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Abstract 

Background The adverse effects of air pollution on human health include many diseases and health conditions asso-
ciated with mortality, morbidity and disability. One example of these outcomes that can be translated into economic 
costs is the number of days of restricted activity. The aim of this study was to assess the effect of outdoor exposure to 
particulate matter with an aerodynamic diameter less than or equal to 10 and 2.5 μm  (PM10,  PM2.5), nitrogen dioxide 
 (NO2), and ozone  (O3), on restricted activity days.

Methods Observational epidemiological studies with different study designs were included, and pooled relative risks 
(RR) with 95% confidence intervals (95%CI) were calculated for an increase of 10 μg/m3 of the pollutant of interest. 
Random-effects models were chosen because of the environmental differences between the studies. Heterogene-
ity was estimated using prediction intervals (PI) and I-Squared (I2) values, while risk of bias was assessed using a tool 
developed by the World Health Organization specifically designed for air pollution studies, and based on different 
domains. Subgroup and sensitivity analyses were performed where possible. The protocol for this review was regis-
tered with PROSPERO (CRD42022339607).

Results We included 18 articles in the quantitative analysis. Associations between pollutants and restricted activ-
ity days in time-series studies of short-term exposures, measured as work-loss days, school-loss days, or both were 
significant for  PM10 (RR: 1.0191; 95%CI: 1.0058–1.0326; 80%PI: 0.9979–1.0408; I2: 71%) and  PM2.5 (RR: 1.0166; 95%CI: 
1.0050–1.0283; 80%PI: 0.9944–1.0397; I2: 99%), but not for  NO2 or  O3. Some degree of heterogeneity between studies 
was observed, but sensitivity analysis showed no differences in the direction of the pooled relative risks when stud-
ies with a high risk of bias were excluded. Cross-sectional studies also showed significant associations for  PM2.5 and 
restricted activity days. We could not perform the analysis for long-term exposures because only two studies analysed 
this type of association.

Conclusion Restricted activity days and related outcomes were associated with some of the pollutants under evalua-
tion, as shown in studies with different designs. In some cases, we were able to calculate pooled relative risks that can 
be used for quantitative modelling.
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Background
Over time, more and more evidence has been published 
on the adverse health effects of air pollution on human 
health, even at low concentrations of air pollutants [1]. In 
2021, the new update of the World Health Organization 
(WHO) Air Quality Guidelines collected and reported 
new evidence on the health effect associated with expo-
sure to ambient air pollution [2]. The WHO document 
also highlighted the fact that reducing air pollution lev-
els would bring health benefits, even in places with low 
levels of pollution [3]. Exposure to air pollution is known 
to increase the risk of several non-communicable cardio-
vascular and respiratory diseases, lower respiratory tract 
infections, and other health conditions [2], while many 
others are under investigation. However, morbidity and 
mortality are not the only evidence of the link between 
air pollution and health; reducing air pollution concen-
trations to fit the levels recommended in the WHO Air 
Quality Guidelines would bring additional benefits by 
reducing social inequalities and the economic costs asso-
ciated with the health effects of air pollution exposure 
[4]. Air pollution causes significant losses in productivity 
and social well-being, mainly through reduced life expec-
tancy [5] and quality of life. On the other hand, air pol-
lution affects labour productivity because workers may 
take more sick days (absenteeism) or work less produc-
tively [6], the latter effect also known as "presenteeism" 
[7]. Another type of absenteeism that is often associated 
with exposure to air pollution, but which affects differ-
ent age groups, is school absenteeism. School absentee-
ism is usually related to illness or injury, although it is not 
always caused by chronic or other diseases [8]. The asso-
ciation between school absenteeism and exposure to air 
pollution has been documented in epidemiological stud-
ies, as has the association with work absenteeism.

Work and school absenteeism, together with days 
spent in bed due to illness, and any other form of 
restricted activity, can be included in the broad concept 
of restricted activity days. In this way, a restricted activity 
day has been defined as a day on which a person reduces 
his or her normal activities for the whole day because 
of illness or injury; bed days, school-loss days (school 
absenteeism), and work-loss days (work absenteeism) are 
included in the total number of restricted-activity days 
[9]. Minor restricted activity days are defined as days on 
which most usual daily activities are reduced, but with-
out falling into school or work absenteeism [10]. These 
days with minor restrictions are also included in the 
measure of restricted activity days [11], but the economic 
costs associated with restricted activity days and minor 
restricted activity days are different. These estimates are 
important components of health impact assessments and 
predictive models for assessing the economic impacts 

of ambient air pollution. To include these associations 
as relevant parameters in predictive models, valid rela-
tive risks and concentration–response functions should 
be obtained from observational epidemiological studies. 
However, despite the importance of restricted activity 
days as a direct consequence of air pollution exposure, 
the number of studies assessing these associations is rela-
tively small and estimates are generally based on studies 
published in the 1990s. WHO is currently coordinating 
a project entitled “Estimation of Morbidity from Air Pol-
lution and its Economic Costs” (EMAPEC), which aims 
to establish a methodology for estimating the economic 
costs of selected morbidity outcomes arising from the 
exposure to air pollution, and to test its application at dif-
ferent geographical scales (national, regional and global). 
This project requires different concentration–response 
functions and concentration-effect estimates are needed 
between exposure to air pollution and different outcomes 
indicating direct and indirect costs. Among these out-
comes, restricted activity days are relevant endpoints to 
be considered in predictive models. In this context, this 
systematic review and meta-analysis was commissioned 
by WHO to assess the association between outdoor 
exposure to common air pollutants, including particulate 
matter with an aerodynamic diameter of 10 and 2.5 μm 
 (PM10 and  PM2.5), nitrogen dioxide  (NO2) and ozone 
 (O3), and restricted activity days.

Methods
Protocol and registration
The protocol for this systematic review was developed 
prior to the formal search for articles, and registered with 
PROSPERO (http:// www. crd. york. ac. uk/ PROSP ERO/) 
under registration number CRD42022339607.

