β-estimate = 1.51 p < 0.001) on systolic blood pres-
sure, and between oxypyrimidine and age (β-estimate = 1.96, p = 0.02), race (β-estimate = -3.81 p = 0.004), and BMI 
on diastolic blood pressure (β-estimate = 0.72, p = 0.02). A significant interaction was observed between para-nitro-
phenol and BMI for systolic blood pressure (β-estimate = 0.43, p = 0.01), and between para-nitrophenol and ethnicity 
on diastolic blood pressure (β-estimate = 2.19, p = 0.006). Lastly, we observed a significant association between the 
odds of HTN and TCPy quartiles (OR = 0.65, 95% CI [0.43,0.99]).

Conclusion:  Our findings support previous studies suggesting a role for organophosphate insecticides in the etiol-
ogy of blood pressure dysregulation and HTN. Future studies are warranted to corroborate these findings, evaluate 
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Introduction
Hypertension (HTN) poses a significant public health 
and economic burden, and it is estimated that over 100 
million U.S. adults are currently living with HTN [1–3]. 
Hypertension is estimated to cost over $130 billion annu-
ally, and is the leading cause of morbidity and mortality 
associated with cardiovascular diseases and strokes [4]. 
Clinically, HTN can be defined as a systolic blood pres-
sure of 140  mmHg or greater, and/or a diastolic blood 
pressure of 90  mmHg or greater [5]. Recently, studies 
have shown that even modest deviations from normal 
blood pressure can significantly increase ones chances 
of adverse cardiovascular events, and patients with a 
systolic blood pressure between 120–139  mmHg and/
or diastolic pressure between 80–89 are considered pre-
hypertensive [6]. In over 80% of cases, the exact cause of 
HTN is unknown, and these situations are classified as 
primary or “essential” HTN [5]. In contrast, secondary 
HTN describes a situation where a known cause for the 
pathology has been determined (e.g. side effect of specific 
medications, genetic conditions such as hyperaldoster-
onism, organ dysfunction, etc.) [3, 7]. While lifestyle fac-
tors, diet, aging, and genetic predispositions have been 
strongly linked with the occurrence of HTN, the influ-
ence of exposure to environment chemicals on the ini-
tiation and/or progression of HTN has recently gained 
more attention [8–12].

Historically, a variety of toxicants have been associ-
ated with HTN in epidemiological and laboratory stud-
ies. Many of these chemicals are classified as persistent 
organic pollutants (POPs), and include compounds 
such as dioxin-like and non dioxin-like polychlorinated 
biphenyls (PCBs), phthalates, perfluorooctanoic acids 
(PFOAs), and various organochlorine insecticides like 
Dichlorodiphenyltrichloroethane (DDT) [13, 14]. While 
some of these chemicals have been phased out over time 
and their use restricted, the biochemical properties of 
POPs including lipophilicity and resistance to biodegra-
dation increase their half-lives in the environment and 
biological compartments, and thus even restricted or 
banned chemicals can still contribute to adverse health 
effects in various populations years later [15]. Addition-
ally, newer alternatives that share similar chemical prop-
erties have been shown to have similar deleterious effects 
on organ systems and overall health, most notably organ-
ophosphate insecticides.

