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Abstract 

Background Ozone as an air pollutant is gradually becoming a threat to people’s health. However, the effect of 
ozone exposure on risk of developing diabetes, a fast-growing global metabolic disease, remains controversial.

Objective To evaluate the impact of ambient ozone exposure on the incidence rate of type 1, type 2 and gestational 
diabetes mellitus.

Method We systematically searched PubMed, Web of Science, and Cochrane Library databases before July 9, 2022, to 
determine relevant literature. Data were extracted after quality evaluation according to the Newcastle Ottawa Scale 
(NOS) and the agency for healthcare research and quality (AHRQ) standards, and a meta-analysis was used to evalu-
ate the correlation between ozone exposure and type 1 diabetes mellitus (T1D), type 2 diabetes mellitus (T2D), and 
gestational diabetes mellitus (GDM). The heterogeneity test, sensitivity analysis, and publication bias were performed 
using Stata 16.0.

Results Our search identified 667 studies from three databases, 19 of which were included in our analysis after 
removing duplicate and ineligible studies. Among the remaining studies, three were on T1D, five were on T2D, 
and eleven were on GDM. The result showed that ozone exposure was positively correlated with T2D [effect size 
(ES) = 1.06, 95% CI: 1.02, 1.11] and GDM [pooled odds ratio (OR) = 1.01, 95% CI: 1.00, 1.03]. Subgroup analysis demon-
strated that ozone exposure in the first trimester of pregnancy might raise the risk of GDM. However, no significant 
association was observed between ozone exposure and T1D.

Conclusion Long-term exposure to ozone may increase the risk of T2D, and daily ozone exposure during preg-
nancy was a hazard factor for developing GDM. Decreasing ambient ozone pollution may reduce the burden of both 
diseases.
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Introduction
Ozone in the troposphere is created in the presence of 
solar radiation, due to the reaction of nitrogen oxides 
and volatile organic compounds. Growing evidence have 
shown that high concentration of ozone exposure could 
threaten people’s health and might be linked to lower life 
expectancy [22, 32, 63]. Ozone as a typical air pollutant 
can exacerbate lung injury, increase the risk of respiratory 
diseases [39, 66], cardiovascular disease, reproductive 
abnormalities, as well as neurological abnormalities [50]. 
It is worth noting that through neuro-endocrine regula-
tion, ozone exposure may cause metabolic syndrome, 
characterized by glucose intolerance and hyperlipidemia 
[49, 50]. Importantly, glucose intolerance often indicates 
pre-existing diabetes or predisposition to diabetes.

Diabetes is the most common chronic metabolic disease 
and its high incidence has caused a heavy medical and 
economic burden on society. Diabetes can be divided into 
the following categories: type 1 diabetes or T1D (insuf-
ficient insulin secretion), type 2 diabetes or T2D (insulin 
resistance with progressive insulin secretory defect), and 
gestational diabetes or GDM (various levels of impaired 
glucose tolerance which first occur or are first detected 
during pregnancy) [1]. T1D mainly occurs in children and 
adolescents. T1D is often first diagnosed from a routine 
blood test indicating modest hyperglycemia which then 
evolves into severe hyperglycemia or ketoacidosis if left 
untreated [12, 14]. T2D can cause devastating macrovas-
cular complications and microvascular complications, 
which can cause severe sequelae, such as diabetic retinop-
athy, blindness, kidney failure, and neuropathy [9]. GDM 
as a type of metabolic disturbance during pregnancy, may 
cause various health risks in the mother and the child. In 
women, it can cause serious perinatal complications such 
as cardiovascular diseases and it can evolve into T2D 
after pregnancy. In women with GDM, the fetus has an 
increased risk of developing macrosomia, birth injury and 
cardiometabolic disease later in life [5, 24, 54, 65].

Chuang et al. demonstrated that increased ozone expo-
sure was associated with increased fasting blood glucose 
and HbA1c levels, a biomarker of glucose metabolism [8]. 
Experimental evidence also indicated that ozone may cause 
damage to β cells [38], and exert insulin resistance, possibly 
due to oxidative stress and inflammatory responses [25]. 
These suggest that ozone exposure may lead to the appro-
priate type of diabetes in different populations.

However, the epidemiological evidence of ozone expo-
sure on three types of diabetes still remains controversial. 
Evidence shows that ozone exposure increases the overall 
prevalence of diabetes [40], however, existing epidemiologi-
cal studies suggest that increased ozone exposure is associ-
ated with a decrease in diabetes prevalence, which persists 
after adjusting for possible confounding factors [29, 52]. 

Hathout et al. found the positive correlation between ozone 
and T1D [18], but a negative correlation was observed by 
Elten et  al. [11]. A study in areas with low average ozone 
exposure found significant positive effects [21], but not in 
areas with higher levels [62]. Results of studies also varies 
on the association between GDM and ozone exposure [19, 
41]. Overall, findings on the association between ozone 
exposure and the three types of diabetes are inconsistent, 
which may depend on study design, sample size, exposure 
measurement methods, and outcome assessment.