Research question
The research question for this systematic review was for-
mulated as a Population, Exposure, Comparator, Out-
come and Study design (PECOS) question, as elaborated 
by Morgan and colleagues [12]:

In any population, including subgroups of susceptible 
adults and children (P), what is the effect of the exposure 
to ambient concentrations of  PM2.5,  PM10,  O3, and  NO2 
(E), versus the exposure to lower levels of air pollution 
(C) (difference of 10 μg/m3), on the number of restricted 
activity days (O), as observed in observational epidemio-
logical studies (S)?

Search strategy
The search included terms related to the exposure (pol-
lutants) and the outcomes, taking into account syno-
nyms, symbols, formulae and abbreviations. A detail of 
this search strategy applied to one specific database is 

http://www.crd.york.ac.uk/PROSPERO/
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shown in Supplementary Table  1, Additional file  1. The 
database search included the following sources: Med-
line via PubMed, Scopus via Elsevier, and a series of 
regional databases including Literatura Latinoamericana 
y del Caribe en Ciencias de la Salud (LILACS), Western 
Pacific Region Index Medicus (WPRIM), Index Medicus 
for South-East Asia Region (IMSEAR), Index Medicus 
for the Eastern Mediterranean Region (IMEMR), and 
African Index Medicus (AIM). These regional databases 
are potential sources of peer-reviewed scientific articles, 
grey literature, and journals from developing countries, 
improving the search and enabling the inclusion of local 
reports. Additional articles found in the reference lists of 
selected reviews and guidelines, as well as articles iden-
tified with the help of experts, were also included. The 
search included studies up to June 2022, with no language 
restrictions. The abstracts and full-text articles selected 
for inclusion that were written in a language other than 
English were translated using an online translation tool 
(Google Translate).

Screening of titles, abstracts and full texts was carried 
out by two reviewers (PO and JR), and in case of disa-
greement, a third reviewer (NQ) made the final decision 
on inclusion. Each stage of this process was recorded in 
spreadsheets developed in Excel®.

Eligibility process
The independent variable of interest was the short- or 
long-term exposure to ambient concentrations of  PM10, 
 PM2.5,  NO2 and  O3, irrespective of the pollution source, 
and expressed in a concentration unit (e.g. μg/m3, ppb). 
The comparison was made with the same or with a con-
trol population exposed to a lower level of air pollutants, 
taking into account a standardised difference in the con-
centration (10 μg/m3).

The outcomes of interest were days with restricted 
activity or restricted activity days, which may have 
included bed-days due to morbidity, school-loss days, 
work-loss days, and minor restricted activity days. All of 
these outcomes were often related to respiratory-illnesses 
and other diseases and conditions, but in some studies, 
particularly for school-loss days, absenteeism from all 
causes was included. However, when the same article 
reported both outcomes, i.e. all-causes absenteeism and 
illness-related absenteeism, the latter was selected for 
inclusion, because it was considered to be more related to 
the effects of air pollution.

For this review we included all observational stud-
ies following epidemiological designs including cohort, 
panel, case-crossover, ecological time-series, and cross-
sectional studies. Interventional studies, physiological 
studies and animal studies were excluded. Studies dealing 
only with indoor or occupational exposures, qualitative 

or modelling studies, reviews and guidelines were also 
excluded. We did not restrict our inclusion criteria to 
a specific time-lag between the exposure and the out-
come; typically this is shorter in time-series studies than 
in cross-sectional or cohort designs. However, we per-
formed different analyses for different types of study 
design. When multiple lags between the exposure and 
the outcome were reported in the same study, as is often 
the case in time-series studies, we followed the algorithm 
developed by Atkinson and colleagues [13], as shown 
below:

(1) The lag that the author focused on or specified a 
priori.
(2) the most statistically significant lag (positive or 
negative).
(3) The lag with the largest effect estimate (positive or 
negative).

With regard to modelling strategies and association 
measures, we considered studies eligible if they reported 
relative risks (RR), odds ratios (OR), percent excess risks 
(ER%), hazard ratios (HR), or regression model coef-
ficients. To ensure comparability between studies and 
effect sizes, only studies using generalised linear and gen-
eralised additive models were included in the analysis.

If there was a complete or partial overlap of data in two 
or more articles, the article was selected for inclusion 
according to the following criteria and in the following 
order: 1) wider geographical distribution; 2) longer dura-
tion of the study period; and 3) more recent publication 
date.

Data extraction and procedures
Two independent reviewers (PO and JR) independently 
screened the titles and abstracts identified by the sys-
tematic search, and in a later step the same reviewers 
extracted the information from selected articles. Disa-
greements were resolved by discussion and, if consensus 
could not  be reached, a third reviewer (NQ) was con-
sulted. The relevant information reported in the arti-
cles was extracted in a standardised form developed in 
Excel®. This information included the study ID number, 
first author, year of publication, study period and loca-
tion, study design, population, pollutants and pollutant 
increase, time-lags, units of measurement, outcomes, 
age of participants (if available), and association meas-
ures. The same form was used for further calculations 
on the original association measures, in order to obtain 
standardised values. The associations in the articles were 
reported as RR, OR, ER% and regression coefficients. In 
one article the authors reported the HR, but this value 
was an approximation derived from the OR obtained by 
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modelling. In all cases, when we calculated a summary 
measure, we used the RR as the common measure of 
effect. If the OR was the original statistic reported in the 
studies, we took into account the "rare disease assump-
tion" [14], and considered this value to be equal to the 
RR. If the original study reported regression coefficients, 
we obtained RRs using the following equation [15]:

The coefficient represents a unit increase in the pollut-
ant concentration. The 95% confidence intervals around 
the central RR value were calculated using the standard 
errors and the normal approximation.