In the U.S., organophosphate (OP) insecticides have 
been manufactured for decades, and millions of kilo-
grams of these insecticides are produced and sprayed 
annually [16]. Currently, OP insecticides constitute 
roughly one-third of all insecticides used in the U.S., with 
the most common OP insecticide being chlorpyrifos [17]. 
While OP insecticides provided many benefits in crop 
yield and reduction in vector-borne illnesses, their strong 
associations with cholinergic toxicity and cognitive 
impairment in children following in utero exposures have 
raised public health concerns, resulting in their restricted 
use in many countries [18–20]. While parathion has been 
banned from both residential and agricultural use in the 
U.S. since 2000, methyl parathion, diazinon, chlorpyrifos, 
and methyl chlorpyrifos are still registered for agricul-
tural use. As a result, metabolites of these insecticides are 
still readily quantifiable in the general population which 
reflects significant environmental exposures. The lon-
gevity of these insecticides is due in part to their chemi-
cal properties that make them highly lipid soluble, and 
resistant to biodegradation in certain environments [21]. 
Exposure to OP insecticides can occur via multiple path-
ways, including household and agricultural use, dietary 
exposure to insecticide residues, and exposure to agricul-
tural drift [22]. Dietary exposure comes primarily from 
residues in fruits and vegetables, as well as contaminated 
meat, fish, rice, and dairy products. In one study, quan-
tified levels of chlorpyrifos in commonly sold vegetables 
ranged from 0.01–3.5 mg/kg [23]. Public health initiatives 
and studies monitor OP metabolites in human samples 
such as urine, because these concentrations can serve as 
a reliable proxy for exposure to parent compounds like 
chlorpyrifos [24]. Several studies have shown that over 
90% of the U.S. adult population has measurable levels of 
a specific metabolite of chlorpyrifos, TCPy, in their urine 
[25, 26]. Additionally, quantification of metabolite con-
centrations in the general population can give insights 
into the daily intake of parent compounds reaching sys-
temic circulation. With this information, scientists can 
model the dose–response relationship between various 
concentrations of insecticides and health outcomes, and 
these results help public health experts and regulatory 
agencies like the Environmental Protection Agency (EPA) 
set cutoffs and guidelines defining safe doses, as well as 
providing evidence supporting restrictions on harmful 
chemicals.

dose–response relationships between organophosphate insecticides and blood pressure, determine clinical signifi-
cance, and elucidate biological mechanisms underlying this association.

Keywords:  Hypertension, Blood pressure, Insecticides, Endocrine disruption, Risk assessment
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Recent studies have begun investigating the relation-
ship between OP insecticides and the risk for HTN. 
The primary mechanism of OP insecticides is inhibi-
tion of acetylcholinesterase, the enzyme responsible for 
breaking down acetylcholine [27, 28]. With this enzyme 
inhibited, a robust activation of acetylcholine-dependent 
(cholinergic) pathways ensues, resulting in overstimu-
lation of cholinergic pathways. Many cholinergic path-
ways are involved in the central (brain) and peripheral 
(heart, kidneys, endothelium) control of vascular tone 
and heart rate, through connections with the sympathetic 
and parasympathetic nervous systems [29–32]. Perturba-
tion of cholinergic pathways through inhibition of acetyl-
cholinesterase has been hypothesized to be one way in 
which OP insecticides contribute to the pathogenesis of 
HTN. Chlorpyrifos, the most commonly used OP pesti-
cide in the U.S., and diazinon have been associated with 
increased risk of gestational HTN in a cohort of migrant 
farmworkers, as well as elevations in blood pressure of 
children exposure to these chemicals during high-spray 
seasons [33–35]. A recent study by Javeres et. al found 
that chronic exposure to OP insecticides increases risk 
for metabolic disorders and HTN [10]. Additionally, 
subacute chlorpyrifos exposure in Wistar rats resulted 
in prolonged HTN and cardiometabolic abnormali-
ties and a prior NHANES study found positive associa-
tions between non-specific metabolites of OP pesticides 
and adverse cardiometabolic health risk [36, 37]. In this 
cross-sectional study, we expand on the current litera-
ture to investigate the association between three specific 
metabolites of OP pesticides and blood pressure.

Research design/methods
National health and nutrition examination survey 
(NHANES)
Data analyzed was collected from the NHANES 2013–
2014 survey cycle (available from:https://​wwwn.​cdc.​gov/​
Nchs/​Nhanes/​2013-​2014/​TST_H.​htm). NHANES is a 
nationwide survey conducted annually for the purpose of 
collecting health and diet information from a representa-
tive, non-institutionalized U.S. population. NHANES is 
unique in that it combines interviews, physical exami-
nations, and laboratory evaluations to obtain a large 
amount of quantitative and qualitative data. Information 
on NHANES survey methods are described further in 
detail elsewhere [38]. Briefly, the survey examines about 
5,000 persons each year from various counties across 
the country. The country is divided into a total of 30 pri-
mary sampling units (PSUs), of which 15 are visited each 
year. The complex survey design assigns a weight to each 
individual as a function of their probability of being ran-
domly selected into the study and these weightings are 
taken into account when building our regression models. 