At present, direct evidence on the relationship between 
different types of diabetes and ozone exposure is still 
being studied. Integration of the results of current studies 
on this topic is urgently needed to obtain more representa-
tive and reliable conclusions with a larger sample size and 
a wider study area, and stronger statistical power. Thus, a 
meta-analysis was conducted to explore whether ozone 
exposure is associated with three types of diabetes.

In this study, we performed a meta-analysis to evalu-
ate the relationship of ozone exposure to T1D, T2D, 
and GDM, aimed to provide evidence for the potentially 
harmful effects of ozone. In addition, impacts on aver-
age ozone concentration, socioeconomic status, expo-
sure measurement methods on T2D and GDM were also 
investigated via subgroup analyses.

Material and methods
Search methods
This study was conducted according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Anal-
ysis (PRISMA) guidelines (Supplemental Table S2). Rel-
evant articles were retrieved from three databases: Web of 
Science, PubMed and Cochrane Library up to July 9, 2022. 
According to the  PECO  (Patients, Intervention, Com-
parison, Outcomes), we have defined eligible studies as 
follows. P: People with three types of diabetes; E: Ozone 
exposure before illness; C: People who did not have diabe-
tes and have a negative glucose tolerance test; O: The doc-
umented result is the development of the specific type of 
diabetes. The following search terms were used to screen 
the articles across three databases, and three types of dia-
betes were retrieved separately:

#1: (ozone) OR  (O3)
#2: (Type 1 Diabetes)OR (Insulin-Dependent Diabetes 
Mellitus) OR (Diabetes Mellitus, Type 1) OR T1D
#3: (Type 2 Diabetes)OR (Non-Insulin-Dependent 
Diabetes Mellitus) OR (Diabetes Mellitus, Type 2) 
ORT2D
#4:(Pregnancy-Induced Diabetes) OR (Gestational 
Diabetes Mellitus) OR (GDM)
#5: #1 AND #2 (#1 AND#3 or #1 AND #4)
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We also manually searched the list of references to 
ensure that there were no omissions.

Selection criteria
The criteria of inclusion and exclusion were as follows:

Inclusion criteria:

1. Epidemiological studies were based on observation 
and analysis such as cohort studies, case–control 
studies, and cross-sectional studies;

2. Exposure factor was ozone;
3. The outcome was the correlation between ozone 

exposure and the risk of diabetes mellitus;
4. Data, such as OR, risk ratio (RR), hazard ratio (HR), 

and 95% CI (confidence interval), were provided in 
the study.

Exclusion Criteria:

1. Animal studies, reviews, conference abstracts, sys-
tematic reviews, and meta-analyses;

2. Studies that did not fit into the research topic;
3. Incomplete articles, including lack of statistical anal-

ysis details;
4. Studies with low quality score < 7. For example, there 

is a lack of key covariates or studies in which covari-
ates differ significantly from other studies.

Study screening and data extraction
Articles were imported into Endnote for management, 
and duplicates were removed. We manually screened the 
retrieved articles by the title and abstract based on the 
inclusion and exclusion criteria. In addition, full texts 
were reviewed for further confirmation and the acquisi-
tion of data. Two researchers independently completed 
the literature screening process. The data extracted 
included: the first author’s name, published year, country, 
study design, sample size, participants’ age, ozone expo-
sure period, type of diabetes, effect size, and 95% CI.

Quality assessment
NOS was used to evaluate the quality of the cohort and 
case–control studies included in this analysis, a score 
of 7 was considered a high-quality article. In addition, 
the 11-items standard recommended by the AHRQ was 
used to evaluate the cross-sectional studies [64]. The lit-
erature was divided into levels as follows: A score of 0–3 
was considered low quality, a score of 4–7 was moderate 
quality, and a score of 8–11 was high quality [20].We used 
the Grading of Recommendations Assessment, Develop-
ment and Evaluation (GRADE) approach to assess the 
evidence level for each outcome [4].

Statistical methods
STATA version 16.0 was used to perform statistical anal-
yses. Inclusive HRs, ORs and their 95% CI were fed into 
the package for effect merging. All effect values were 
included in the same meta-analysis and the ES was used 
to estimate the overall effect [2].