ER% values were also transformed into RRs, using the 
following equation [15]:

To obtain summary measures, the RRs associated with 
a given increase in pollutant in original articles (original) 
were first transformed to reflect the RR associated with 
in that level (standardised), assuming a linear relation-
ship between concentration and risk [16], and according 
to the following equation:

Risk of bias
To assess the risk of bias in individual studies, we used 
a domain-based assessment tool specifically designed for 
air pollution studies. This tool was developed by experts 
convened by the World Health Organization in the con-
text of updating the Air Quality Guidelines [2]. The items 
(sub-domains) in this tool are grouped into six domains: 
confounding, selection bias, exposure assessment, out-
come measurement, missing data, and selective report-
ing [17]. For this review, we applied the first five domains, 
omitting the analysis of selective reporting. This domain 
is meant to assess whether the results reported in an 
article are different from the results to be measured, i.e. 
whether the results are selected. For this goal, it is rec-
ommended to identify a protocol for the study, and to 
compare it with the information reported in the article. 
Sometimes, the original research plan is given in the 
methods section. However, we could not find published 
protocols for the articles included in this review. In addi-
tion, the methods sections were not informative in this 
regard, leading to potential subjectivity in the judge-
ments. Therefore, this domain was excluded from the 
analysis. The rationale for the analysis of each domain is 
not described here, but a detailed explanation for each 

RR = eCoefficient

RR =
ER%

100
+ 1

RRstandardised = e

Ln(RRoriginal )×10

Incrementoriginal

article is provided in the Supplementary Information. 
Briefly, each sub-domain is classified as having a low, 
moderate or high risk of bias, and the worst result for a 
sub-domain determines the result for the whole domain. 
For example, if a sub-domain is rated as having a high 
risk of bias, the corresponding domain will be rated as 
having a high risk of bias, regardless of the results of the 
other sub-domains. For a more detailed description of 
the procedure, we refer to the study by Orellano and col-
leagues [18].

Statistical analysis
The aim of this study was to provide a global estimate 
of the association between pollutant exposures and out-
comes, based on studies conducted in different locations, 
time periods, and research designs. For this purpose, 
the more appropriate approach is to use random-effects 
models, which are able to deal with these differences 
and take into account the true heterogeneity. As recom-
mended in the specialized literature, the decision to use 
the random-effects model over the fixed-effects model 
was independent of any test to measure heterogene-
ity. For a discussion of the use of random-effects models 
in this context, see the book by Hedges and colleagues, 
Chapter 13 [19]. When data from three or more studies 
could be combined, a pooled association was reported. 
Otherwise, the results were reported as separate asso-
ciation measures. To account for the difference between 
short-term and long-term exposure studies, we used the 
definitions in the WHO Air Quality Guidelines [2], where 
short-term exposure is calculated for a time lag between 
exposure and symptom onset in the order of hours to 
days, whereas long-term exposure is considered in the 
order of months to years. In some cases, pooled RRs 
were calculated for more than one study design when 
the methodologies were comparable. This was the case 
for cohort, panel and case-crossover studies, all of which 
were analysed as time-series studies. However, cross-sec-
tional studies were analysed separately.

Heterogeneity between studies was assessed, where 
possible, using the prediction intervals (PI) [20]. The rule 
of thumb was that if the PIs included the null effect, het-
erogeneity between studies could be suspected [21], i.e. 
there will be settings where conclusions based on the CIs 
will not hold. We also calculated I-Squared (I2) statistics 
to quantify heterogeneity, using a cut-off value of 75% to 
detect substantial heterogeneity [22]. Caution should be 
taken when interpreting these statistics, as the estimate 
of the between-study variance can be misleading when 
including a small number of studies [19].

A series of subgroup and sensitivity analyses were 
performed to understand the influence of external vari-
ables and methodological assumptions on the summary 
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measures. The subgroup analysis was based on study 
location (continent) and outcome, while the sensitivity 
analysis focused on the risk of bias analysis, i.e. exclud-
ing studies with a high or moderate risk of bias in a given 
domain. Other planned subgroup and sensitivity analyses 
included in the protocol could not be performed due to 
the small number of eligible studies considered, i.e. the 
sensitivity analysis by lag pattern and by study design. 
In addition, a leave-one-out analysis was performed to 
assess the influence of individual studies on the pooled 
relative risks.

Results
Description of studies
The search included 2,087 records, 1,479 in Scopus, 586 
in PubMed, and 22 in regional databases, while 4 articles 
found in the references of reviews and other sources were 
added later. After duplicate exclusion, the remaining 
1,797 records were screened and 71 articles were selected 
for full-text eligibility assessment. In the final stage, 18 
articles were included for quantitative analysis. These 
articles included studies on the four pollutants, four out-
comes, and five study designs. The reasons for excluding 

articles were lack of association values in the reports (16), 
repetition of articles or data (9), articles not available in 
full text (8), different exposures (6) or outcomes (2) and 
different modelling strategies (5), while some studies 
were reviews, guidelines, or predictive studies (7). The 
flow of the review process is shown in Fig.  1, while the 
studies retrieved in the search, excluded and included in 
the quantitative analysis are shown in Additional file 2.

A general description of the studies can be found in 
Table 1 and Additional file 3. The articles were published 
between 1987 and 2022, while the study period cov-
ered years from 1976 to 2019. The longest study period 
was 7 and 8 years, in two time-series studies from Nor-
way and Brazil, while six studies lasted one year or less. 
Three continents, Europe, Asia and the Americas, were 
equally represented, although there was some variation 
within continents, e.g. five studies were conducted in the 
United States, but only one study was from Latin Amer-
ica. The populations studied included the general popula-
tion (adults), schoolchildren, and workers. The age of the 
adults ranged from 18 to 65 years or from 18 to 81 years, 
depending on the article. Studies from Asia focused only 
on schoolchildren. National health surveys in the United 

Fig. 1 Flowchart of studies selected for inclusion in the meta-analysis
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States and Sweden were used to examine associations 
in the general population. Schoolchildren and groups of 
workers were analysed for school-loss days and work-loss 
days respectively. In one study [23] the workers belonged 
to a specific occupational group, i.e. traffic controllers. 
In the majority of studies, the outcomes were related to 
health conditions, i.e. unspecified or respiratory diseases. 
The exception was three articles, where the outcome 
was school-loss days, independent of a specific illness 
[24–26]. In one article, absence from work was related 
to mental health [27]. The total number of participants 
for all the articles included in this review was more than 
130,000 (Additional file 3). All studies can be considered 
to have analysed short-term exposures, i.e. with a time 
lag between exposure and onset of symptoms ranging 
from hours to one month. Two cross-sectional studies 
were an exception. In one of these studies, the differ-
ence between exposure and outcome was 3 months [28]. 
This study is therefore in a grey area between short-term 
and long-term exposures. In the other study [23] it is not 
clear what the lag was, but it would be close to one year. 
In this sense, none of the studies included in this review 
can provide evidence of long-term associations.