All participants provided a written informed consent in 
agreement with the Public Health Service Act prior to 
any data collection. Household questionnaires, telephone 
interviews, and examinations conducted by healthcare 
professionals and trained personnel were utilized to col-
lect data.

Study participants and exclusion criteria
The 2013–2014 NHANES cycle collected data on 10,175 
individuals. We restricted our analysis to adults age 18 
and older. We restricted our analysis to adults due to the 
fact that HTN in the pediatric population is a rare out-
come, and would not provide a sufficient sample size for 
robust analysis. Additionally, pediatric HTN is unlikely 
to be related to low level, chronic environmental expo-
sures, but rather has been shown to be strongly linked 
with genetic conditions, and acute, high exposure lev-
els of environmental contaminants [39, 40]. From these 
remaining individuals, analysis was restricted to men 
and women with valid blood pressure readings, as well as 
complete information on demographic, anthropometric, 
questionnaire, and laboratory variables including BMI, 
alcohol use, diabetes status, education level, hypercho-
lesterolemia status, insurance coverage status, creatinine 
and albumin concentrations, race, smoking status, and 
HTN status, resulting in a final analysis sample size of 
935.

Quantification of TCPy, oxypyrimidine, 
and para‑nitrophenol
Due to the increased cost and technical difficulty in 
quantifying parent compounds (chlorpyrifos, methyl 
chlorpyrifos, diazanon, parathion, methyl parathion) in 
the plasma, the NHANES census collected data on read-
ily available and easier to obtain urinary metabolite con-
centrations. Studies have shown that these metabolites 
serve as reliable proxies for parent compounds. TCPy, 
oxypyrimidine, and para-nitrophenol were quantified 
and extracted from the urine matrix of 935 participants 
using an automated solid phase extraction system. Selec-
tive separation of the analytes was achieved using high-
performance liquid chromatography with a gradient 
elution program. Sensitive detection of the analytes was 
performed by a triple quadrupole mass spectrometer 
with a heated electrospray ionization source. Final ana-
lyte concentrations were dichotomized to either above 
the detection limit, a value of 0.15  µg/L, or below the 
detection limit. A further detailed description on labora-
tory procedures can be found elsewhere [41].

Defining demographic variables
Methods for questionnaire data collection are described 
in the NHANES procedures guide [42]. Participants were 

https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/TST_H.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/TST_H.htm
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classified according to highest level of education attain-
ment, insurance coverage status, smoking status, alco-
hol use, diabetes status, cholesterol status, and HTN 
status. Highest level of education attainment was based 
on responses by participants during the home interview. 
Insurance status and smoking status were recorded as a 
yes or no response from the home interview. Alcohol use 
was defined as a yes for individuals who said they drink 
at least 2 or more alcoholic drinks a day. Diabetes sta-
tus was defined as a fasting serum glucose greater than 
126, having answered yes to taking diabetic medications, 
or being told by a physician they have diabetes. Hyper-
tension status was defined by at least 4 separate systolic 
and/or diastolic blood pressure readings greater than 
140  mmHg and/or 90  mmHg respectively, having been 
told by a doctor one has hypertension, or is currently 
taking hypertension medications. Cholesterol status was 
defined by whether or not a person was told he/she has 
high cholesterol by a physician, or if that person is cur-
rently taking hypercholesterolemia medications.