During analyses, there were specific steps: (1) Stand-
ardization: Inclusive effect values were normalized to 
10  μg/m3 as the unit of increase. (2) Unit conversation: 
Considering some articles used ppb as unit, we refer 
to  WHO for  the method to convert research into the 
same indicators, that is, the conversion coefficient from 
parts per billion (ppb) to μg/m3 (1  ppb = 1.96  μg/m3 
ozone) [26]. The following formula was applied to recal-
culate the RR for the standardized increment [27]:

(3) Heterogeneity test was measured by  I2 statistic: If 
 I2 > 50% or p < 0.05, the value of combined effects was calcu-
lated using the random effects model (REM) to reduce the 
significant heterogeneity, which was visualized with a for-
est plot. The REM estimates confidence intervals based on 
sampling error within studies and variation between stud-
ies. When heterogeneity was statistically significant, REM 
was more conservative and robust than the fixed-effect 
model. The DerSimonian-Laird method was used, which 
encompasses the variability within and between studies 
[47]. (4) Subgroup analysis: In articles of gestational diabe-
tes, subgroup analysis was performed based on trimesters 
exposure to ozone to reduce heterogeneity. The impacts of 
average ozone concentration, socioeconomic status, expo-
sure measurement methods on T2D and GDM were also 
investigated via subgroup analyses. (5) Test and correction 
of publication bias: Publication bias was tested by Begg’s 
Test and Egger’s Test, and was visualized using funnel plots. 
(6) Sensitivity analysis: In order to assess the reliability of 
studies included in this meta-analysis, each article was 
excluded one by one for sensitivity analysis.

Results
Study search results
The study screening process is shown in Fig.  1. Three 
types of diabetes were separately retrieved based on the 
search strategy, and a total of 667 records were initially 
identified (T1D 240, T2D 332, GDM 95).

T1D
A total of 16 records entered the next round of screen-
ing after duplicate verification and summary assessment. 
Through further review of the full-text and removing 

RRStandardized = e

ln RROrigin
IncrementOrigin

× IncrementStandardized
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articles of irrelevant exposure or outcome, three studies 
were included in our analysis [11, 17, 18]. Since there was 
a deficiency of articles on exposure during pregnancy, we 
adopted three articles on childhood exposure (Table  1, 
Supplemental Table S1).

T2D
After the removal of the articles with irrelevant expo-
sure or outcome and literature quality scoring, five stud-
ies were included in our analysis [21, 34, 43, 59, 62].

GDM
A total of 79 records that did not meet the inclusion cri-
teria were removed after duplicate verification and sum-
mary assessment. After further review of the remaining 
16 full-text articles, five studies were removed because 
two studies had irrelevant exposure or outcome, another 
two studies had incomplete statistics, and one study had 
hierarchical data and could not be included in the analy-
sis. The remaining 11 studies were included in our analy-
sis [19, 23, 35, 36, 41, 44, 48, 51, 56, 58, 60].

Characteristics overview
Table 1 shows the characteristics of 19 studies included 
in our analysis. In terms of the number of studies (N), 
America had 9 studies, followed by China (N = 5), 
Taiwan (N = 3), Italy (N = 1), and Canada (N = 1). In 
terms of the number of samples (n) and proportion 

of samples, most of the included samples were from 
Taiwan (N = 6,459,842; 62%), followed by America 
(N = 1,765,492; 17%), Italy (N = 1,425,580; 14%), Can-
ada (N = 754,698; 7%), and China (N = 57,613; 0.55%). 
Among them, 14 studies were cohort studies, 4 were 
case-control studies, and 1 was a cross-sectional study. 
The quality of the 19 selected studies ranged from 7 to 9 
according to the NOS standard, indicating that all stud-
ies were of moderate to high-quality. The initial certainty 
of evidence for observational studies was low. Based on 
study limitations, inconsistency, imprecision, indirect-
ness and publication bias, we further adjusted the evi-
dence certainty of these studies and presented them in 
Table S1. The downgrading was mainly due to impreci-
sion. Of these, 16 of the outcomes were low and 12 of the 
outcomes were very low.

For the T1D studies, the sample size ranged from 
110 to 754,698. Ozone exposure time was childhood, 
including 0–18  years of age. For the T2D studies, the 
sample size ranged from 1,090 to 6,426,802. Ozone 
exposure time was long-term and the age ranged from 
18 to 75 years of age. For the GDM studies, the sample 
size ranged from 3,754 to 410,267. The majority of the 
study population was between 20–35 years of age. The 
diagnosis of GDM was validated through an oral glu-
cose tolerance test (OGTT) and uniform criteria. The 
exposure time included preconception and the three tri-
mesters throughout pregnancy (the  1st trimester: 1–13 
gestational weeks; the  2nd trimester: 14–27 or 14–26 
gestational weeks; and the  3rd trimester:  over 27 weeks 