To estimate the main exposure variable, outdoor air 
pollution levels were measured at ground monitor-
ing stations, which in some studies were part of estab-
lished monitoring networks. In a number of studies, 
ground data were supplemented with information from 
dispersion models or satellite remote sensing data. 
Indoor concentrations of outdoor pollutants were not 

measured in the studies. Particulate matter and  NO2 
were measured as 24-h mean concentrations. For  O3, 
24-h or 8-h mean concentrations were used in longi-
tudinal studies and 1-h maximum concentrations in 
cross-sectional studies.

A typical example of an ecological time-series study is 
that of Marcon and colleagues [25] for  PM10 and school 
loss days. In this study, carried out in an Italian village, 
daily data on school absenteeism were obtained from 
registries and related to the daily average of  PM10 con-
centrations using a Generalized Additive Model, with 
the number of absences as the dependent variable, and 
 PM10 concentrations as the independent variable. A 
number of potential confounders were considered and 
included in the model, such as day of the week, influ-
enza outbreaks, or average daily temperature. On the 
side of cross-sectional studies, the study by Ostro [30] 
can be used as a model to understand the methodology. 
This study makes use of the Health Interview Survey of 
the United States, a large cross-sectional survey cover-
ing 50,000 households that measures acute morbidity 
in terms of restricted activity days. The study used this 
database and related the outcome to data on ambient 
fine particulate matter and ozone, using a 2-week aver-
age of the daily readings of ozone and FP levels as inde-
pendent variables in the models. In this study, potential 
confounders were more related to the nature of cross-
sectional studies, e.g. age, sex, race, education, family 
income, marital status, or the presence of a chronic 
disease.

Table 1 Description of the included studies

Study Study period Country Continent Population Health condition

Rodrigues-Silva, 2012 [23] 2000–2007 Brazil Americas Workers (traffic controllers) Illnesses

Gilliland, 2001 [29] 1996 USA Americas Schoolchildren Illnesses

Hales, 2016 [24] 2011–2014 USA Americas Schoolchildren All Causes

Ostro, 1987 [11] 1976-1981 USA Americas General Illnesses

Ostro, 1989 [30] 1976—1981 USA Americas Workers Illnesses

Rondeau, 2005 [31] 1996 USA Americas Schoolchildren Illnesses

Chen, 2021 [32] 2021 China Asia Schoolchildren Illnesses

Wu, 2022 [33] 2016–2017 China Asia Schoolchildren Illnesses

Yang, 2019 [34] 2015–2017 China Asia Schoolchildren Respiratory illnesses

Zhang, 2018 [35] 2014 China Asia Schoolchildren Respiratory illnesses

Watanabe, 2021 [36] 2016–2018 Japan Asia Schoolchildren Illnesses

Park, 2002 [37] 1996–1999 Korea Asia Schoolchildren Illnesses

Bruyneel, 2022 [27] 2019 Belgium Europe Workers Mental health

Samoli, 2017 [26] 2013–2014 Greece Europe Schoolchildren All Causes

Marcon, 2014 [25] 2007–2010 Italy Europe Schoolchildren All Causes

Hansen, 2000 [38] 1990–1996 Norway Europe Workers Illnesses

Samakovlis, 2005 [39] 1999 Sweden Europe General Respiratory illnesses

Willers, 2013 [28] 2007 Sweden Europe General Respiratory illnesses
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Risk of bias analysis
Figure 2 shows the proportion of studies at high and low 
risk of bias in the selected domains. The domain with the 
lowest proportion of articles at high risk of bias is selec-
tion bias, with four studies judged to be at high risk of 
bias due to differences in the level of exposure between 
subjects in cross-sectional studies. The other domains 
all showed higher proportions of high risk of bias judg-
ments, with the missing data domain being the topmost 
contributor (94%), followed by the confounding domain 
(61%), the outcome measurement domain (56%) and the 
exposure assessment domain (28%). For the confound-
ing domain, the main concerns were related to the lack 
of adjustment for control variables, e.g. seasonality or 
weather variables in time-series studies, and also with 
uncertainties in the measurement of these confound-
ers. Outcome measurement issues were related to the 
use of self-reported outcome data in surveys. The risk 
of bias related to the missing data domain was judged 
as high in all but one study, where missing or excluded 
data were reported as occasional. All other articles did 
not report missing exposures, outcomes or both. Overall, 
the included articles had at least one reason for concern 
about the risk of bias, and 13 articles had a high risk of 
bias in more than one domain. The risk of bias assess-
ments and the rationale for each study can be found in 
Additional file 4, on a case-by-case basis.

Meta‑analysis
Given the diversity of exposures, outcomes and study 
designs, each exposure-outcome pair was pooled using a 
maximum of seven articles. Because of the small number 
of studies, some of the subgroup and sensitivity analyses 
were not performed, depending on the pollutant or the 

outcome measure. When pooled effects were calculated, 
RRs for a 10 µg/m3 increase were reported for each pol-
lutant and study design. The association measures, as 
reported in the original articles, are shown in Additional 
file 3, while the pooled effects are shown in Table 2.

Particulate matter  (PM10)
Six ecological time-series studies and one cohort study 
examined the association between  PM10 and school-loss 
days or work-loss days in children and adults respectively 
[25, 29, 31, 32, 34, 37, 38]. The time lags ranged from zero 
(same day) to five days, with no predominance of one 
time lag over the others. The association was significant 
when considering both outcomes together (RR: 1.0175; 
95%CI: 1.0040–1.0311; 80%PI: 0.9964–1.0389; I2: 69%), 
or when considering only school-loss days (RR: 1.0149; 
95%CI: 1.0017–1.0283; 80%PI: 0.9943–1.0360; I2:69%), 
but not significant when considering only studies con-
ducted in Asia. Individual and pooled values are shown 
in the forest plots of Figs.  3 and 4. The only ecological 
time-series study focusing on work-loss days [38] found 
a significant association. The sensitivity analysis showed 
that when only studies with a low risk of bias in the out-
come domain were included, the RR value did not change 
the direction of the RRs (Table 3). In the main analysis, 
the PIs included the null effect, indicating that there was 
some degree of heterogeneity between studies, while 
the I2 was above the cut-off value for detecting relevant 
heterogeneity. The leave-one-out analysis showed that 
excluding any of the articles gave similar results regard-
ing the direction of the RRs (Supplementary Table  2, 
Additional file 1).