Statistical analyses
Continuous variables were compared using one-way 
ANOVA, while categorical variables were compared 
using the Chi-squared test. Multivariable, ordinary least 
squares regression models were used to measure the 
association between the urinary concentrations of OP 
metabolites and blood pressure. We controlled for poten-
tial confounders including race, age, BMI, creatinine 

levels, diabetes status, education level, smoking status, 
and hypercholesterolemia based on results from litera-
ture searches (Fig.  1). Metabolite values were divided 
into quartiles for logistic regression analysis, to evaluate 
the association between quartile levels of each metabo-
lite and the odds of HTN. Oxypyrimidine values below 
the 75th percentile were detected by the analyzer as 0.70, 
and therefore we divided oxypyrimidine groups into 
below the 75th percentile and above the 75th percentile. 
The lowest quartile was used as the reference in each 
case, and these results are presented as supplementary 
information.

All statistical analyses were performed using SAS 9.4 
and SUDAAN software packages accounting for the 
complex survey design of NHANES [43]. A p-value < 0.05 
was used as the criterion for significance.

Results
Demographic tables for our cohort are presented in 
Tables  1, 2, 3, 4 and 5. The mean age for our cohort 
was 49.3 ± 0.57, and roughly half of individuals were 
men vs. women. At least 55% of our cohort received 
some college degree or above. Table 2 shows the demo-
graphic breakdown of the cohort stratified by quartile 
of TCPy exposure. We observed a significant differ-
ence among smoking status between quartiles of TCPy. 
Table  3 shows the demographic breakdown by quar-
tile of para-nitrophenol exposure, and Table  4 shows 
the demographic breakdown by individuals below the 

Fig. 1  Directed acyclic graph depicting the proposed relationship between OP exposure and HTN. The causal pathway is depicted with the green 
arrow. Potential founders are depicted along the red arrows. Covariates known to be associated with risk of HTN are along the black arrows
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75th percentile of oxypyrimidine exposure vs. those 
above the 75th percentile. Table  5 shows the demo-
graphic breakdown of the cohort by HTN status. We 
observed significant differences between hypertensive 
vs. normotensive individuals for age, race, education, 
hypercholesterolemia status, mean para-nitrophenol 
concentration, and mean values for systolic and dias-
tolic blood pressure. In our regression analysis of the 

total cohort, we observed a significant, inverse asso-
ciation between TCPy and systolic blood pressure 
(β-estimate = -0.16, p < 0.001) and diastolic blood pres-
sure (β-estimate = -0.15, p < 0.001). The interpreta-
tion of these estimates would be that for every 1 unit 
increase in TCPy concentration, we would expect a 
0.16  mmHg and 0.15  mmHg decrease on systolic and 
diastolic blood pressure, respectively. Furthermore, we 

Table 1  Demographic and Laboratory Data for the Total Cohort
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observed significant interactions between TCPy and 
ethnicity on systolic blood pressure (β-estimate = 1.46, 
p = 0.0036). This interaction was observed within 
the Mexican–American race when using Caucasian-
Americans as the reference group. The interpretation 

for this interaction is that when holding all other vari-
ables at zero, we expect an increase on systolic blood 
pressure of 1.46  mmHg when comparing Mexican-
Americans exposed to TCPy to Caucasian-Americans. 
Analysis with para-nitrophenol revealed a significant, 

Table 2  Demographic and Laboratory Data by Quartiles of TCPy
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positive association with systolic blood pressure 
(β-estimate = 0.03, p = 0.02), and an inverse associa-
tion with diastolic blood pressure (β-estimate = -0.09, 

p < 0.001). A significant interaction was observed 
between para-nitrophenol and BMI on systolic blood 
pressure (β-estimate = 0.43, p = 0.01), and between 

Table 3  Demographic and Laboratory Data by Quartiles of Para-nitrophenol
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para-nitrophenol and ethnicity on diastolic blood 
pressure (β-estimate = 2.19, p = 0.006). Significant 
interaction terms were observed between oxypyrimi-
dine and race (β-estimate = -1.73, p < 0.001), as well as 

oxypyrimidine and BMI (β-estimate = 1.51 p < 0.001) 
on systolic blood pressure. We also observed sig-
nificant interactions between oxypyrimidine and age 
(β-estimate = 1.96, p = 0.02), race (β-estimate = -3.81 