Fig. 1 The flowchart of study screening and selection



Page 5 of 12Yu et al. Environmental Health           (2023) 22:32  

Ta
bl

e 
1 

C
ha

ra
ct

er
is

tic
s 

of
 in

cl
ud

ed
 li

te
ra

tu
re

 a
nd

 q
ua

lit
y 

ev
al

ua
tio

n

A
ut

ho
r

Ye
ar

Co
un

tr
y/

re
gi

on
St

ud
y 

de
si

gn
Sa

m
pl

e 
si

ze
A

ge
 a

t d
ia

gn
os

is
(y

ea
rs

)
Ex

po
su

re
 p

er
io

d
Co

va
ri

at
e

O
ut

co
m

e
Q

ua
lit

y 
as

se
ss

m
en

t 
sc

or
e

PM
ID

El
te

n 
et

 a
l

20
20

Ca
na

da
Co

ho
rt

 s
tu

dy
75

4,
69

8
 <

 6
tr

im
es

te
rs

, c
hi

ld
ho

od
po

llu
ta

nt
, s

ex
, m

at
er

na
l a

ge
 

at
 d

el
iv

er
y,

 s
m

ok
in

g,
bi

rt
h 

w
ei

gh
t p

ar
ity

, g
es

ta
tio

na
l 

ag
e

T1
D

7
32

,1
20

,1
23

H
at

ho
ut

 e
t a

l
20

02
A

m
er

ic
a

Ca
se

–c
on

tr
ol

 s
tu

dy
11

0
 <

 1
8

ch
ild

ho
od

ag
e

7
15

,0
16

,1
45

H
at

ho
ut

 e
t a

l
20

06
A

m
er

ic
a

Ca
se

–c
on

tr
ol

 s
tu

dy
40

2
7.

4 
±

 4
ch

ild
ho

od
ag

e
7

16
,6

29
,7

13

Je
rr

et
t e

t a
l

20
17

A
m

er
ic

a
Co

ho
rt

 s
tu

dy
45

3,
22

1
 ≥

 3
0

da
ily

 8
-h

 m
ax

im
um

  O
3

sm
ok

in
g 

st
at

us
, e

xe
rc

is
e,

 
di

et
, p

ar
en

ta
l h

is
to

ry
 o

f 
di

ab
et

es
, B

M
I, 

ne
ig

hb
or

ho
od

 
so

ci
o-

ec
on

om
ic

 s
ta

tu
s 

(S
ES

), 
ed

uc
at

io
n

T2
D

8
28

,1
53

,5
29

Li
 e

t a
l

20
21

Ta
iw

an
Co

ho
rt

 s
tu

dy
6,

42
6,

80
2

65
.1

7 
±

 1
2.

