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Abstract 

Background Exposure to perfluorinated alkylate substances (PFAS) is associated with harmful effects on human 
health, including developmental immunotoxicity. This outcome was chosen as the critical effect by the European 
Food Safety Authority (EFSA), which calculated a new joint reference dose for four PFAS using a Benchmark Dose 
(BMD) analysis of a study of 1‑year old children. However, the U.S. Environmental Protection Agency (EPA) recently 
proposed much lower exposure limits.

Methods We explored the BMD methodology for summary and individual data and compared the results with and 
without grouping for two data sets available. We compared the performance of different dose‑response models 
including a hockey‑stick model and a piecewise linear model. We considered different ways of testing the assumption 
of equal weight‑based toxicity of the four PFAS and evaluated more flexible models with exposure indices allowing 
for differences in toxicity.

Results Results relying on full and decile‑based data were in good accordance. However, BMD results for the larger 
study were lower than observed by EFSA for the smaller study. EFSA derived a lower confidence limit for the BMD of 
17.5 ng/mL for the sum of serum‑PFAS concentration, while similar calculations in the larger cohort yielded values of 
about 1.5 ng/mL. As the assumption of equal weight‑based toxicity of the four PFAS seems questionable, we con‑
firmed dose‑dependencies that allowed potency differences between PFAS. We also found that models linear in the 
parameters for the BMD analysis showed superior coverage probabilities. In particular, we found the piecewise linear 
model to be useful for Benchmark analysis.

Conclusions Both data sets considered could be analyzed on a decile basis without important bias or loss of power. 
The larger study showed substantially lower BMD results, both for individual PFAS and for joint exposures. Overall, 
EFSA’s proposed tolerable exposure limit appears too high, while the EPA proposal is in better accordance with the 
results.
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Background
In the absence of feasible means to determine thresh-
olds for toxic effects in humans, calculation of the so-
called Benchmark dose (BMD) has been proposed as 
a well-defined mathematical solution to obtaining an 
appropriate point of departure [1, 2]. This approach 
has been adopted by regulatory agencies as a routine 
procedure [3–5]. As a starting point, one has to deter-
mine the magnitude of a change that should be consid-
ered disadvantageous; for example, an increase of 5% 
in a serum parameter or a single IQ point [3, 5] may 
be considered adverse. The dose measure that is associ-
ated with this change is called the BMD, and its lower 
one-sided 95% confidence limit is called the Benchmark 
dose level (BMDL). Such calculations have already been 
applied to a range of environmental chemicals, most 
recently the perfluorinated alkylate substances (PFASs) 
[6].

In the final risk assessment from 2020 [6], the Euro-
pean Food Safety Authority decided that immunotoxic-
ity in children should be regarded as the critical effect, 
i.e., an adverse outcome that occurs at the lowest expo-
sure levels, as determined by PFAS concentrations in 
blood. This decision relied on several prospective studies 
in children and in adults [7–9]. However, BMD calcula-
tions from observational data where exposures are not 
determined by design and unexposed controls are absent, 
represent a challenge. While the lack unexposed subjects 
can be handled by extrapolation [7], a Benchmark analy-
sis of observational data also need to adjust for a variety 
of covariables to allow for possible differences in back-
ground profiles between study participants [10]. Regula-
tory agencies are confronted by an additional limitation, 
because data may have to be censured, e.g., for reasons of 
legal protection of personal data. This hurdle had to be 
considered in the recent EFSA approach to BMDL calcu-
lations [6].

In order to rely on a single study, EFSA chose a recently 
published study of 101 children from Germany [11], 
where individual data could be scanned from a published 
graph. We compare with findings from a larger Faroese 
cohort study [7, 12], where we have access to the full 
data base. Both studies measured the concentrations of 
specific antibodies against routine childhood vaccines 
and documented lower antibody responses in children 
with elevated PFAS exposures, as documented by analy-
ses of concomitant blood samples and/or cord blood or 
maternal pregnancy blood. At the request from EFSA, 
we provided detailed BMD calculations as well as access 
to decile-based data. However, in the absence of the full 
data from the Faroes study, EFSA decided to rely on their 
own BMD calculations that were based on the German 
study [11].

In mid-2022, the U.S. Environmental Protection 
Agency announced a substantial decrease of the so-called 
Reference Dose (RfD) for PFOS and PFOA and therefore 
also the guideline for drinking water contamination [13]. 
For PFOA, the draft RfD is 1.5 pg/kg · day, and for PFOS 
7.9 pg/kg · day [13]. These advisories are about 100-fold 
lower than the joint EFSA tolerable weekly intake (TWI) 
of 4.4 ng/kg · week [14]. Although details have not yet 
been released, the basis for this change is the BMDL 
results obtained from our study of vaccine antibody 
responses to routine childhood vaccinations [15].