Table 4  Demographic and Laboratory Data by Oxypyrimidine Percentile
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p = 0.004), and BMI on diastolic blood pressure 
(β-estimate = 0.72, p = 0.02). Lastly, we performed 
multivariable logistic regression to model the odds of 
hypertension, at quartile levels of each OP metabolite. 
The lowest quartile was used as the reference in each 
case. Results from our logistic regression revealed a 
significant association between the odds of HTN and 
TCPy (OR = 0.65, 95% CI [0.43,0.99]) and no significant 

associations between urinary concentrations of oxypy-
rimidine, and para-nitrophenol (Additional file 1: Sup-
plementary tables 1,2 and3).

Discussion
Our preliminary findings support data from previous 
studies suggesting a link between OP insecticide expo-
sure and blood pressure dysregulation. We observed 

Table 5  Demographic and Laboratory Data by Hypertension Status



Page 10 of 14Glover et al. Environmental Health           (2022) 21:74 

significant associations between odds of HTN and TCPy, 
whereas null associations were observed between para-
nitrophenol and oxypyrimidine with HTN. A potential 
explanation for these differences in associations among 
the metabolites may be due to differences in their meas-
ured concentrations. For example, TCPy is more readily 
quantified in the environment compared to oxypyrimi-
dine and para-nitrophenol. As a result, our significant 
association observed between TCPy and HTN may be 
due to a larger effect size within TCPy analyses compared 
to the para-nitrophenol and oxypyrimidine analyses. 
Furthermore, it is also possible that the population-level 
exposures to oxypyrimidine and para-nitrophenol are 
not strong enough to promote an individual into HTN, 
though they are associated with changes in continuous 
blood pressure. We additionally observed significant 
interactions between OP exposure and BMI, age, race on 
blood pressure. It has been demonstrated that OP insec-
ticides and other environmental chemicals commonly 
found with OPs (e.g. herbicides, heavy metals, PCBs) can 
sequester within the biological fat compartment, specifi-
cally within adipocytes [44, 45]. In this case, the fat com-
partment can serve as a reservoir for continued exposure, 
beyond the initial time of contact. Thus, studies have 
shown that for varying levels of BMI, the adverse effects 
of exposure to a chemical can be significantly more pro-
nounced in individuals with higher BMI, because these 
individuals trap more chemical within their bodies com-
pared to lower BMI individuals, given a same initial 
exposure of chemical. The interaction between age and 
OP exposure is possibly due to the fact that older indi-
viduals generally have a longer exposure window com-
pared to younger individuals. Additionally, endogenous 
levels of protective enzymes and metabolic processes 
wanes with age [46]. Specifically, levels of liver paroxo-
nase enzymes that are responsible for metabolizing OPs 
wane with increasing age, and therefore older individu-
als might be more likely to experience adverse health 
effects of Ops [47, 48]. In particular, the paroxonase-1 is a 
polymorphic liver and plasma enzyme that catalyzes the 
breakdown of all three parent OPs in question to their 
respective metabolites, and differential levels of PON1 in 
human and animal studies are believed to be important 
determinants of OP toxicity [49]. Studies have also shown 
differences in expression levels of parxoxonase enzymes 
between ethnic groups, and this may in part explain the 
interaction between ethnicity and OP exposure on blood 
pressure [50].

There are several potential mechanisms that have 
been hypothesized explaining the association between 
OP insecticides and blood pressure dysregulation. It is 
important to note that acetylcholinesterase inhibition 