Fig. 2 Percentage of articles with high/low risk of bias in each domain
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As for other study designs, a cross-sectional study 
[28] evaluating restricted activity days in relation to 
locally generated wear particles reported significant val-
ues, as did a study analysing work-loss days in traffic-
controllers [23].

Particulate matter  (PM2.5)
Based on data from four ecological time-series studies, one 
case-crossover study, and one panel study [24, 32–36], the 
association between  PM2.5 and school-loss days was signif-
icant (RR: 1.0173; 95%CI: 1.0056–1.0290; 80%PI: 0.9951–
1.0399; I2: 99%). The majority of studies considered 

exposure and outcome on the same day or with a lag of 
one day. The forest plot is shown in Fig. 5. Heterogeneity 
was observed among the included studies. The association 
remained significant for studies from Asia (RR: 1.0220; 
95%CI: 1.0052–1.0390; 80%PI: 0.9947–1.0500; I2: 86%), 
but not for the study conducted in three cities in North 
America. In the sensitivity analysis, the RR decreased 
slightly when studies with a high risk of bias in the out-
come or confounding domains were excluded (Table  3). 
The leave-one-out analysis showed that excluding any of 
the included studies did not affect the results (Supplemen-
tary Table 3, Additional file 1).

Table 2 Pooled relative risks

PM10 particulate matter with aerodynamic diameters less or equal than 10 μm, PM2.5 particulate matter with aerodynamic diameters less or equal than 2.5 μm, 
NO2 nitrogen dioxide, O3 ozone, WLD work-loss day, SLD school-loss day, RAD restricted activity day, RRAD respiratory-related restricted activity day, MRAD minor 
restricted activity day, TS time-series study, CHS cohort study, PS panel study, CCO case-crossover study, CS cross-sectional study, Articles number of articles included, 
N number of effect sizes, RR pooled relative risk, calculated for a 10 μg/m3 increase in the pollutant level, 95% CI 95% confidence interval, 80% PI 80% prediction interval, 
I2 I-Squared values

Pollutant Outcome Study type Articles N RR (95%CI)
(Random‑effects model)

80%PI I2

PM10 WLD and SLD combined TS or CHS 7 7 1.0175 (1.0040–1.0311) 0.9964–1.0389 69%

PM10 SLD TS or CHS 6 6 1.0149 (1.0017–1.0283) 0.9943–1.0360 69%

PM2.5 SLD TS, PS or CCO 6 8 1.0173 (1.0056–1.0290) 0.9951–1.0399 99%

PM2.5 RAD CS 1 6 1.0493 (1.0288–1.0702) 1.0092–1.0910 91%

PM2.5 RRAD CS 1 6 1.1575 (1.1207–1.1956) 1.1210–1.1952 10%

PM2.5 MRAD CS 1 6 1.0710 (0.8862–1.2943) 0.7243–1.5835 99%

PM2.5 WLD CS 1 6 1.0699 (0.9971–1.1481) 0.9276–1.2341 97%

NO2 WLD and SLD combined TS, CHS or CCO 7 7 1.0075 (0.9915–1.0237) 0.9800–1.0358 77%

NO2 SLD TS, CHS or CCO 6 6 1.0085 (0.9909–1.0264) 0.9782–1.0398 80%

O3 SLD TS, PS or CHS 4 4 1.0134 (0.9715–1.0571) 0.9381–1.0948 87%

O3 RRAD CS 1 6 0.9595 (0.9188–1.0020) 0.8838–1.0416 86%

O3 MRAD CS 1 6 1.0150 (0.9762–1.0552) 0.9377–1.0986 97%

Fig. 3 Forest plot of 6 time-series studies and one cohort study assessing the association between  PM10 and restricted activity days (work-loss days 
and school-loss days combined). Relative risks for a 10 µg/m3 increase in  PM10 level
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Fig. 4 Forest plot of 5 time-series studies and one cohort study assessing the association between  PM10 and school-loss days. Relative risks for a 
10 µg/m3 increase in  PM10 level

Table 3 Sensitivity analysis. Pooled relative risks considering low RoB time-series studies

PM10 particulate matter with aerodynamic diameters less or equal than 10 μm, PM2.5 particulate matter with aerodynamic diameters less or equal than 2.5 μm, 
NO2 nitrogen dioxide, WLD work-loss day, SLD school-loss day, Articles number of articles included, N number of effect sizes, RR pooled relative risk, calculated for a 
10 μg/m3 increase in the pollutant level, 95% CI 95% confidence interval

Pollutant Outcome Domain Articles N RR (95%CI)
(Random‑effects model)

PM10 WLD and SLD combined Confounding 4 4 1.0120 (0.9997–1.0244)

PM10 WLD and SLD combined Outcome 4 4 1.0240 (0.9923–1.0567)

PM2.5 SLD Confounding 3 5 1.0146 (0.9987–1.0307)

PM2.5 SLD Outcome 2 4 1.0124 (0.9985–1.0265)

NO2 WLD and SLD combined Confounding 3 3 1.0065 (0.9997–1.0133)

NO2 WLD and SLD combined Outcome 3 3 0.9796 (0.9631–0.9963)

Fig. 5 Forest plot of four time-series studies, one case-crossover study, and one panel study (8 effect sizes) evaluating the association between 
 PM2.5 and school-loss days. Relative risks for a 10 µg/m3 increase in  PM2.5 level
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A single case-crossover study examined the asso-
ciation with work-loss days and reported significant 
results, although this study was focused on absentee-
ism related to mental health problems [27]. The asso-
ciations between  PM2.5 and restricted activity days, 
minor restricted activity days, and work-loss days, were 
analysed in two cross-sectional studies [11, 30], which 
reported these associations for the period 1976–1981 
in the United States. These results can, under certain 
conditions, be considered to be related to short-term 
exposures, because lags of two and four weeks between 
exposure and outcome were used. These studies reported 
6 relative risk values, one for each year. We performed a 
meta-analysis across the years reported in these articles 
to calculate summary estimates, and found significant 
values for restricted activity days (RR: 1.0493; 95%CI: 
1.0288–1.0702; 80%PI: 1.0092–1.0910; I2: 91%) and for 
respiratory-related restricted activity days (RR: 1.1575; 
95%CI: 1.1207–1.1956; 80%PI: 1.1210–1.1952; I2: 10%), 
but not for minor restricted activity days or work-loss 
days. In the significant associations, the heterogeneity 
was not relevant, although a high I2 value was estimated 
for restricted activity days. As these estimates were 
obtained from two studies analysing the same population 
over the years, subgroup and sensitivity analyses were 
not performed. Individual and pooled values are shown 
in Supplementary Figs. 1 to 4, Additional file 1.