82
da

ily
 a

ve
ra

ge
 c

on
ce

nt
ra

tio
ns

 
of

  O
3

ag
e,

 s
ex

, S
ES

, u
rb

an
iz

at
io

n 
le

ve
l, 

te
m

pe
ra

tu
re

, h
um

id
ity

 
an

d 
ba

se
lin

e 
ch

ro
ni

c 
co

m
or

-
bi

di
ty

 s
ta

tu
s

8
33

,4
12

,0
98

Re
nz

i e
t a

l
20

18
Ita

ly
Co

ho
rt

 s
tu

dy
1,

42
5,

58
0

 ≥
 3

5
da

ily
 8

-h
 m

ax
im

um
  O

3
se

x,
 S

ES
, p

la
ce

 o
f b

irt
h,

 
oc

cu
pa

tio
n,

 e
du

ca
tio

na
, 

pr
ee

xi
st

in
g 

co
m

or
bi

di
tie

s, 
m

ar
ita

l s
ta

tu
s

8
29

,2
53

,7
30

Ya
ng

 e
t a

l
20

18
C

hi
na

C
ro

ss
-s

ec
tio

na
l s

tu
dy

15
,4

77
18

–7
4

lo
ng

-t
er

m
ag

e,
 s

ex
, B

M
I, 

ed
uc

at
io

n,
 

fa
m

ily
 in

co
m

e,
 s

m
ok

in
g,

 
al

co
ho

l c
on

su
m

pt
io

n,
 d

ie
t, 

ex
er

ci
se

, f
am

ily
 h

is
to

ry
 o

f 
di

ab
et

es
, a

nd
 d

is
tr

ic
t

7
29

,6
15

,2
39

Yu
 e

t a
l

20
21

A
m

er
ic

a
Co

ho
rt

 s
tu

dy
1,

09
0

70
.5

 ±
 6

.9
da

ily
 8

-h
 m

ax
im

um
  O

3
ag

e,
 s

ex
, e

du
ca

tio
n,

 o
cc

up
a-

tio
n,

 p
hy

si
ca

l a
ct

iv
ity

, s
m

ok
-

in
g 

st
at

us
, a

nd
 h

ou
se

ho
ld

 
in

co
m

e 
at

 b
as

el
in

e

7
34

,4
94

,8
56

H
u 

et
 a

l
20

15
A

m
er

ic
a

Ca
se

–c
on

tr
ol

 s
tu

dy
41

0,
26

7
/

tr
im

es
te

r 1
, t

rim
es

te
r 2

, 
en

tir
e 

pr
eg

na
nc

y
m

at
er

na
l a

ge
, r

ac
e,

 e
du

ca
-

tio
n,

 m
ar

ita
l s

ta
tu

s, 
se

as
on

 
of

 c
on

ce
pt

io
n 

an
d 

ye
ar

 o
f 

de
liv

er
y,

 m
ed

ia
n 

ho
us

eh
ol

d 
in

co
m

e,
 p

re
na

ta
l c

ar
e 

be
ga

n,
 

ur
ba

ni
za

tio
n

G
D

M
8

25
,7

94
,4

12

Jo
 e

t a
l

20
19

A
m

er
ic

a
Co

ho
rt

 s
tu

dy
23

9,
57

4
32

.4
 ±

 5
.4

pr
ec

on
ce

pt
io

n,
 tr

im
es

te
r 1

, 
tr

im
es

te
r 2

m
at

er
na

l a
ge

, e
du

ca
tio

n,
 

ra
ce

, h
ou

se
ho

ld
 in

co
m

e
8

31
,2

34
,0

04

Li
n 

et
 a

l
20

20
C

hi
na

Co
ho

rt
 s

tu
dy

12
,8

42
/

tr
im

es
te

r 1
, t

rim
es

te
r 2

, t
w

o 
tr

im
es

te
rs

m
at

er
na

l a
ge

, r
ac

e,
 e

du
ca

-
tio

n,
 m

ar
ita

l s
ta

tu
s, 

co
nc

ep
-

tio
n 

se
as

on
, o

cc
up

at
io

n,
 

te
m

pe
ra

tu
re

, h
um

id
ity

, 
pr

e-
pr

eg
na

nc
y 

BM
I

8
32

,7
39

,6
27



Page 6 of 12Yu et al. Environmental Health           (2023) 22:32 

Ta
bl

e 
1 

(c
on

tin
ue

d)

