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Abstract 

Background: There is a dearth of studies on how neighbourhood environmental attributes relate to the metabolic 
syndrome (MetS) and profiles of MetS components. We examined the associations of interrelated aspects of the 
neighbourhood environment, including air pollution, with MetS status and profiles of MetS components.

Methods: We used socio‑demographic and MetS‑related data from 3681 urban adults who participated in the 3rd 
wave of the Australian Diabetes, Obesity and Lifestyle Study. Neighbourhood environmental attributes included area 
socio‑economic status (SES), population density, street intersection density, non‑commercial land use mix, percent‑
ages of commercial land, parkland and blue space. Annual average concentrations of  NO2 and  PM2.5 were estimated 
using satellite‑based land‑use regression models. Latent class analysis (LCA) identified homogenous groups (latent 
classes) of participants based on MetS components data. Participants were then classified into five metabolic profiles 
according to their MetS‑components latent class and MetS status. Generalised additive mixed models were used to 
estimate relationships of environmental attributes with MetS status and metabolic profiles.

Results: LCA yielded three latent classes, one including only participants without MetS (“Lower probability of MetS 
components” profile). The other two classes/profiles, consisting of participants with and without MetS, were “Medium‑
to‑high probability of high fasting blood glucose, waist circumference and blood pressure” and “Higher probability of 
MetS components”. Area SES was the only significant predictor of MetS status: participants from high SES areas were 
less likely to have MetS. Area SES, percentage of commercial land and  NO2 were associated with the odds of member‑
ship to healthier metabolic profiles without MetS, while annual average concentration of  PM2.5 was associated with 
unhealthier metabolic profiles with MetS.

Conclusions: This study supports the utility of operationalising MetS as a combination of latent classes of MetS com‑
ponents and MetS status in studies of environmental correlates. Higher socio‑economic advantage, good access to 
commercial services and low air pollution levels appear to independently contribute to different facets of metabolic 
health. Future research needs to consider conducting longitudinal studies using fine‑grained environmental meas‑
ures that more accurately characterise the neighbourhood environment in relation to behaviours or other mecha‑
nisms related to MetS and its components.
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Background
The metabolic syndrome (MetS) is typically defined as 
a cluster of a minimum of three of five conditions: large 
waist circumference (WC), high levels of blood pressure 
(BP), fasting blood glucose (FBG) and triglycerides (TG), 
and low levels of high-density lipoprotein cholesterol 
(HDL-C) [1]. MetS prevalence increases with age [2] and 
has been associated with increased risk of coronary heart 
disease, stroke, diabetes and cancer [2, 3].

MetS is a widespread global health issue with an esti-
mated prevalence at around 25% [1], requiring large-
scale, long-term interventions targeting key modifiable 
risk factors. As characteristics of the environments peo-
ple live in (e.g., residential neighbourhoods) have the 
potential to influence health-related lifestyle factors in 
entire populations for a sustained amount of time, it is 
also pertinent to study the influence of environmental 
attributes on MetS. This issue is particularly important 
and timely considering the current global increasing 
trends in urbanisation, densification, pollution and gen-
trification requiring an understanding of their possible 
impacts on health outcomes [4], such as MetS and its 
components. It also aligns with the United Nations Sus-
tainable Development Goals targets of reducing prema-
ture mortality from non-communicable diseases through 
prevention (target 3.4) [5].

There is substantial evidence that the neighbourhood 
environment influences physical activity [6–8] and diet 
[9, 10], both of which have been associated with MetS 
[11, 12]. Also, several studies have examined associa-
tions of environmental attributes with the components of 
MetS [13, 14]. For example, a longitudinal study reported 
worsening body mass index (BMI) and WC in areas with 
higher dwelling density and worsening WC in areas with 
better access to public open space [13], while a cross-sec-
tional study found negative associations between popu-
lation density and BP [14]. Fewer studies have examined 
environmental correlates of MetS. One found level of 
urbanicity was negatively associated with MetS [15] and 
another reported a positive association between neigh-
bourhood-level deprivation and MetS [16]. Others have 
examined associations of MetS with more fine-grain 
neighbourhood environment attributes, such as green 
space [17] and perceived land-use mix [18], as well as by-
products of densification, such as air pollution, and noise 
[19, 20].

Overall, research in the area of neighbourhood envi-
ronmental correlates of MetS typically estimated the 

influence of only one or a few environmental character-
istics [15, 17, 21–23] and did not account for the poten-
tial causal relationships among various environmental 
characteristics, such as the fact that densification is a 
plausible antecedent of mixed land use, street connectiv-
ity and air pollution (i.e., increases in population causing 
the establishment of new services, road infrastructure 
and increases in air pollution) [24, 25]. This is a problem 
because focusing on one or few environmental attrib-
utes is likely to produce biased results due to unadjust-
ment for environmental confounders. Also, disregarding 
the potential causal relationships among environmen-
tal attributes can lead to incorrect interpretations of the 
effects of these attributes on MetS. For example, the inap-
propriate adjustment for potential environmental media-
tors of the effect of an environmental exposure on MetS 
can result in the underestimation of its total effect and, 
hence, overall importance (NB: here, by total effect we 
refer to the sum of the effects mediated and unmediated 
by other environmental characteristics). Unadjustment 
for environmental mediators leads to biased estimates 
of the independent, direct (unmediated by other envi-
ronmental characteristics) effects of an environmental 
attribute on MetS [25].

Studies on environment-health often report the results 
of single-environmental-attribute and multiple-envi-
ronmental-attribute regression models (e.g., [6, 15]). 
From a causal framework viewpoint, the latter may be 
interpreted as direct, independent effects of the exam-
ined environmental attributes on the outcome, while 
the former may represent unbiased total effects (if there 
are no environmental causes common to the environ-
mental attribute of interest and the outcome) or biased, 
confounder-unadjusted effects (if environmental causes 
common to both environmental attribute and outcome 
are not included in the model). Often, studies do not 
distinguish between confounder-unadjusted and total 
effects of environmental exposures or do not seek to esti-
mate the total effects. This is unfortunate as important 
environmental determinants of health may be missed. 
To understand the impacts of the neighbourhood envi-
ronment on metabolic health, it is important to capture 
the neighbourhood built, natural and socio-economic 
environment, the by-products of such environments (i.e., 
pollution) and their interrelationships, and estimate the 
total and direct (unmediated by other environmental 
characteristics) effects of each of them on MetS and its 
components.