Nitrogen dioxide  (NO2)
Seven articles analysing the effect of  NO2 were included, 
five ecological time-series, one cohort study, and one 
case-crossover study design [29, 31, 32, 34, 36–38]. 
As with  PM2.5, most studies considered exposure and 

outcome on the same day or with a lag of one day. The 
association between  NO2 and school-loss and work-
loss days was not significant when considering both 
outcomes together (RR: 1.0075; 95%CI: 0.9915–1.0237; 
80%PI: 0.9800–1.0358; I2: 77%), or when consider-
ing only school-loss days (RR: 1.0085; 95%CI: 0.9909–
1.0264; 80%PI: 0.9782–1.0398; I2: 80%). The forest plot 
for these analyses is shown in Figs. 6 and 7. On the other 
hand, the association was significant when only studies 
conducted in Asia were included (RR: 1.0168; 95%CI: 
1.0010–1.0327; 80%PI: 0.9876–1.0467; I2: 74%). When 
studies with a high risk of confounding or outcome bias 
were excluded, the RR value was markedly reduced or 
even changed its direction compared to the original 
value (Table  3). Based on the information provided by 
the PIs and I2 values, some heterogeneity between stud-
ies was also found for this pollutant. The previously 
mentioned study focusing on absenteeism related to 
mental health [27] reported a significant association 
with  NO2. The leave-one-out analysis again showed that 
excluding any of the included studies did not affect the 
results (Supplementary Table  4, Additional file  1). The 
exception was the exclusion of one cohort study carried 
out in the United States, which reported a surprising 
inverse association with school loss days [31].

A study from Sweden [39] used restricted activ-
ity days related to respiratory diseases as the outcome 
measure and found significant associations using a 
Poisson model. This study was based on a national sur-
vey. On the other hand, the study analysing work-loss 
days among traffic controllers [23] found no significant 
association for  NO2.

Fig. 6 Forest plot of 6 time-series studies and one cohort study evaluating the association between  NO2 and restricted activity days (work-loss days 
and school-loss days combined). Relative risks for a 10 µg/m3 increase in  NO2 level



Page 11 of 16Orellano et al. Environmental Health           (2023) 22:31  

Ozone  (O3)
Two ecological time-series studies, one cohort study and 
one panel study evaluated the effect of  O3 on school-
loss days [26, 29, 31, 37]. The time lags ranged from zero 
(same day) to five days. The association was positive 
but not significant (RR: 1.0134; 95%CI: 0.9715–1.0571; 
80%PI: 0.9381–1.0948; I2: 87%) (Fig.  8). Similarly, the 
case-crossover study assessing work-loss days related to 
mental health [27] did not find a significant association. 
Leave-one-out analysis failed to identify an influential 
study whose exclusion might change these results (Sup-
plementary Table 5, Additional file 1).

In the same cross-sectional study evaluating the effect 
of  PM2.5 exposure in the United States,  O3 was also ana-
lysed [30], resulting in non-significant summary associa-
tions for respiratory-related restricted activity days and 
for minor restricted activity days. The forest plots are 
shown in Supplementary Figs.  5 and 6, Additional File 

1. In the same line, the study evaluating work-loss days 
among traffic controllers [23] did not find a significant 
association with  O3.

Discussion
Summary of main findings
Our systematic review identified 18 articles that analysed 
the association between air pollution levels and different 
outcomes related to restricted activity days. These stud-
ies followed ecological time-series, case-crossover, panel, 
cohort and cross-sectional study designs, were conducted 
in different locations and regions, and covered a period 
of 43 years from 1976 to 2019. We found that short-term 
associations were significant in time-series studies for 
 PM10 when school-loss days and work-loss days were 
considered together as outcomes, and for  PM2.5 when 
school-loss days were considered, but not for  NO2 or 
 O3.  These associations were found to be heterogeneous 

Fig. 7 Forest plot of 5 time-series studies and one cohort study evaluating the association between  NO2 and school-loss days. Relative risks for a 
10 µg/m3 increase in  NO2 level

Fig. 8 Forest plot of 2 time-series studies, one panel and one cohort study evaluating the association between  O3 and school-loss days. Relative 
risks for a 10 µg/m3 increase in  O3 level
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across studies, which introduces some uncertainty in the 
pooled relative risks and reflects the expected variability 
of this relationship. This heterogeneity would be partly 
related to differences in studies conducted in differ-
ent continents, but other sources of heterogeneity could 
not be investigated. However, given the small number of 
studies included in the statistical analysis to assess het-
erogeneity, these statistical values may not represent a 
biologically relevant heterogeneity. On the other hand, 
the results of this study were robust to sensitivity analy-
ses based on the risk of bias in different domains. As for 
short-term associations in cross-sectional studies, these 
were significant for  PM2.5 and restricted activity days 
and for  PM2.5 and respiratory-related restricted activity 
days. The associations with  O3 were not significant and, 
surprisingly, in some years the increase in this pollutant 
resulted in protective effects. This paradoxical result may 
be related to measurement error in averaging the time 
of exposure to the pollutant, among other factors. Long-
term associations could not be examined because only 
two studies evaluated the associations between exposures 
and outcomes in the long term, in the order of months.