A
ut

ho
r

Ye
ar

Co
un

tr
y/

re
gi

on
St

ud
y 

de
si

gn
Sa

m
pl

e 
si

ze
A

ge
 a

t d
ia

gn
os

is
(y

ea
rs

)
Ex

po
su

re
 p

er
io

d
Co

va
ri

at
e

O
ut

co
m

e
Q

ua
lit

y 
as

se
ss

m
en

t 
sc

or
e

PM
ID

Li
u 

et
 a

l
20

22
C

hi
na

Co
ho

rt
 s

tu
dy

20
,1

13
30

pr
ec

on
ce

pt
io

n,
 tr

im
es

te
r 1

, 
tr

im
es

te
r 2

m
at

er
na

l a
ge

, p
re

-p
re

gn
an

cy
 

BM
I, 

ed
uc

at
io

n,
 fa

m
ily

 
hi

st
or

y 
of

 d
ia

be
te

s, 
pa

rit
y,

 
se

as
on

 o
f L

M
P, 

te
m

pe
ra

tu
re

9
34

,7
98

,1
19

Pa
n 

et
 a

l
20

17
Ta

iw
an

Co
ho

rt
 s

tu
dy

19
,6

06
31

.9
 ±

 4
.5

tr
im

es
te

r 1
, t

rim
es

te
r 2

, 
tr

im
es

te
r 3

m
at

er
na

l a
ge

, B
M

I, 
w

ei
gh

t 
ga

in
, f

et
al

 g
en

de
r, 

pa
rit

y 
an

d 
an

nu
al

 h
ou

se
ho

ld
 in

co
m

e

7
28

,6
72

,1
29

Ro
bl

ed
o 

et
 a

l
20

15
A

m
er

ic
a

Co
ho

rt
 s

tu
dy

21
9,

95
2

/
pr

ec
on

ce
pt

io
n,

 tr
im

es
te

r 1
m

at
er

na
l a

ge
, r

ac
e 

an
d 

st
ud

y 
si

te
8

25
,6

01
,7

34

Sh
en

 e
t a

l
20

17
Ta

iw
an

Ca
se

–c
on

tr
ol

 s
tu

dy
13

,4
34

31
.3

0 
±

 4
.5

4
pr

ec
on

ce
pt

io
n,

 tr
im

es
te

r 1
, 

tr
im

es
te

r 2
se

as
on

 o
f d

el
iv

er
y,

 n
um

be
r 

of
 b

irt
hs

, o
be

si
ty

, h
is

-
to

ry
 o

f p
ol

yc
ys

tic
 o

va
ry

 
sy

nd
ro

m
e 

(P
CO

S)
, p

er
so

na
l 

m
on

th
ly

 in
co

m
e,

 d
is

ea
se

 
bu

rd
en

, m
ed

ia
n 

fa
m

ily
 

in
co

m
e,

 le
ve

l o
f u

rb
an

iz
at

io
n

9
29

,2
61

,1
45

Su
n 

et
 a

l
20

22
A

m
er

ic
a

Co
ho

rt
 s

tu
dy

39
5,

92
7

30
.3

 ±
 5

.7
pr

ec
on

ce
pt

io
n,

 tr
im

es
te

r 1
, 

tr
im

es
te

r 2
, e

nt
ire

 p
re

gn
an

cy
m

at
er

na
l a

ge
, r

ac
e,

 e
du

ca
-

tio
n,

 fa
m

ily
 h

ou
se

ho
ld

 
in

co
m

e,
 p

re
-p

re
gn

an
cy

 B
M

I, 
sm

ok
in

g,
 in

su
ra

nc
e 

ty
pe

, 
se

as
on

 o
f c

on
ce

pt
io

n 
an

d 
ye

ar
 o

f d
el

iv
er

y

8
34

,5
63

,7
49

W
u 

et
 a

l
20

16
A

m
er

ic
a

Co
ho

rt
 s

tu
dy

44
,9

49
/

tr
im

es
te

r 1
, t

rim
es

te
r 2

, 
tr

im
es

te
r 3

m
at

er
na

l a
ge

, r
ac

e,
 e

du
ca

-
tio

n,
 m

ed
ia

n 
ho

us
eh

ol
d 

in
co

m
e

8
29

,6
59

,2
39

Ya
o 

et
 a

l
20

20
C

hi
na

Co
ho

rt
 s

tu
dy

5,
42

7
/

pr
ec

on
ce

pt
io

n,
 tr

im
es

te
r 1

m
at

er
na

l a
ge

, e
du

ca
tio

n,
 

se
as

on
 o

f b
lo

od
 c

ol
le

ct
io

n,
 

fru
it 

an
d 

de
ss

er
t i

nt
ak

e 
fre

-
qu

en
cy

, p
re

-p
re

gn
an

cy
 B

M
I, 

pa
rit

y,
 p

hy
si

ca
l a

ct
iv

ity
 d

ur
-

in
g 

pr
eg

na
nc

y,
 fa

m
ily

 h
is

to
ry

 
of

 d
ia

be
te

s, 
te

m
pe

ra
tu

re
, 

an
d 

re
la

tiv
e 

hu
m

id
ity

7
32

,2
78

,1
59

Ya
n 

et
 a

l
20

22
C

hi
na

Co
ho

rt
 s

tu
dy

3,
75

4
29

.6
 ±

 4
.3

tr
im

es
te

r 1
, t

rim
es

te
r 2

, t
ri-

m
es

te
r 3

, e
nt

ire
 p

re
gn

an
cy

m
at

er
na

l a
ge

, d
ia

be
te

s 
m

el
-

lit
us

, p
re

- p
re

gn
an

cy
 B

M
I, 

pr
e-

pr
eg

na
nc

y 
hy

pe
rt

en
si

on
 

an
d 

re
si

de
nt

ia
l r

eg
io

n,
 s

ex
, 

se
as

on
 o

f c
on

ce
pt

io
n

8
3,

56
7,

97
1

“/
” r

ep
re

se
nt

 a
ll 

ag
e 

gr
ou

ps



Page 7 of 12Yu et al. Environmental Health           (2023) 22:32  

of pregnancy). To reduce significant heterogeneity, sub-
group analysis was performed based on the exposure 
time. The average value of daily 8-h maximum ozone 
concentration or the daily average ozone concentration 
was used for exposure assessment. The OR and 95% CI 
of eligible studies were collected after adjustment for 
potential confounding factors including children/ges-
tational age, BMI, smoking, education level and race. 
Hathout et al. used age as an adjustment factor [17, 18]. 
Emphasis was placed on factors such as socio-economic 
status, marital status, place of birth and sex in the arti-
cle of Renzi et al. [43]. We investigated the relationship 
between ozone exposure during childhood and T1D, 
daily ozone exposure and T2D, and ozone exposure 
during pregnancy and GDM.

Meta‑ analysis on ozone exposure and the risk of diabetes
The association between ozone exposure and T1D
The effectors of three studies were pooled to analyze 
the association between ozone exposure and T1D. The 
random effect model was adopted due to significant 
heterogeneity among these effects (tau-squared = 0.11, 
 I2 = 79.7%, p = 0.007) (Fig.  2). The results from the for-
est plot showed that the increase (10  μg/m3) in ozone 

exposure in childhood was correlated with T1D, but not 
statistically significant (ES = 1.30, 95% CI: 0.86, 1.98).

The association between ozone exposure and T2D
The effect size of five studies was included in the 
analysis and REM was utilized to represent the rela-
tionship between ozone exposure and T2D with tau-
squared = 0.00,  I2 = 95.3% (p < 0.001). The forest plot 
results showed a positive association between the increase 
(10 μg/m3) in ozone exposure and T2D, which was statis-
tically significant (ES = 1.06, 95% CI: 1.02, 1.11) (Fig. 3).