represents only one part of the complete toxicologi-
cal profile of OP insecticides, which remains to be fully 
elucidated. To date, there are a limited number of stud-
ies that have assessed biological effects of chlorpyrifos, 
diazinon, and parathion within organ systems regulat-
ing blood pressure, and the majority of those studies 
have investigated chlorpyrifos’ effects. According to the 
CDC, exposure levels of chlorpyrifos within the general 
population aren’t expected to significantly inhibit acetyl-
cholinesterase and cause overt cholinergic toxicity [51]. 
However, there may be subtle biological changes occur-
ring with prolonged, chronic OP pesticide exposure, and 
effects of OPs at the cellular level within various organs 
may be related to blood pressure dysregulation. Organo-
phosphates were originally designed as potent neurotoxic 
agents, and recent in  vitro and in  vivo animal studies 
suggest that effects within the central nervous system 
on neuronal morphogenesis, neurotransmission, and 
behavior may occur at systemically nontoxic doses or at 
doses of chlorpyrifos that do not result in readily appar-
ent changes cholinergic pathways [51]. These neuronal 
pathways (many of which are located in the hypothala-
mus), rely on the integrity of synapses and neurotrans-
mitter function to regulate the sympathetic nervous 
system independent of cholinergic pathways, which in 
turn regulates blood pressure. Most notably, vasopres-
sin, angiotensin II, and leptin hormones act as key effec-
tor hormones within the paraventricular nucleus of the 
hypothalamus [52, 53]. Chlorpyrifos exposure has been 
shown experimentally to not only increase circulating 
levels of these hormones, but also bind to their receptors 
in  vitro [54, 55]. These receptors and neurotransmitters 
belong to pathways that travel from the hypothalamus to 
the brainstem, which sends outputs to various peripheral 
organs to regulate blood pressure. Through these actions 
chlorpyrifos can affect the activity and expression of 
these pathways, and ultimately affecting blood pressure.

Organophosphate insecticides like chlorpyrifos, 
diazinon, and parathion have also been shown to affect 
expression of numerous micro RNAs (miRNAs) in vivo 
and in  vitro [56, 57]. Micro RNAs are short, noncod-
ing RNA molecules that regulate gene expression at the 
level of transcription. Many of these miRNAs are tar-
gets of genes in cardiac tissue, neural tissue, and skel-
etal tissue that control homeostatic processes including 
blood pressure regulation [58]. Our lab previously 
found that differential expression of several miRNAs 
(miR-20a-5p, miR-4763-5p, and miR-4709-3p) that 
regulate vascular remodeling, immune pathways, and 
cardiac function are implicated in the pathogenesis of 
hypertension [59]. Thus, another possible mechanism 
through which OP insecticides affects blood pressure is 
through effects on miRNA-dependent pathways.
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Organophosphates have also been shown to induce 
oxidative stress in various organ systems, a process that 
may damage to the integrity of these systems and result 
in aberrations in blood pressure control [60]. Chlorpyri-
fos, diazinon, and parathion have all experimentally been 
shown to increase levels of reactive oxygen species in the 
heart, kidneys, liver, and brain [61–65]. These OPs have 
also been shown to induce inflammation through upreg-
ulation of cytokines and perturbations in the gut micro-
flora, and recent studies have implicated dysregulation of 
the gut microbiome in HTN pathogenesis [66, 67]. It is 
important to note that many of these studies were con-
ducted with acute OP exposure levels, and thus future 
studies using chronic exposure levels and chronic time 
durations are warranted to assess induction of oxidate 
stress and inflammation, and what biological effects these 
processes have on blood pressure.

It is also important to note that TCPy, oxypyrimi-
dine, and para-nitrophenol have their own toxicologi-
cal profiles in various organ systems, independent of 
acetylcholinesterase inhibition [68, 69]. If the relation-
ship between OP metabolites and blood pressure is due 
their direct effects (in conjunction with or independent 
of parent compound effects), then future studies exam-
ining the individual effects of these OP metabolites and 
the parent compounds on blood pressure are warranted. 
Lastly, chronic chlorpyrifos exposure has been shown to 
alter brain development and neuronal morphogenesis of 
developing fetuses in absence of significant acetylcho-
linesterase inhibition [70, 71]. These in utero exposures 
may also contribute to the effect of OP insecticides on 
blood pressure and may even predispose individuals to 
HTN, and future developmental studies are warranted to 
test this idea.