Historical overview of studies on restricted activity days
The association between restricted activity days and vari-
ous individual and socioeconomic predictors was first 
investigated in the late 1960s with a series of reports 
derived from household interviews in the US National 
Health Interview Survey. For example, a 1972 report [9] 
found an estimate of 3 billion days of restricted activ-
ity in the general population (all ages), or an average of 
15.3 days per person/year, for the year 1968. These asso-
ciations were modulated by the effect of age, sex, place 
of residence, income, and employment status. According 
to this report, more limited activity is to be expected for 
the female population, for people living in metropolitan 
areas, for families with lower income levels and for the 
non-working population (e.g. retired people). In 1996, 
the same survey showed similar values for restricted 
activity days in the general population (14.5 days per per-
son/year), but the survey report also took into account 
restricted activities by type of outcome, i.e. 5.9  days for 
bed disability, 4.8  days for work-loss days for employed 
persons and 4 school-loss days for children and adoles-
cents aged 5–17 years of age [40]. This last report was by 
then more detailed in terms of acute and chronic con-
ditions leading to restricted activity days, e.g. asthma, 
infectious diseases, injuries, to name but a few.

It was not until the 1980s that the US National Health 
Interview Survey database was explored to associate 
restricted activity days with total suspended particulate 
matter (TSP) and sulphur dioxide, and association meas-
ures were obtained using statistical regression models 

[41]. In a series of papers published between 1983 and 
1989, Ostro and colleagues reported an association 
between particulate matter, sulphur dioxide, ozone and 
several outcomes, including restricted activity days, 
minor restricted activity days, and work-loss days. How-
ever, earlier work had examined the effect of air pollution 
on outcomes that fall under the umbrella of restricted 
activity days. For example, an article from 1967 analysed 
the annual reports from the Ministry of Pensions and 
National Insurance in the United Kingdom, and found a 
significant correlation between incapacity to work due to 
bronchitis and local air pollution [42]. Another article, 
using data from the United States, correlated children’s 
school absenteeism with the exposure to various pollut-
ants [43]. In general, however, studies prior to the 1980s 
do not report association values between exposure levels 
and outcomes, as in the above-mentioned examples. In 
more recent years, a number of studies with different epi-
demiological designs, e.g. cross-sectional, case-crossover, 
ecological time-series, have been developed to assess the 
association between air pollution and restricted activity 
days, work-loss days and school-loss days in several coun-
tries in Europe, Asia and North-America. The procedures 
for the analysis included rigorous regression techniques 
that allowed the access to more detailed results. In par-
allel with epidemiological studies looking at empirical 
associations between air pollution and restricted activity 
days, a number of studies and reports have been devel-
oped to make predictions about the public-health impact 
of traffic-related air pollution, with outcomes includ-
ing mortality, hospital admissions, and restricted activ-
ity days. For example, a modelling study by Kunzli and 
colleagues [44] used relative risks calculated from an 
observational study [45] to estimate the impact of  PM10. 
Another modelling study used a Health Impact Assess-
ment approach to estimate the potential benefits of 
reducing ozone levels in California [46]; this study used 
the empirical effect sizes reported by Ostro and Roths-
child [30] for the prediction models. More recently, two 
modelling studies [47, 48] have simulated the health ben-
efits of reducing air pollution emissions, both studies 
using the empirical effect sizes reported by Ostro [11]. 
Given the extraordinary importance of large-scale health 
impact assessments and the strong reliance on reliable 
relative risk estimates, more observational studies and 
meta-analyses are needed to produce robust evidence. It 
is becoming increasingly clear that the availability of reli-
able data is crucial to obtaining valid estimates of disease 
burden for environmental diseases [49]. In this system-
atic review, we found little evidence of long-term associa-
tions between pollutants and days of restricted activity, 
although this is an important aspect of the relationship 
between these variables. Long-term exposures may not 
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be the simple sum of a number of short-term effects, 
and this influence should be analysed differently. On the 
other hand, the number of short-term studies included 
in this review was not sufficient to perform more specific 
analyses, i.e. subgroup analyses that take into account 
variability related to sex, age, type of outcome and other 
important factors.

Restricted activity days in context
A growing body of scientific literature supports the asso-
ciations between air pollution and restricted activity days 
by validating the associations with more objective meas-
ures, i.e. morbidity and mortality. In this review, a num-
ber of studies focused on respiratory-related restricted 
activity days, as these conditions are at the top of the list 
of causes of absence from school or work. In this sense, 
the published evidence of associations between air pollu-
tion and respiratory diseases provides more insight into 
this relationship. A recent study in China [50] showed 
an association between  PM10 and  PM2.5 and the com-
mon cold in young adults without a history of asthma or 
allergic rhinitis, with RRs of 1.17 and 1.28, respectively, 
for an increase of 10 μg/m3. More serious outcomes have 
also been associated with exposure to outdoor air pollu-
tion: a systematic review and meta-analysis [51] found a 
0.4% and 1% increase in the number of hospitalisations 
for pneumonia associated with a 10  μg/m3 increase in 
 PM10 and  PM2.5, respectively. With regard to chronic 
diseases, asthma and COPD have been identified in the 
past as causes of absenteeism from school and work, and 
there is a large body of literature on the subject. System-
atic reviews and meta-analyses have collected and ana-
lysed evidence of associations between air pollution and 
asthma and COPD exacerbations [52–54]. In terms of 
more serious outcomes, short- and long-term exposures 
to  PM10,  PM2.5 and other pollutants have recently been 
associated with respiratory mortality and mortality from 
other causes [18, 55].

Risk of bias assessment
All studies showed problems in at least one domain, i.e. 
a high risk of bias, according to our criteria. Moreover, 
the majority of studies showed a high risk of bias in at 
least two domains, with the missing data domain being 
the most common. In this sense, it is not uncommon for 
observational studies not to report the number of miss-
ing observations or to lack procedures for imputing miss-
ing data. Furthermore, if the missing observations were 
randomly distributed, the effect on associations would 
not be highly relevant. More importantly, two other 
domains showed a high risk of bias in more than 50% 
of the articles: outcome measurement and confound-
ing. The former is mainly related to the participants’ 