The association between ozone exposure and GDM
Eleven studies were included to explore the association 
between ozone exposure and GDM. We performed 
four subgroup analyses according to exposure time. 
The overall results of subgroups showed that ozone 
exposure (per 10 μg/m3 increase) was associated with 
GDM, with the overall pooled OR = 1.01 (95% CI: 
1.00, 1.03). Eleven studies were included to evaluate 
the association of ozone exposure in the first trimes-
ter with GDM, and the result was statistically signifi-
cant (OR = 1.02, 95% CI: 1.00, 1.03) (Fig. 4). The effect 
sizes of the five articles, which explored the asso-
ciation between the second trimester ozone exposure 

Fig. 2 Forest plot for T1D and ozone exposure during childhood (per 10 μg/m3 increase)

Fig. 3 Forest plot for T2D and long-time ozone exposure (per 10 μg/m3 increase)
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and GDM showed no significant association with 
OR = 1.01 (95% CI: 0.96, 1.05). Moreover, three articles 
that explore the association between ozone exposure 
and GDM in the entire pregnancy were statistically 

insignificant with OR = 1.05 (95% CI: 0.92, 1.21). In 
addition, the effect sizes of the eight articles, which 
were preconception ozone exposure revealed marginal 

Fig. 4 Forest plot for GDM and ozone exposure (per 10 μg/m3 increase) during preconception, the first trimester, the second trimester and entire 
pregnancy
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significance with OR = 0.99 (95% CI: 0.97, 1.01). The 
relationship was shown by adopting the REM (tau-
squared = 0.00,  I2 = 96.8%, p < 0.001). Subgroup analy-
ses of other factors were similar to the primary results 
and presented in the supplementary material (Supple-
mental Fig. S7-S9).

Sensitivity analyses
Sensitivity analysis was conducted by excluding each 
study one by one to ensure the reliability of each study. 
Due to the high heterogeneity, REM was used. The 
results did not show significant change in these effect 
sizes, indicating the robustness of the results presented 
in our study (Supplemental Fig. S1-S3). We further 
removed the only study in T2D with OR as an outcome 
measure and the results remain robust (Supplemental 
Fig. S10).

Publication bias
The Begg’s funnel-plot and Egger’s test were used to 
detect publication bias and the results are displayed in 
Supplemental Fig. S4-S6. No significant publication bias 
was detected in the T1D (Egger’s test, p = 0.910; Begg’s 
test, p = 1.000) and T2D (Egger’s test, p = 0.910; Begg’s 
test, p = 0.806) studies. The result from Egger’s test fur-
ther suggested publication bias of GDM (p = 0.013), how-
ever, the Begg’s test indicated no statistical significance 
(p = 0.559). Potential causes of publication bias may 
include a tendency to report positive results, exaggerated 
publication bias due to difficult estimation of population 
heterogeneity, and a greater likelihood of publication bias 
in observational studies [37, 53]. This meta-analysis may 
overestimated the effect of ambient ozone exposure  on 
diabetes due to publication bias.

Discussion
Ozone is a common air pollutant, and its potential health 
hazard have gradually become a key  public health con-
cern. Our study analyzed existing evidence to evaluate 
the effects of ozone exposure on three types of diabetes 
including three studies on T1D risk involving 755,210 
cases, five studies on T2D risk involving 8,322,170 cases, 
eleven studies on GDM risk involving 1,385,845 cases.
We found that exposure to ozone (per 10 μg/m3 increase) 
was positively correlated with the risk of GDM, especially 
in pregnant women exposed to ozone during the first 
trimester of pregnancy. Additionally, ozone exposure was 
positively associated with risk for the development of 
T2D. However, no statistically significant association was 
found between ozone exposure and risk for the develop-
ment of T1D.

In this meta-analysis, the exposure time to ozone 
in T1D was childhood  and  children’s age ranged from 

0–18  years old. In T2D, the subjects were exposed to 
ozone for a long-term and  their age distribution was 
widespread from 18 to over 75  years. In GDM, the 
research subjects’ exposure time was during or before 
pregnancy with 20–35 years of age. Most eligible studies 
were adjusted for multiple factors such as age, maternal 
age, race, education, birth year, and household income. 
Most of the included studies were conducted in America 
and China, others were in Canada and Italy.