The present study has a number of strengths. We 
incorporated a large number of men and women rep-
resentative of the general U.S. adult population, and we 
were able to characterize the association between blood 
pressure and everyday exposure levels of TCPy, oxypy-
rimidine, and para-nitrophenol. Unlike this study, many 
previous studies lack generalizability due to the selec-
tion of their study populations, which mostly include 
occupationally exposed pesticide applicators, and agri-
cultural subpopulations living in areas of high OP pesti-
cide concentrations. Additionally, previous studies have 
relied on using dialkyl phosphates (DAPs) as proxies for 
OP exposure. Unlike TCPy, oxypyrimidine, and para-
nitrophenol, DAPs are not unique to any one parent 
compound, and are a result from metabolism of a num-
ber of OP insecticides, making them a less reliable proxy 
for parent compound exposure. Another strength lies in 
the oversampling methods of NHANES, which allowed 
for sufficient sample sizes of minority populations being 

recruited (Mexican–American, African-American, 
Asian-American). These groups have been traditionally 
difficult to include in population-level studies, and when 
they are included in small numbers there isn’t enough 
power to estimate main effects with confidence. Through 
oversampling, we were able to examine main effects of 
OP exposure on blood pressure within these groups, and 
also examine interaction effects between OP exposure 
and race/ethnicity on blood pressure.

The current study has several limitations. Due to the 
cross-sectional nature of this study, we are unable draw 
any causal relationships between the exposure to TCPy, 
oxypyrimidine, para-nitrophenol, and blood pressure 
outcomes. Furthermore, because we are measuring uri-
nary concentrations of metabolites as a proxy for par-
ent compound exposure, we are unable to quantify the 
true relationship between the parent compounds and 
blood pressure. The detection frequencies of oxyprimi-
dine and para-nitrophenol metabolites are relatively 
small compared to TCPy, and this may affect the power 
and precision of our estimates when extrapolating our 
findings to the general population. Additionally, TCPy, 
oxypyrimidine, and para-nitrophenol are relatively sta-
ble in the environment, and thus it is likely that quanti-
fied metabolites come not only from direct exposure, but 
also from a variety of sources such as residues on foods 
that accumulate overtime. Thus, it is possible that the 
estimated exposure to the parent compounds is over-
estimated when using these metabolites as surrogates. 
Furthermore, dose-response relationships are crucial to 
understanding the biological effects of insecticide expo-
sure. Both the dose and duration of exposure to insecti-
cides can have varying outcomes on blood pressure, and 
may also depend on inherent biological and sociode-
mographic variables such as age, lifestyle practices, and 
preexisting comorbities [72, 73]. It therefore stands to 
reason that the concentrations of OPs used in previous 
toxicological studies may have different effects on blood 
pressure when compared to concentrations seen at eve-
ryday levels. Many of the in vitro and in vivo studies use 
high doses of insecticides to ensure an effect is meas-
ured, but dose–response studies using environmentally 
representative concentrations are lacking. Additionally, 
many of these studies measured effects of single OPs on 
blood pressure. In the general population, individuals are 
exposed to a wide variety of toxicants daily, and while 
restrictions and bans have been placed on some insecti-
cides, a multitude of novel insecticides are manufactured 
yearly with limited toxicological data. The mixture effects 
of these chemicals in our systems may have antagonist 
or even synergistic effects on various organs regulating 
blood pressure, depending on the ratio of chemicals [74]. 
Future studies including environmentally relevant doses 
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of OPs and inclusion of compound mixtures with various 
insecticides and pollutants are warranted.

Conclusion
Our preliminary findings support a potential role for 
organophosphate insecticide exposure in the pathogen-
esis of HTN. Results such as these support initiatives 
to reduce overuse of insecticides, develop safer insecti-
cide alternatives, and to explore alternative avenues for 
insect control in lieu of insecticides (e.g. bioengineering 
of insects, crop rotating, etc.). Additionally, improved 
protocols and safety standards may be beneficial for 
individuals who use insecticides, as well as farmers 
and industries whose use of insecticides leads to global 
exposures at the population level. Future experiments 
are warranted to elucidate the biological mechanisms 
responsible for the association between OP insecticides 
and blood pressure.
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