Keywords: Walkability, Greenspace, Blue space, Air pollution, Metabolic health, Neighbourhood socio‑economic 
status



Page 3 of 18Barnett et al. Environmental Health           (2022) 21:80  

Another shortcoming of previous research on environ-
mental correlates of MetS pertains to the way MetS has 
been operationalised. The combination of MetS com-
ponents can significantly vary within people with and 
without MetS, making it difficult to identify potential 
environmental determinants of MetS. This means that 
the influence of environmental characteristics on MetS 
may differ based on the combination of its components 
(e.g., high BP, TG and FBG vs. large WC, low HDL-C and 
high BP). It is, thus, possible that neighbourhood envi-
ronmental attributes may show stronger associations 
with combinations of MetS components than the binary 
indicator of MetS status. Rather than focusing solely 
on the presence or absence of MetS (i.e., MetS status), 
determining distinct metabolic profiles that integrate 
information on MetS status and combinations of MetS 
components is likely to provide more meaningful infor-
mation on the associations between neighbourhood envi-
ronment characteristics and MetS. To address the above 
knowledge gaps, we estimated the relationships of aspects 
of the neighbourhood built, social and natural environ-
ment, and ambient air pollution with MetS defined in 
two ways: (1) the standard binary indicator of MetS sta-
tus (i.e., having vs. not having MetS); and (2) metabolic 
profiles integrating information on MetS status and com-
binations of MetS components derived using latent class 
analysis. Rather than solely representing latent classes of 
MetS components, the second MetS outcome included 
actual information on MetS status because MetS status 
is a parameter of interest to clinicians and public health 
practitioners. This enabled the identification of environ-
mental correlates of specific metabolic profiles with MetS 
vs. those without MetS. Importantly, in examining the 
associations of environmental attributes with MetS out-
comes, we considered the potential causal relationships 
among various environmental attributes to estimate the 
total as well as direct, independent effects of each envi-
ronmental attribute on the MetS outcomes.

Methods
Study design and participants
This study used data from wave 3 of Australian Diabe-
tes, Obesity and Lifestyle Study (AusDiab3), a national, 
population-based, longitudinal cohort study of Austral-
ian adults, investigating prevalence and incidence of 
diabetes and associated diseases [26]. AusDiab data col-
lection procedures have been detailed elsewhere with 
participants aged 25 years and over recruited from 42 
statistical areas representative of Australian urban com-
munities across the states and territories [26, 27]. The 
AusDiab3 study was approved by the Alfred Hospital 
Ethics Committee (no. 39/11). Written informed con-
sent was obtained from all participants. The first wave 

was conducted in 1999–2000, while wave 3 took place in 
2011–2012 [28]. A sample of 4614 participated in wave 3 
and had MetS biomarker data collected at a local survey 
testing site [28] (41% of the first wave). Geographic Infor-
mation System (GIS) data, essential for the determination 
of participant-specific neighbourhood environmental 
variables in this study, was limited to participants with a 
recorded address (n = 4141), of whom 3681 (32.7% of the 
first wave) had complete data. This study used only par-
ticipants with complete data because the subsample with 
complete data was sufficiently large and the probability of 
having missing data was not associated with the outcome 
variables (i.e., having vs. not having MetS, the number of 
MetS criteria met and latent classes of MetS) [29]. For 
further information, see “Material regarding participants 
with complete data” in Additional file 1).

Measures
Outcome variables
The criteria for presence of MetS were based on the pres-
ence of abnormal findings of three or more of the follow-
ing components: 1) large WC (Caucasian: [ATP III] USA/
Canada/European: men≥102 cm: women≥88 cm; Asian 
& Aboriginal/Torres Strait Islander: men ≥90 cm; women 
≥80 cm); 2) high TG level (≥ 1.70 mmol/L) with drug 
treatment for elevated TG as an alternative indicator; 3) 
low HDL-C (men < 1.00 mmol/L; women < 1.3 mmol/L) 
with drug treatment for low HDL-C as an alternative 
indicator; 4) high BP (systolic ≥130 and/or diastolic 
≥85 mmHg) with antihypertensive drug treatment as 
an alternative indicator; 5) elevated FBG (≥5.6 mmol/L) 
with drug treatment of elevated glucose as an alternative 
indicator [30]. For each participant, each MetS compo-
nent was represented by a dichotomous variable denot-
ing absence or presence. These five indicators were used 
to define latent classes (LC) of MetS components (here 
also named “combinations of MetS components”). Partic-
ipants were then classified into metabolic profiles based 
on their membership to a specific latent class (i.e., combi-
nation of MetS components) and their MetS status (e.g., 
LC 1 with no MetS; LC 1 with MetS; LC 2 with no MetS; 
LC 3 with MetS, etc.). The main outcome variables were 
1) MetS status (having vs. not having MetS) and 2) mem-
bership to a metabolic profile.

Environmental exposures
Street-network buffers (with 1-km) were created around 
the geocoded locations of participants’ residences follow-
ing standard procedures [31]. A 1-km radius corresponds 
to the distance that adults and older adults without 
mobility problems can cover in a 10–20 minute walk [31], 
which is commonly used to define a neighbourhood [32].
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Area socio-economic status (SES), four built envi-
ronment and two natural environment measures were 
computed for participants’ residential buffers. The 
Index of Relative Socio-economic Advantage and Dis-
advantage (IRSAD) [33] was used to determine area 
SES for each participant. Built environment measures 
encompassed population density (persons/ha), street 
intersection density (intersections/km2) percentage 
of commercial land use and an entropy score denot-
ing the heterogeneity of five non-commercial land 
uses (residential, industrial, medical, educational and 
other land uses) (Land use mix (other), range: 0–1) 
[34]. The two natural environment measures included 
in this study were percentage of parkland and percent-
age of blue space (e.g., lakes, coastlines, rivers and res-
ervoirs). Exposures to nitrogen dioxide  (NO2, units: 
parts per billion, ppb) and fine particulate matter 
smaller than 2.5 μm  (PM2.5, units: μg/m3), which have 
been associated with MetS and its component varia-
bles (e.g., [14, 22, 35]), were estimated at each residen-
tial address using satellite-based land-use regression 
(LUR) models [36–38]. These models used spatial pre-
dictors of annual average  NO2 and  PM2.5 at fixed-site 
monitors (e.g., roads, industrial emissions), including 
time-varying information from satellites, to predict 
concentrations at unmeasured locations (e.g., residen-
tial addresses). The  NO2 model captured 81% of spa-
tial variability in annual  NO2 (RMSE: 1.4 ppb) [36, 37], 
while the  PM2.5 model captured 63% of spatial variabil-
ity (RMSE: 1 μg/m3) [38]. The LUR models were used 
to predict exposure at the time of the AusDiab 3 study.