Based on the analysis of the data from the Faro Islands 
and Germany on the health effects of PFAS exposure, the 
present study explores methods for benchmark calcula-
tions in human data. Both in 2017 and 2022, EFSA have 
published guidelines on the BMD approach and both 
reports concluded that specific guidance for the analysis 
of human data is needed [4, 16]. However, such a docu-
ment still does not exist and we hope that the results of 
the present paper will help improve general guidelines 
of Regulatory Agencies. We therefore first examine the 
biostatistical approach to BMD calculations when either 
full or decile-based data are available. We compare the 
performance of different dose-response models including 
the linear model, a hockey-stick model and a piecewise 
linear model, that are generally not used in benchmark 
analysis of experimental data. In the EFSA’s BMD analy-
sis, the total concentration of the four most prevalent 
PFASs in serum was used as the exposure indicator [17]. 
This decision assumes that the weight-based potency of 
the four PFASs is the same, therefore we also consider 
methods for Benchmark analysis based on an exposure 
index which does not assume equal potency.

Methods
In accordance with the EFSA recommendations [6], we 
calculated BMD results for the sum of the four PFAS 
(PFOA, PFOS, PFHxS and PFNA) concentrations in 
serum using first the (individual level) data, then the 
decile version of the data provided to EFSA, while com-
paring results from the Faroese and the German studies. 
For the individual level Faroese data, calculations were 
based on regression models with antibody concentrations 
as dependent continuous variables while serum-PFAS 
concentrations were included as independent variables 
along with potential confounders as previously reported 
[7, 12]. To achieve normally distributed residuals, anti-
body concentrations were log-transformed. Thus, models 
were on the following form:

(1)log Y (d, z1, . . . , zp) = α0 +

p

j=1

αjzj + f (d)+ ǫ,
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where Y (d, z1, . . . , zp) is the antibody concentra-
tion for a subject, d is the sum of PFAS concentrations 
(PFOA, PFOS, PFHxS and PFNA) and z1, . . . zp are 
covariate values. The dose-response function (f) satis-
fies f (0) = 0 . We modeled the PFAS effect using a lin-
ear-dose response function [f (d) = βd], and because 
the relationship at low doses may differ from the one 
at higher doses, we also used a piecewise linear model 
[  f (d) = β1(d1d<d0 + d01d>d0)+ β2(d − d0)1d>d0 ]  , 
which allowed for a difference in slopes below and above 
the median exposure level ( d0 ). An important advantage 
of these two models is that they are linear in the param-
eters, so that the parameter estimates have well-defined 
statistical properties that can be utilized to derive lower 
confidence limits for the BMD with coverage probabili-
ties close to the nominal level. This is important for BMD 
analysis as the main result (the so-called BMDL) is given 
as a one-sided lower 95% confidence limit for the BMD.

Sometimes a close fit to the data cannot be achieved 
with linear models, and more flexible models must be 
considered. For example, the German data showed a 
weak slope in the low dose range for both diphtheria and 
tetanus antibodies. This led the authors to use a so-called 
hockey stick model [f (d) = β(d − γ )1d>γ ] , where the 
slope is assumed to be zero up to an unknown thresh-
old ( γ ) which is estimated from the data [18]. Above the 
threshold, a linear slope is assumed. The EFSA report [6] 
presents results from the hockey stick model for the sum 
PFAS concentration. In this model, the dose level corre-
sponding to a reduction of one standard deviation in the 
antibody concentrations was estimated. Although such 

calculations are useful, statistical uncertainty needs to 
be taken into account. Thus, the Benchmark methodol-
ogy is extended to the hockey stick model, while estimat-
ing the parameters using the R-package segmented [19]. 
Unfortunately, the hockey stick model is known for poor 
statistical properties [20] and therefore we also included 
the (restricted) K-power model [f (d) = βdK , K ≥ 1] , 
which is well established for Benchmark analysis [21] and 
also able to produce a fit with a near-zero slope up to an 
unknown exposure level followed by a more pronounced 
effect (see Fig. 1).

BMD estimation and calculation of the BMDL
The BMD was defined as the dose leading to a predefined 
reduction in the antibody concentration. This reduction 
is denoted as the BMR, and is often chosen to be 5% or 
10%. Given that the outcome (Y) is log-normally distrib-
uted it is natural to define the BMD as the dose associ-
ated with a pre-specified reduction in the geometric 
mean, i.e., as the solution in d to the following equation

with geometric mean[Y (d, z1,… , zk )] = exp(E[logY (d, z1,… , zk )]) . Using a 
logarithmic transformation on both sides of the equation 
we get

In general models, the solution will depend on covar-
iates ( z1, . . . , zp ) which is not practical for risk assess-
ment. However, under the additive model (1), the BMD 

(2)
geometric mean[Y (d, z1, . . . , zk)]

geometric mean[Y (0, z1, . . . , zk)]
= 1− BMR.