Our results are consistent with most studies, but there 
are still some discrepancies. Elten et  al. reported a nega-
tive correlation between ozone and T1D [11]. However, 
this study did not accurately distinguish between T1D 
and T2D suggesting that there was a possibility of bias, 
although the proportion of T2D in children is expected 
to be small. A cohort study by Li et al. did not observe an 
adverse effect of ozone on T2D [33]. Through comprehen-
sive comparisons among   studies we extracted, we found 
that the absence of adjustments for socioeconomic status 
may be a major contributor to these discrepancies. A sys-
tematic review on the risk of ozone inhalation and adverse 
metabolic effects concluded that the current evidence is 
insufficient to conclude whether ozone exposure causes 
T1D and  is insufficient or suggestive for the association 
with T2D [28]. As a result, more evidence is needed to 
explore these associations. Pan et al. surveyed the preva-
lence of GDM in the form of a questionnaire, which may 
reduce sensitivity and underestimate the role of ozone [41]. 
In a retrospective cohort study reported by Jo et al., ozone 
exposure was measured on a basis of the child’s birth 
address rather than the residential geocoding of pregnant 
women, which may lead to information bias [23]. Despite 
the utilization of the REM model, significant heterogeneity 
was still found among studies during effect sizes combin-
ing. This may be attributed to the inconsistency in study 
design, exposure assessment, and adjustment of covariates. 
First, the number of studies on the effect of ozone expo-
sure on T1D and T2D is limited. Moreover, most studies 
are retrospective studies, which may have introduced ret-
rospective bias. Second, ozone concentrations vary greatly 
between indoor and outdoor environments [45]. However, 
in most studies included in our analysis, the data on ozone 
exposure was derived from outdoor fixed-site monitoring 
stations, which may not accurately reflect individual expo-
sure levels [31, 46] especially for children with diabetes, 
the elderly or chronic patients, and pregnant women who 
may spend more time indoors. Models that relate indoor 
ozone concentrations to outdoor concentrations may be 
utilized to reduce this error [55]. Third, the various covari-
ates in the literature included were unevenly distributed in 
different regions and populations, and the degree of con-
trol for potential confounding factors may be different, 
both can lead to bias. Although the statistics included in 
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some studies were adjusted for similar factors, such as age, 
sex, ethnicity, smoking, etc., information errors still could 
not be completely ruled out.

The mechanism of ozone -induced diabetes was explored 
in both animal and molecular models. T2D is usually the 
result of β cell dysfunction in the context of chronic insulin 
resistance. Evidence has shown that ozone is a strong oxi-
dant and produces reactive oxygen species (ROS), which 
can impact insulin-stimulated glucose uptake through 
oxidative stress response [15]. Oxidative stress has been 
confirmed as the basic mechanism for the pro-inflam-
matory response induced by air pollutants [57]. And the 
pro-inflammatory response is believed to promote the 
development of T2D [7]. Ozone activates transcription 
factors through ROS, mediating the NF-κB activation in 
ozone-exposed cells, which can increase the release of 
inflammatory cytokines (TNF-α and IL-8) and the expres-
sion of adhesion genes [6]. Bailey et  al. suggested that 
exposure to ozone may induce changes in gut microbiota, 
which may contribute to the increased risk of T2D [3, 
16]. GDM shares common pathogenic mechanisms with 
T2D [30], but in a special physiological state of pregnancy. 
Studies have shown that women may suffer a higher risk 
of T2D after GDM [61]. The placenta secretes hormones 
and cytokines, which contribute to the occurrence of reac-
tions such as oxidative stress in the neuroendocrine system, 
resulting in insulin resistance [42]. In addition, Snow et al. 
showed that ozone exposure can excite the sympathetic 
nerve increasing the circulation of adrenal derived stress 
hormones [50], which leads to damage to the pancreas, 
fat, muscle tissue, and liver, ultimately contributing to the 
development of GDM through different mechanisms [42]. 
T1D is an autoimmune disease caused by insufficient insu-
lin secretion and the destruction of pancreatic β cells [10]. 
Both genetic and non-genetic factors are likely to contrib-
ute to the development of T1D. The interaction between 
genetics and ozone exposure on initiation and development 
of T1D requires further exploration.

There are some strengths in this study. First, the size of 
the population sample contained in this study was rela-
tively large. Second, our study covers countries at differ-
ent levels of socio-economic development, and are thus 
a more representative sampling, avoiding unnecessary 
bias and improving the applicability of the results to most 
countries. Third, considering that the units of ozone are 
inconsistent, we referred to WHO to obtain standard unit 
conversion factors, in order to combine the effect values 
and we performed a logarithmic conversion to reduce het-
erogeneity. Fourth, since GDM is diagnosed in the middle 
and late trimester of pregnancy, the data obtained from the 
 1st and  2nd trimester of pregnancy account for a large pro-
portion, which suggests the rationality in time sequence.

This study also has several limitations. First, in this 
study publication bias may exists. Selective reporting is 
unavoidable. It remains possible that studies measured 
more than one air pollutant including ozone in relation to 
diabetes risk, but only reported on positive associations 
potentially leaving out negative results on the association 
between ozone and diabetes risk, although some studies 
have reported negative results. Second, the number of 
articles included in this study was limited, however the 
size of the population sample contained was relatively 
large. Third, we only explored the effects of a single air 
pollutant on diabetes. However, some studies have shown 
that the single pollutant model is closer to reality than the 
composite pollutant model due to offsetting confounding 
and measurement errors [13].

Conclusion
Ozone exposure was positively associated with T2D 
and GDM, especially during the first trimester of preg-
nancy, although the current studies were of low level 
on evidence grade. Therefore, more effective preventive 
measures and prenatal care to strengthen ozone expo-
sure control are needed to improve the health of both 
adults and children. Future research is needed focused on 
the complex ozone-environment- diabetes interactions 
including the effects of mixed exposure reactions.
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