Covariates
Several variables were included as potential confound-
ers in the regression models. These were self-reported 
sex, age, educational attainment (secondary school; 
trade / technician’s certificate; associate / undergradu-
ate diploma; Bachelor’s degree or higher), household 
income, living arrangements (living with partner and 
no children; living with partner and children; living 
alone; other living arrangements) and tobacco smoking 
status (current smoked; past smoker; never smoker). 
Two variables based on responses to 5-point-scale 
items assessing the importance of reasons for choos-
ing to live in the current neighbourhood [39] were 
included in the regression models to account for resi-
dential self-selection (people choosing to live in neigh-
bourhoods providing opportunities for their preferred 
lifestyle) [40]. One of these residential self-selection 
measures was related to access to recreational facilities 
and the other to access to various types of destinations 
[14, 41].

Data analytic plan
Descriptive statistics were computed for all variables 
included in the study.

Latent class analyses
Latent class analysis (LCA) was used to identify homog-
enous subgroups of participants displaying specific 
combinations of MetS components. LCA is a type of 
model-based clustering operationalised by dichoto-
mous indicators (in this case, five dichotomous variables 
each denoting presence or absence of a MetS compo-
nent) and a categorical latent variable (denoting latent 
classes; in this case, combinations of MetS components). 
LCA derives mutually exclusive classes that maximise 
between-group, and minimise within-group, variance 
based on specific criteria of model fit [42]. With five 
dichotomous items (MetS components), it is theoreti-
cally possible to obtain 15 different combinations of MetS 
components.

Using a Bayesian approach with Gibbs sampling [43], 
we tested LCA models with 1 to 6 classes [44] to identify 
the optimal number of latent classes defining combina-
tions of MetS components. Compared to LCA based on 
maximum-likelihood estimation, LCA within a Bayes-
ian setting yields more reliable parameter estimates 
and standard errors especially when the probability of 
item endorsement (e.g., probability of having high BP in 
members of a specific class/combination of MetS com-
ponents) approaches 0 or 1 [45]. Among the available 
Bayesian approaches for LCA, Gibbs sampling is consid-
ered the gold standard in terms of posterior estimation of 
item and latent class membership probabilities and their 
standard deviations [43]. The optimal number of latent 
classes was determined using several criteria of model 
fit including deviance information criterion (DIC [46];), 
Akaike Information Criterion Monte Carlo (AIC M[47];) 
Bayesian information criterion Monte Carlo (BICM 
[47];), sample sizes per latent class and interpretability 
(i.e., clear differences between latent classes). In this ana-
lytical framework, models with higher DIC, AICM and 
BICM values are considered to better fit the data [43]. In 
case of discordant results between information criteria, 
the model with the highest BICM values [48] providing 
an interpretable solution and sufficiently large classes 
(smallest latent class ≥5% of the sample) was selected 
[49, 50].

Item-response probabilities indicate the probability of 
having specific MetS components (e.g., high BP) con-
ditional on the latent classes. Latent class prevalences 
and item response probabilities for each dichotomous 
indicator of MetS components were presented by latent 
class. Participants were classified into their respective 
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latent classes / profiles based on their largest posterior 
probability of latent class membership [42]. LCAs were 
conducted using BayesLCA version 1.9 [43] in R version 
4.0.3 [51].

Neighbourhood environmental correlates of MetS status 
and metabolic profiles
A Directed Acyclic Graph (DAG) (Additional file  1 – 
Fig. A1) [52], based on the hypothesised causal effects 
among the neighbourhood variables according to previ-
ous studies and the authors’ expert opinion, was created 
to determine the minimal set of confounders for regres-
sion models of total and direct, independent effects of 
neighbourhood environment characteristics on MetS 
status and membership to specific metabolic profiles. By 
total effect of an environmental variable, we mean con-
founder-adjusted association unadjusted for potential 
environmental mediators, while by direct, independent 
effect we mean confounder-adjusted association adjusted 
for potential environmental mediators. Confounders 
included in the total effects models are shown in Table 1. 
The direct, independent effect models were adjusted 
for all socio-demographic characteristics, neighbour-
hood self-selection variables, smoking and all environ-
mental attributes. Generalized additive models (GAMs) 
accounting for clustering at the statistical-area level (by 
including ‘statistical area’ as a random effect term in the 
GAMs), and with binomial or multinomial variance and 

logit link functions were used to estimate these effects 
[53]. AIC values of GAMs with linear vs. smooth terms 
of environmental characteristics were compared to test 
curvilinearity of associations, where a ≥ 5-unit lower 
AIC value was indicative of a better-fitting model [54]. 
Graphs of curvilinear associations were presented in the 
Results section or supplementary material. Exponenti-
ated regression coefficients from the derived GAMs rep-
resented odds ratios, whereby, for example, a value of 
1.50 indicated that a 1-unit increase in an environmen-
tal characteristic was associated with 50% higher odds of 
having vs. not having MetS or belonging to a metabolic 
profile with MetS vs. a metabolic profile without MetS. 
GAMs were estimated using the package “mgcv” version 
1.8–34 in R [53]. No adjustment for multiple testing was 
applied given that our analyses were hypothesis driven 
and, in this case, leading epidemiologists and statisticians 
consider such practice an artificial barrier to knowledge 
[55, 56].

Results
The characteristics of the analytical sample are pre-
sented in Table  2. The mean age of participants was 
60.7 years with a range from 35 to 97 years, 55% were 
females. Participants were relatively evenly spread 
across individual-level SES categories (household 
income and educational attainment). The mean area 
SES (IRSAD) was 6.4 deciles and, hence, above the 

Table 1 Potential confounders included in models of total effects of neighbourhood environment attributes on MetS status and 
membership to a metabolic profile

Abbreviations: MetS the metabolic syndrome, SES socio-economic status, IRSAD Index of Relative Socioeconomic Advantage and Disadvantage, NO2 nitrogen dioxide, 
PM2.5 particulate matter < 2.5 μm

Land use mix (other) represents land use excluding commercial land use, parkland and blue space Minimal sufficient adjustment sets based on the Directed Acyclic 
Graph (DAG)

Environmental attribute Potential confounders

Population density Person-level confounders: Sex, Age, Educational attainment, Living arrangements, Employment status, Neighbourhood 
self‑selection variables, Smoking history
Environmental confounders: None