self-reporting of the outcome, i.e. we considered that the 
risk of bias might have been a concern in those studies 
where school or work absence was self-reported. This is 
in contrast to administrative reports from companies, 
schools or employment registers, where the informa-
tion is more trustworthy. Similarly, a high risk of bias 
in the confounding domain means that the association 
may be due to observed or unobserved confounders 
rather than to exposure to air pollution. For example, the 
short-term influence of ambient temperature on human 
morbidity is well known [56], and at the same time the 
association between temperature and air pollutant con-
centrations has been well-established in several studies; 
see, for example, Analitis and colleagues (2018) [57]. This 
double association with the exposure and the outcome 
makes temperature a perfect candidate for confounding. 
Other potential confounders are the day of the week or 
holidays, especially in short-term time-series studies. In 
addition, the inclusion of a smooth function of time can 
adjust for seasonal and long-term trends, which in turn, 
is a form of adjustment for unmeasured confounders 
that vary smoothly over time [15]. All of these potential 
confounders had to be included in the regression models 
for an ecological time-series study to be considered low 
risk of bias. For case-crossover studies, time-dependent 
variables were considered to be controlled for by design 
[58]. Finally, for cross-sectional, panel and cohort studies, 
the confounders to be included were age and sex. Beyond 
these potential biases, which were assessed using the risk 
of bias tool, the importance of exposure misclassifica-
tion cannot be overlooked. For our review, we considered 
measuring exposure to air pollution using monitoring 
stations as a proxy for individual exposure to polluted 
air. However, the use of ambient exposures rather than 
individual exposures could be subject to bias, i.e. individ-
ual exposures could be higher than ambient exposures, 
leading to an underestimation of threshold concentra-
tions [59]. Overall, when the same estimates were calcu-
lated using only studies with low risk of bias, the results 
showed no change in the direction of the associations. 
Other sensitivity analyses based on study design or time 
lag could not be performed, so the uncertainty about 
methodological decisions and assumptions remains 
open.

Publication bias
When using funnel plots or regression tests to assess the 
potential presence of publication bias, it is recommended 
to use a minimum number of 10 studies, or substantially 
more than 10 studies in the presence of heterogeneity 
[60]. In this review, it was not possible to reach this mini-
mum number of studies for each exposure-outcome pair, 
and therefore bias due to unpublished or grey research 
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could not be excluded. As we were not able to perform 
a test to assess publication bias, we made additional 
efforts to avoid this problem. In this sense, we imple-
mented a comprehensive search strategy that included 
regional databases as sources of both scientific articles 
and grey literature. We also included studies without lan-
guage restrictions to avoid language bias [61]. However, 
8 studies originally selected for inclusion in this analy-
sis could not be found, which represents a significant 
proportion of the studies finally included and should be 
seen as another limitation of this work. Six of these stud-
ies were published in the 1970s, which may explain the 
difficulty in finding the full texts. In the other two arti-
cles, conducted in France and Germany, groups of chil-
dren exposed to air pollution in polluted areas were more 
prone to respiratory diseases [62] and to school absentee-
ism [63]. Another way to increase the sensitivity of the 
review process was to include different study designs, 
i.e. ecological time-series, case-crossover, panel, cohort, 
and cross-sectional studies. This inclusion had the disad-
vantage of requiring additional assumptions to pool the 
different measures of association, and in most cases the 
analysis was split on the basis of design type. Additional 
efforts were made to assess the suitability of different 
studies for inclusion in the same analysis, and these deci-
sions and assumptions are always subject to error.

Summary of limitations
Earlier in this section we discussed various limitations and 
caveats of the evidence provided by this systematic review 
and meta-analysis. In this sub-heading, we provide a brief 
summary of these and other possible limitations. First, 
although restricted activity days and its related school 
and work absenteeism were outcomes that were inves-
tigated at an early stage in the assessment of the health 
effects of air pollution, the number of studies dealing 
with these outcomes was small, and some studies could 
not be found. As mentioned above, the small number of 
studies prevented us from assessing publication bias, the 
impact of methodological assumptions on the results, and 
the influence of moderator variables on the heterogene-
ity. Second, the diversity of study designs, an advantage in 
terms of reducing the possibility of publication bias, led to 
difficulties in interpreting and pooling association values 
and potential pitfalls in the assumptions. Third, all articles 
were considered to be at high risk of bias in at least one 
domain, with some of these domains being at high risk in 
the majority of the articles. Failure to report missing data, 
failure to include all relevant confounders, and failure to 
measure the outcome were the most common reasons for 
considering the observed risk of bias to be high. Fourth, 
some individuals may have been exposed to both indoor 
and outdoor air pollution, but only outdoor exposure was 

considered in this review. In this sense, some unavoidable 
bias is to be expected. Finally, as with many other reviews 
on air pollution and health, there were differences in 
geographical representativeness, with Europe and North 
America contributing a high proportion of articles and 
regions with a majority of low- and middle-income coun-
tries less represented. It is worth noting that, given the 
important influence of environmental variables on the 
associations between outdoor air pollution and human 
health, research in different locations with different envi-
ronmental conditions is crucial to fully understand these 
relationships on a global scale. However, air pollution is 
a global problem, and reference values for air pollution 
levels should not be addressed to countries according 
to their income; the urgency of the situation justifies the 
establishment of air quality policies, especially in develop-
ing countries [64].

Conclusions
Our study allowed the calculation of pooled effect sizes 
between selected ambient air pollutants and restricted 
activity days, including school and work absenteeism. 
These associations were significant for  PM10 and  PM2.5, 
even with different study designs and outcomes. The 
small number of studies included in the review, and the 
large proportion of studies with a high risk of bias intro-
duce some uncertainty into these associations. However, 
the proven associations between the exposure to ambi-
ent air pollutants and human diseases that usually lead 
to restricted activity days, e.g. asthma, COPD, viral res-
piratory infections, as reported in scientific articles and 
reports, is a second-hand evidence that lends plausibility 
to the associations of air pollutants with restricted activ-
ity days. Despite the limitations of this study, the associa-
tion between air pollution and restricted activity days is 
worth considering when modelling and calculating the 
adverse effects of air pollution on human health.

Abbreviations
PM10  Particulate matter with aerodynamic diameters less or equal than 

10 μm
PM2.5  Particulate matter with aerodynamic diameters less or equal than 

2.5 μm
WLD  Work-loss day
SLD  School-loss day
RAD  Restricted activity day
RRAD  Respiratory-related restricted activity day
MRAD  Minor restricted activity day
TS  Time-series study
CCO  Case-crossover study
CS  Cross-sectional study
N  Number of effect sizes
RR  Pooled relative risk, calculated for a 10 μg/m3 increase in the pol-

lutant level
95% CI  95% Confidence interval
80% PI  80% Prediction interval
I2  I-Square values
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