Commercial land use (%) Person-level confounders: Same as above
Environmental confounders: Population density

Parkland (%) Person-level confounders: Same as above
Environmental confounders: Population density, Commercial land use

Blue space (%) Person-level confounders: Same as above
Environmental confounders: None

Land use mix (other) Person-level confounders: Same as above
Environmental confounders: Population density

Street intersection density Person-level confounders: Same as above
Environmental confounders: Population density

Air pollution  (NO2 and  PM2.5) Person-level confounders: Same as above + Household income
Environmental confounders: Population density, Street intersection density, Commercial land use, Land use mix (other), 
Parkland, Area SES

Area SES (IRSAD) Person-level confounders: Sex, Age, Educational attainment, Living arrangements, Employment status, Household income, 
Neighbourhood self‑selection variables
Environmental confounders: Parkland, Blue space



Page 6 of 18Barnett et al. Environmental Health           (2022) 21:80 

average for Australia. Substantial variability in envi-
ronmental attributes was observed, with, for exam-
ple, population density ranging from 0.01 to 146.37 
persons/ha within 1 km buffers surrounding the par-
ticipants’ residential addresses. The average annual 
concentrations of air pollutants were low, 5.5 ppb for 

 NO2 and 6.3 μg/m3 for  PM2.5, respectively. The most 
prevalent components of MetS were large WC (73%) 
followed by high BP (plus those with antihypertensive 
drug treatment) (54%) and the least prevalent was low 
HDL-C (13%). Thirty three percent of the study par-
ticipants had MetS.

Table 2 Participant characteristics (n = 3681)

Abbreviations: M mean, SD standard deviation, IRSAD Index of Relative Socioeconomic Advantage and Disadvantage, NO2 nitrogen dioxide, PM2.5 particulate matter 
< 2.5 μm, ppb parts per billion

Characteristics Statistics Characteristics Statistics

Socio-demographic and other individual and household characteristics

Age, years, M ± SD 60.7 ± 11.2 Sex, female, % 55.23

Educational attainment, % Smoking history, %
Up to secondary 32.4 Current smoker 7.2

Trade, technician certificate 29.1 Previous smoker 36.9

Associate diploma & equiv. 14.7 Non‑smoker 56.0

Bachelor degree, post‑graduate diploma 23.8 Household income, annual, %
Living arrangements, % Up to $49,999 33.6

Couple without children 49.3 $50,000 ‑ $99,999 28.0

Couple with children 27.9 $100,000 and over 30.3

Other 22.8 Does not know or refusal 8.2

Employment status, %
In paid work 54.2

Volunteering 16.2

Neither 29.6

Neighbourhood self-selection – access to destinations 
[range: 1–5], M ± SD

2.9 ± 1.3 Neighbourhood self-selection – recreational facilities 
[range: 1–5], M ± SD

3.1 ± 1.5

Metabolic syndrome components, including those taking drug treatments

Waist circumference, % Fasting blood glucose, %
Normal 27.3 Normal 66.3

“Obese” (circumference based on gender and ethnicity) 72.8 ≥5.6 mmol/L or known diabetes on drug treatment 33.7

Triglycerides, % High-density lipoprotein–C, %
Normal 76.7 Normal 87.3

≥1.7 mmol/L with drug treatment for elevated triglycerides as 
an alternative indicator

23.3 HDL‑C < 1.0 (men) < 1.3 (women) mmol/L with drug treat‑
ment for low HDL‑C as alternative indicator

12.7

Blood pressure, % Number of metabolic syndrome traits per person, %
Normal blood pressure 45.6 0 13.0

≥130/85 mmHg with antihypertensive drug treatment as an 
alternative indicator

54.4 1 24.9

2 29.1

3 21.2

4 9.1

5 2.8

Neighbourhood environment characteristics (1 km street-network buffers), M ± SD

Population density, persons/ha Blue space, %
1 km buffer 17.5 ± 10.1 1 km buffer 0.3 ± 2.1

Commercial land use, % Street intersection density, intersections/km2

1 km buffer 2.6 ± 6.2 1 km buffer 62.5 ± 32.7

Parkland, % Land use mix (other)
1 km buffer 11.7 ± 12.5 1 km buffer 0.1 ± 0.1

Area SES (IRSAD) 6.4 ± 2.7 Air pollution: NO2, ppb 5.6 ± 2.1

Air pollution: PM2.5, μg/m3 6.3 ± 1.7
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Values of the model fit criteria for various LCA solu-
tions are reported in Table  A1 (Additional file  1 – 
Table A1). A 3-class solution was deemed to best fit the 
data based on BICM values and sizes and interpretability 
of classes. The 3-class solution was associated with the 
highest BICM value, had latent classes defined by distinct 
combinations of MetS components and of acceptable size 
(more than 5% of the sample each). While the DIC and 
AICM values supported a 5-class solution (Additional 
file  1: Table  A1), this solution had two latent classes 
including less than 5% of the sample and with less dis-
tinct combinations of MetS components.

Figure  1 shows the item-response probabilities by 
latent class (LC). LC1 (38.5% of the sample) was termed 
“Lower probability of MetS components” because par-
ticipants falling into this class had low probability of 
having low HDL-C, high TG and high FBG. They also 
had lower probabilities than their counterparts of hav-
ing a large WC and high BP. LC2 (36.3% of the sample) 
was named “Medium-to-high probability of high FBG, 
WC and BP” to highlight the differences between this 
LC and LC1. LC3 (25.2% of the sample) was charac-
terised by a “Higher probability of MetS components” 
compared to the other LCs, as shown in Fig. 1. The three 
LCs differed on socio-demographic characteristics and 
environmental attributes (Additional file  1:  Table  A2), 
including area SES (p  < .001) and annual average  NO2 
(p = .013) and  PM2.5 (p = .006), with participants in the 
“Lower probability of MetS components” class having 

lower concentrations of  PM2.5 than those in the “Higher 
probability of MetS component” class but higher  NO2 
concentrations than the those in the “Medium-to-high 
probability of high FBG, WC and BP” class. Participants 
with healthier LCs lived in more advantaged neighbour-
hoods and were more likely to be female, non-smokers 
and in paid work, have higher household income and 
education, and live with a partner (all ps < .001). Those 
in the “Lower probability of MetS components” were 
younger than those in the other two classes. However, 
those in the unhealthiest class (“Higher probability 
of MetS component”) were younger than those in the 
“Medium-to-high probability of high FBG, WC and BP” 
class.

Table  3 describes the metabolic profiles as combina-
tions of the three LCs of MetS components and MetS 
status (having vs. not having MetS) and reports their 
frequencies. Among the participants not having MetS, 
57.5% belonged to the “Lower probability of MetS com-
ponents” LC (LC1 in Fig.  1), 38.3% to the “Medium-to-
high probability of high FBG, WC and BP” LC (LC2 in 
Fig. 1) and 4.2% to the “Higher probability of MetS com-
ponents” LC (LC3 in Fig.  1). None of the participants 
having MetS were classified as having “Lower probability 
of MetS components”. Approximately 32.2% of them fell 
into the “Medium-to-high probability of high FBG, WC 
and BP” LC (LC2 in Fig. 1) and 67.7% were classified into 
the “Higher probability of MetS components” LC (LC3 in 
Fig. 1).

Fig. 1 Item‑response probabilities and 95% credible intervals by latent classes (LC) of metabolic syndrome (MetS) components. Legend: 
LC1 = Lower probability of MetS components; LC2 = Medium‑to‑high probability of high fasting blood glucose, waist circumference and blood 
pressure; LC3 = Higher probability of MetS components
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All metabolic profiles but LC1 no MetS (defined as 
“Lower probability of MetS components & not having 
MetS”) had a high prevalence of large WC (Table 4). The 
patterns of prevalence of MetS components in those fall-
ing in the LC2 no MetS and LC2 MetS profiles were simi-
lar, with the only difference that those having MetS had 
higher prevalence of the three components characteris-
ing the profiles than those not having MetS. While preva-
lence of high TG and large WC was high in both LC3 no 
MetS and LC3 MetS profiles, those with MetS had also 
markedly higher prevalence of low HDL-C, high FBG 
and high BP (Table 4).

Table  5 reports the total and direct effects of envi-
ronmental attributes on MetS status and specific meta-
bolic profiles with MetS vs. without MetS. Although we 
used GAMs with a multinomial variance function (cor-
responding to a multinomial regression model), here 
we report only the odds ratio (OR) estimates related to 
specific pairs of metabolic profiles of interest (i.e., meta-
bolic profiles of participants having MetS vs. metabolic 
profile of participants not having MetS). Area SES was 
the only neighbourhood attribute significantly related to 
the odds of having MetS, with higher levels of area SES 
being associated with lower odds of MetS. For example, 
the total and direct effect models suggested that each 
1-decile increase in area SES was approximately associ-
ated with a 4.5% (95% CI: 1.3, 7.5%; p = .006) and 3.9% 

(95% CI: 0.4, 7.3%; p = .027) reductions in odds of MetS, 
respectively. Also, there were significant linear and cur-
vilinear total and direct effects of area SES on the odds 
of membership to metabolic profiles with MetS vs. 
without MetS (Table  5). Specifically, area SES was lin-
early negatively associated with the odds of member-
ship to the least healthy metabolic profile (LC3 MetS) 
vs. the two healthiest metabolic profiles [LC1 No MetS 
(total effect model only) and LC2 No MetS]. Curvilin-
ear associations were observed between other pairs of 
metabolic profiles (Fig. 2, panels A-C; Additional file 1: 
Fig. A2, panels A-B). An increase in area SES within the 
range from 1 to 5 on IRSAD was associated with lower 
odds of membership to the LC2 MetS profile than the 
two healthiest metabolic profiles (LC1 No MetS and LC2 
No MetS) (Fig. 2, panels A and C; Fig. A2, panels A-B), 
while increases in area SES within the range from 6 to 10 
on IRSAD were not related to the odds of membership 
to these metabolic profiles. In the fully-adjusted, direct 
effect model, the negative relationship between area SES 
and the odds of membership to the least healthy (LC3 
MetS) vs the healthiest profile (LC1 no MetS) was only 
slightly curvilinear (Fig. 2, panel B).

When examining the odds of being in the healthiest 
metabolic profile (LC1 No MetS) versus the two least 
healthy profiles (LC2 MetS and LC3 MetS), three addi-
tional environmental correlates emerged. In the total 

Table 3 Metabolic profiles: description and distribution

Abbreviations: LC latent class, MetS the metabolic syndrome, FBG fasting blood glucose, WC waist circumference, BP blood pressure

Metabolic profile (label) Description n (%)

LC1 no MetS Lower probability of MetS components & not having MetS 1417 (38.5)

LC2 no MetS Medium‑to‑high probability of having high FBG, WC and BP & not having MetS 944 (25.6)

LC3 no MetS Higher probability of MetS components & not having MetS 104 (2.8)

LC2 MetS Medium‑to‑high probability of having high FBG, WC and BP & having MetS 393 (10.7)

LC3 MetS Higher probability of MetS components & having MetS 823 (22.4)

Table 4 Prevalence of MetS components within metabolic profiles

Abbreviations: LC latent class, MetS the metabolic syndrome, HDL high-density lipoprotein

Percentages represent the prevalence of MetS components within each of the five metabolic profiles. For example, the 19.0% prevalence of high blood pressure refers 
to participants falling into the LC1 no MetS profile. A description of the metabolic profiles is given in Table 3

MetS components Metabolic profiles

LC1 no MetS
(n = 1417)

LC2 no MetS
(n = 944)

LC3 no MetS
(n = 104)

LC2 MetS
(n = 393)

LC3 MetS
(n = 823)

Low HDL cholesterol 6.1% 0.0% 0.0% 0.0% 46.2%
High triglycerides 5.4% 0.6% 100.0% 0.0% 81.8%
High fasting glucose 0.1% 38.3% 0.0% 100.0% 58.8%
Large waist circumference 42.3% 83.3% 100.0% 100.0% 96.7%
High blood pressure 19.0% 70.3% 0.0% 100.0% 82.3%
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effect models, higher land use mix levels tended to be 
associated with higher odds of being in the LC2 MetS 
profile, and higher street intersection density was pre-
dictive of higher odds of belonging to the LC3 MetS 
profile, than the LC1 No MetS profile. However, these 
associations were no longer significant after adjust-
ment for other environmental attributes. Higher aver-
age annual concentration of  PM2.5 was also related to 
higher odds of LC3 MetS than LC1 No MetS member-
ship in both total and direct effect models.

Apart from area SES, two other environmental attrib-
utes distinguished participants falling into the LC2 No 
MetS profile from those in the two metabolic profiles 
with MetS. These were percentage of commercial land 
use, which was negatively associated with the odds of 
LC2 MetS, and average annual  NO2, which tended to be 
positively related to the likelihood of LC3 MetS.

The comparisons of participants falling into the LC3 No 
MetS profile versus those falling under the two profiles 
with MetS (LC2 MetS and LC3 MetS) yielded the low-
est number of environmental correlates and the weakest 
associations. In this instance, area SES was not positively 
related to the likelihood of being in the healthier profile 
(LC3 No MetS) (Fig. 2, panel D) and  NO2 tended to be 
associated with higher odds of being in the LC3 No MetS 
than LC3 MetS profile. Population density and percent-
ages of parkland and blue space were not significantly 
associated with MetS status or metabolic profiles with vs. 
without MetS.

Discussion
Due to MetS being any cluster of at least three of five 
health-related conditions (large WC, high BP, high FBG, 
high TG and low HDL-C), it is a construct defined by 

Fig. 2 Direct effects of area SES on the odds of metabolic profiles with vs. without MetS. Legend: Panel A: LC2 MetS (High probability of high FBG, 
WC and BP & having MetS) vs. LC1 No MetS (Lower probability of MetS components & not having MetS); panel B: LC3 MetS (Higher probability of 
MetS components & having MetS) vs. LC1 No MetS; panel C: LC2 MetS vs. LC2 No MetS (Medium‑to‑high probability of high FBG, WC and BP & not 
having MetS); panel D: LC2 MetS vs. LC3 No MetS (Higher probability of MetS components & not having MetS)
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two heterogenous groups of individuals: those with and 
without MetS. The substantial heterogeneity of these two 
groups in combinations of MetS components is evident 
from the results of the latent class analyses. In line with a 
recent study in a US adult sample [57], we identified three 
metabolic profiles of participants without MetS and two 
profiles with MetS. The metabolic profiles without MetS 
ranged from individuals with low probability of most 
MetS components to individuals with a relatively high 
probability of high BP, FBG and large WC, to those with 
a very high probability of large WC and high TG. Among 
those having MetS, we found a group without dyslipidae-
mia (nearly nil probability of low HDL and/or high TG) 
and a group with higher probability of dyslipidaemia as 
well as other MetS components. A similar finding has 
been previously observed in women [57]. Furthermore, 
in line with an earlier study [58], elevated blood glucose 
and blood pressure tended to co-occur across profiles. In 
this study, the only metabolic profile with a high prob-
ability of low HDL-C (LC3 MetS) exhibited relatively 
high probabilities (> 0.58) of all other MetS components. 
In this regard, recent longitudinal studies have reported 
decreases in HDL-C to be strong predictors of increased 
risk of MetS [59, 60] and be associated with the other 
four components [59].

Because, as evidenced in this study, MetS status catego-
ries consist of individuals with various profiles of MetS 
components and the impact of environmental attrib-
utes on specific MetS components may differ [61, 62], 
we hypothesised that fewer environmental attributes 
would be related to MetS status than to metabolic pro-
files defined using latent classes of MetS components and 
MetS status. We also expected environmental correlates 
of membership to metabolic profiles with and without 
MetS to differ across latent classes. The data supported 
both hypotheses, demonstrating the added utility of 
operationalising MetS as a set of profiles of MetS compo-
nents using latent class analysis in studies of neighbour-
hood environmental determinants of metabolic health.

Area SES
After adjustment for individual-level SES, area SES was 
the only significant predictor of MetS status, with par-
ticipants living in more affluent areas being less likely 
to have MetS. In general, higher area SES was also pre-
dictive of membership to healthier (without MetS) than 
less healthy (with MetS) metabolic profiles. Although we 
are not aware of studies that examined the association 
of area SES with MetS or related profiles, previous work 
has shown that living in higher SES areas has a protective 
effect against increasing cardiometabolic risk [63] and 
that area deprivation is positively related with MetS and 

chronic inflammation [16]. Also, in an earlier analysis of 
baseline AusDiab data, area SES was negatively related to 
WC, TG and FBG, and positively related to HDL-C [64].

Area SES is deemed to impact MetS and its compo-
nents by facilitating engagement in health-enhancing 
behaviours, including leisure-time physical activity and 
healthy eating [65–67], and by sometimes being associ-
ated with lower levels of air pollution [68, 69]. Higher SES 
neighbourhoods typically provide better access to healthy 
foods, recreational facilities and aesthetically-pleasing, 
safe environments that are conducive to recreational 
walking [70, 71]. Socio-economically advantaged neigh-
bourhoods are also likely to host more educated, health-
conscious residents that help others to adopt and sustain 
a healthy lifestyle [65]. As, apart from parks, this study 
did not measure access to recreational destinations, food 
outlets or examined neighbourhood attributes typically 
associated with SES and healthy lifestyles (aesthetics, 
safety and healthy foods) [65], the total (mediator-unad-
justed) and direct, independent (fully-adjusted) effects of 
area SES on the membership to metabolic profiles were 
similar. It is interesting that measures of air pollution 
did not seem to explain the effects of area SES on meta-
bolic profiles. In this regard, a study conducted in Sydney, 
Australia did not find a significant association between 
traffic-related air pollution and neighbourhood SES [72], 
while we found a positive association between average 
annual concentrations of  NO2 and area SES in another 
study using data from the AusDiab 3 cohort [41]. Inter-
estingly, area SES did not explain membership to meta-
bolic profiles with vs. without MetS characterised by a 
high probability of high TG and large WC (LC3 No MetS 
vs. LC3 MetS). This is likely due to area SES generally 
showing a strong negative association with TG [64] and 
the LC3 No MetS profile being typified by a higher prob-
ability of high TG than both metabolic profiles with MetS 
(i.e., LC2 MetS and LC3 MetS). How neighbourhood SES 
affects MetS and its profiles and components remains an 
issue that future studies need to clarify in order to help 
address inequalities in cardiometabolic health.

Ambient air pollution
As expected, higher average annual concentrations of 
 PM2.5 were associated with higher odds of member-
ship to the least healthy (LC3 MetS) vs. the healthi-
est metabolic profile (LC1 No MetS). Studies into the 
biological pathways of  PM2.5 influences on metabolic 
health have shown that exposure to this air pollutant 
may generate oxygen-centred radicals that contribute 
to insulin resistance and vascular disease [73, 74], and 
activate cell-signalling pathways implicated in insu-
lin resistance [75] and lipogenesis [76]. In a cohort of 
older men living in North-East USA, increases in levels 
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of  PM2.5 were associated with higher risk of developing 
MetS [23]. The associations were significant even when 
 PM2.5 concentrations were below the USA Environmen-
tal Protection Agency’s health safety limit [23]. Also, 
borderline positive significant associations of  PM2.5 
with MetS incidence were found in 45–75 year-old indi-
viduals from German cities [22]. However, in contrast 
to previous research, our study examined the potential 
effects of  PM2.5 adjusted for built environment and area 
SES confounders that are potential sources of air pol-
lution, and also, albeit in another analysis of AusDiab3, 
attributes that promote behaviours beneficial to meta-
bolic health [24]. That in this study long-term  PM2.5 
exposure could only differentiate between participants 
belonging to one of the six examined pairs of metabolic 
profiles with and without MetS (LC3 MetS vs. LC1 No 
MetS) suggests that, in the context of relatively low-
pollution urban environments found in Australia,  PM2.5 
may be of particular relevance to abdominal adiposity 
(large WC) and dyslipidaemia (low HDL-C and high 
TG). In fact, in this study,  PM2.5 was unable to distin-
guish between metabolic profiles with and without 
MetS characterised by a high probability of dyslipidae-
mia and large WC, or between the healthiest metabolic 
profile (LC1 No MetS) and the profile with MetS but 
without dyslipidaemia (LC2 MetS). In support of these 
findings, recent studies have reported positive associa-
tions of long-term  PM2.5 with TG and WC [77, 78] and 
negative associations with HDL-C in middle-aged and 
older adults [78, 79].

The associations between average annual concentra-
tions of  NO2 and the odds of membership to metabolic 
profiles were weak and mixed. Whilst, as expected [22], 
 NO2 exposure tended to be associated with higher odds 
of membership to the LC2 MetS profile than the LC2 
No MetS profile, the opposite effect was found when 
comparing the LC2 MetS profile with the LC3 No Mets 
profile. The latter findings in our study might be due to 
the low levels of  NO2 observed in the AusDiab3 cohort 
(median: 5.3 ppb compared to 9.1 ppb in a large Euro-
pean study [80]) and to environmental confounders not 
adequately controlling for the presence of environmen-
tal attributes that support an active lifestyle (e.g., access 
to destinations of daily living). In fact,  NO2 can be seen 
as a proxy for the presence of human activity (e.g., retail 
and various food outlets) and accompanying traffic. As 
such,  NO2 may be a predictor of active transport, a type 
of physical activity, which is negatively associated with 
MetS [81–83] and MetS components [84]. An increase 
in  NO2 may indicate better access to facilities and, hence, 
higher levels of physical activity accumulated through 
active transport that may counteract the negative effect 
of  NO2 on metabolic health, especially if  NO2 levels are 

not too high and the level of access to destinations is suf-
ficient to support health-enhancing levels of transport-
related physical activity.

Built environment
Only three built environmental attributes showed asso-
ciations with metabolic profiles: percentage of commer-
cial land, land use mix and street intersection density. As 
expected, having a higher percentage of commercial land 
in the neighbourhood was associated with a lower likeli-
hood of membership to the LC2 MetS than the LC2 No 
MetS profile in both total and direct effect, fully-adjusted 
models. These associations were weaker when compar-
ing LC2 MetS with the healthiest metabolic profile (LC1 
No Mets). These weak and inconsistent associations may 
have been due to the variety of destinations classified 
within commercial land use having mixed effects on die-
tary behaviours associated with MetS components. For 
example, in a study of 5688, 50–74 year-old New Jersey 
residents, densities of fast-food establishments and store-
fronts were positively associated with obesity, whereas, 
density of supermarkets was not [85]. Consumption of 
fast-food meals has been associated with higher levels of 
obesity, FBG and BP [86, 87]. Clearly, future studies need 
to gain a better understanding of the contribution of vari-
ous types of commercial destinations to health-enhanc-
ing behaviours and metabolic health in individuals with 
and without MetS. The same applies to other types of 
‘non-natural’ land uses given that this study did not find 
significant direct associations of land use mix with meta-
bolic profiles and a recent Australian longitudinal study 
failed to find a significant association between land use 
mix and WC [13].

We found only a weak positive association between a 
measure of non-commercial land use mix (including 
industrial land) and the odds of membership to the LC2 
MetS profile vs. the healthiest metabolic profile (LC1 No 
MetS). Similar findings were observed for street inter-
section density when comparing the unhealthiest meta-
bolic profile (LC3 MetS) with the healthiest profile (LC1 
No MetS). However, these associations were no longer 
significant after accounting for other environmental 
attributes, including air pollution and commercial land. 
While this built environmental attribute is thought to 
benefit health by promoting active transport [7, 88, 89], 
it is also potentially associated with higher levels of traf-
fic-related air pollution and greater exposure to air pol-
lutants [90–92], which may explain why adjustment for 
 NO2 and  PM2.5 concentrations attenuated its positive 
association with metabolic profiles. Previous studies have 
reported conflicting findings about the potential effects 
of street intersection density on MetS components [63, 
93–95]. None of these studies examined the potential 
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contribution of air pollution in explaining these associa-
tions. Street intersection density and land use mix can 
be indicators of beneficial (access to services promoting 
healthful behaviours) as well as harmful (air pollution) 
influences on metabolic health. To better understand its 
impact on MetS and its components, future studies need 
to focus on disentangling the various antagonistic path-
ways through which it influences behaviours and health.

The above recommendations also hold for population 
density which, although unrelated to metabolic profiles 
in this study, is the main driver of changes in the built 
and natural environment [25, 96]. As such, it is likely to 
impact on metabolic health through other environmen-
tal characteristics. For example, population density has 
been found to lead to higher street intersection density 
and levels of  PM2.5 [25, 97, 98], which in the current 
study were predictive of less healthy metabolic profiles. 
It has also been associated with lower levels of greenness 
[25] but better access to commercial services [25]. Popu-
lation density may lead to some environmental changes 
that are beneficial to metabolic health (e.g., accessibility 
of services, availability of healthy foods, better health ser-
vices) and other that are detrimental (e.g., lack of green 
space, air pollution). Thus, it is not surprising that previ-
ous studies have reported mixed findings in relation to its 
potential effects on MetS components [94, 96].

Natural environment
Because access to greenspace, such as parkland, is 
thought to promote leisure-time physical activity [8] and 
be associated with lower levels of air pollution [98], nega-
tive associations between parkland and membership to 
less healthy vs. healthier metabolic profiles were expected 
in this study [99]. However, no such associations were 
observed. Previous studies have reported negative as 
well as nil associations between greenness and MetS 
[17, 100]. Similar findings were also observed for com-
ponents of MetS. For example, greenness was negatively 
related with WC in recent European [17, 101] but not in 
Australian studies [13]. A recent systematic review and 
meta-analysis on this topic concluded that while access 
to greenspace is likely to be associated with lower odds 
of overweight/obesity, the evidence varies across meas-
ures of greenness and studies [102]. Only normalised dif-
ference vegetation index (NDVI) resulted in significant 
pooled associations, while percentage of greenspace, dis-
tance to greenspace and number of parks in the area did 
not. Mixed findings on the beneficial effect of greenness 
have been also reported in relation to BP [14, 103–105] 
and FBG [106] and HDL-C [14, 17, 107]. To better char-
acterise the impact of greenness on MetS and its com-
ponents, future studies would need to capture aspects of 
this environmental attribute that may be directly relevant 

to the hypothesised mechanisms of influence. These may 
include actual greenness (e.g., NDVI), since parks vary in 
their amount of greenness and this is an aspect that may 
impact on pollution; presence of trees and shade provid-
ing protection from the sun and heat; and quality and 
safety of green spaces.

Lastly, this study also examined the associations of per-
centage of blue space with MetS status and metabolic 
profiles because this neighbourhood attribute might 
facilitate engagement in physical activity [41] which, in 
turn, is beneficial to metabolic health [81–84]. However, 
we did not find significant effects. While no studies have 
specifically examined percentage of blue space as a cor-
relate of MetS, Li and colleagues [106] found a negative 
association between distance to blue space and FBG in 
rural China. Clearly, the effect of access to blue space 
within the neighbourhood on metabolic health remains 
understudied and warrants further examination.

Implications of findings
By examining total and direct associations of a wide 
range of urban neighbourhood environmental attributes 
with MetS status and metabolic profiles, this study has 
identified several findings with implications for future 
research as well as helping to inform public health and 
urban planning policy and practice. The first implication 
pertains to the measurement of environmental expo-
sures. Urbanisation is a major global demographic phe-
nomenon that is associated with poorer air quality and 
better access to services and opportunities for activities 
that may benefit or harm metabolic health. To under-
stand how urban neighbourhood environments affect 
metabolic health and devise effective interventions and 
policies, there is a need to disentangle factors that are 
beneficial from those that are harmful. This requires a 
sufficiently precise characterisation of the built and natu-
ral environment that matches the mechanisms hypothe-
sised to be responsible for the effects. This study suggests 
that fine-grained measures of destination accessibility 
associated with healthful or unhealthy behaviours (e.g., 
access to fast-food outlets, grocery stores, recreational 
facilities, good quality and safe green spaces) rather than 
coarse measures of land use are needed to accurately 
examine the impact of urban environments on MetS and 
their components.

The second study implication pertains to air pollution. 
Although, as evidenced in this study, air pollution levels 
in Australia are relatively low [108], our study suggests 
that they have detrimental effects on metabolic health 
that warrant environmental mitigation strategies, such 
as the promotion of active transport and public transport 
[109, 110], which, in turn, requires levels of densification 
that make these modes of transport feasible and more 
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attractive than private motorised transport [111]. Sprawl-
ing neighbourhoods are highly prevalent in Australian 
cities [112] and appropriate urban planning policies are 
needed to stop this trend.

It is also noteworthy that area SES was a strong corre-
late of MetS status and metabolic profiles, which suggests 
that low income neighbourhoods should be targeted in 
public health interventions aimed at improving popula-
tion-level metabolic health. However, the ways in which 
area SES contributes to social inequalities in metabolic 
health remain poorly understood and warrant further 
investigation.

Strengths and limitations
The main strengths of this study include: the analyses of 
data from a national sample; recruited from 42 areas rep-
resentative of Australian urban communities; the exami-
nation of curvilinearity of associations; adjustment for 
neighbourhood self-selection; the inclusion of a broad 
range of environmental variables capturing aspects of the 
built environment, natural environment and air pollu-
tion; and accounting for inter-relationships between envi-
ronmental variables in the estimation of total and direct 
effects on MetS status and metabolic profiles. Among 
the main study limitations are the cross-sectional nature 
of the data, the utilisation of environmental measures 
that are insufficiently precise to accurately distinguish 
between healthful and harmful aspect of the urban envi-
ronment, the lack of information on other activity spaces 
(outside the residential neighbourhood) or the time par-
ticipants typically spent in their neighbourhood, and 
AusDiab3 being an opportunistic, potentially select sam-
ple. The imprecise measurement of environmental attrib-
utes, such as types of destinations, might have resulted in 
residual confounding and, hence, biased estimates of the 
direct, independent effects of the built environment and 
ambient air pollution on metabolic health. Additionally, 
two of the five metabolic profiles (LC3 No MetS and LC2 
MetS) had a relatively small number of cases, hindering 
the identification of neighbourhood environmental cor-
relates due to low statistical power.

Conclusions
In this cohort study of Australian adults, area SES was 
the only neighbourhood environmental attribute associ-
ated with MetS status, with more advantaged neighbour-
hoods being predictive of better metabolic health. In 
contrast, in addition to area SES, three built environment 
attributes and ambient air pollution measures were asso-
ciated with the odds of membership to specific metabolic 
profiles with MetS vs. without MetS. Environmental cor-
relates of membership to profiles with vs. without MetS 
varied across pairs of profiles being compared, suggesting 

that the effects of environmental factors on various MetS 
components may differ. These findings support the utility 
of analyses of profiles of MetS components in conjunc-
tion with MetS status, or individual MetS components 
instead of MetS status in studies on environmental deter-
minants of metabolic health. As expected, area SES and 
percentage of commercial land were negatively, and aver-
age annual concentrations of  PM2.5 and  NO2 were posi-
tively, associated with the odds of membership to less 
favourable metabolic profiles. The positive associations 
of land use mix and street intersection density with the 
odds of membership to less healthy metabolic profiles 
vanished after adjusting for environmental mediators 
(e.g., air pollution measures) demonstrating the need for 
comprehensive models of MetS examining all key inter-
related environmental factors. Future research needs to 
consider conducting similar, ideally longitudinal, stud-
ies using environmental measures that more accurately 
characterise the neighbourhood environment in relation 
to behaviours or other mechanisms deemed to impact 
MetS and its components.
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