(3)E[logY (d, z1,… , zk )] − E[logY (0, z1,… , zk )] = log(1 − BMR).

Fig. 1 Scatter plot of association between the sum of serum‑PFAS concentrations (ng/mL) and log‑transformed tetanus antibody concentration 
from the decile data of the German study [11]. The fully drawn curve was estimated from the hockey stick model, while the dotted curve was 
estimated in the K‑power model
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will be constant across covariate values and its value is 
given as the solution (in d) to the following equation

For example, in the linear model BMD = log(1 − BMR)∕� 
if β < 0 , while in the hockey stick model 
BMD = � + log(1 − BMR)∕� , if 𝛽 < 0 . Appendix A provides BMD 
expressions for the piecewise linear model. Based on 
a given data set, the BMD is obtained by first estimat-
ing the parameters of f and then plugging them into 
the BMD expression. If parameters are estimated con-
sistently, this procedure will lead to consistent BMD 
estimations.

The lower confidence limit, the BMDL, can be cal-
culated in various ways. The BMD is typically a non-
linear function of model parameters and therefore its 
estimate does not follow a normal distribution, mean-
ing that standard Wald confidence limits will not have 
good properties. Instead the profile likelihood based 
limits are generally recommended [21, 22]. If we let 
L(θ) denote the likelihood function in a model with 
parameter vector θ , then the profile likelihood func-
tion for BMD is obtained after re-parametrization so 
that the BMD becomes one of the model parameters 
θ = (θ̃ , BMD) . The profile likelihood function for the 
BMD is Lp(BMD) = maxθ̃L(θ̃ , BMD) , and the lower 
one-sided 95% confidence limit is

where χ2
1 (90) ≈ 2.71 is the 90’th percentile in the χ2-dis-

tribution with one degree of freedom.
In correctly specified models that are linear in the 

parameters (e.g. linear and piecewise linear model), the 
distribution of the regression coefficients describing 
f(d) is known to be normal and therefore a closed form 
BMDL expression can be determined without relying 
on asymptotic results. First, a lower confidence limit 
[LC(d)] for f(d) is determined and then the BMDL is 
obtained as the solution to

For example, in the linear model LC(d) = [�̂ − t(df , 95)s.e.(�̂)]d 
and BMDL = log(1 − BMR)∕[�̂ − t(df , 95)s.e.(�̂)] if �𝛽 − t(df , 95)s.e.(�𝛽)] < 0 , 
where β̂  is the estimated value of β with standard error 
s.e.(β̂) and t(df,  95) is the 95’th percentile in the t-dis-
tribution with df degrees of freedom. In addition to 
being simple to calculate, this solution is exact meaning 
that the coverage probability will be 95% no matter the 
sample size. In Appendix A, we use the same procedure 
for deriving a BMDL expression in the piecewise linear 
model.

(4)f (d) = log(1− BMR)

(5)BMDL = min[BMD ∶ 2{log[L(�̂)] − log[Lp(BMD)]} ≤ �2
1
(90)],

(6)LC(d) = log(1− BMR)

For the hockey stick model, we calculate the BMDL 
using Bootstrap re-sampling as results from standard 
asymptotic likelihood theory are unlikely to be appropri-
ate given the limited sample size available here. By defini-
tion, decile data hold information from only ten different 
exposure levels. With the non-parametric Bootstrap, we 
would get re-sampled data sets with even fewer differ-
ent exposure levels. Thus, we instead used the paramet-
ric Bootstrap. For each outcome, we generated 1000 data 
sets by simulating from the conditional outcome distribu-
tion given covariates from the original data. In each data 
set, the BMD is estimated, and the BMDL is obtained as 
the 5th percentile in the distribution of BMD estimates.

Evaluation of models: fit and BMDL coverage
An important practical challenge in BMD analysis is that 
different models may yield different BMDLs. When eval-
uating the results, one must consider how well the given 
model fits the data, but the statistical properties of the 
corresponding BMDL should also be taken into account. 
Thus, a complex model may have a relatively good fit, but 
its Benchmark results may not be reliable if the BMDL 
has a coverage probability far from the nominal value.

The model fit was based on minus two times the log-
maximum likelihood function [ −2 log(L) ], and the 
Akaike Information Criterion (AIC) of −2 log(L)+ 2p , 
where p is the number of parameters in the model. For 
both measures, a smaller value indicates a better fit, 
but the AIC is often used by regulatory agencies as the 
fit of larger models is penalized and because this meas-
ure allows comparisons of non-nested models. Cover-
age probabilities were explored in simulations studies. 
For each model, parameters were first estimated using 
the original data and then the 1000 data sets were gener-
ated from the model using the estimated parameter val-
ues from the original data. In each of 1000 data sets, we 
calculated the BMDL, and the coverage probability was 
estimated as the proportion of data sets where the BMDL 
was higher than the BMD. Thus, in these simulations we 
examine the performance of each BMDL in  situations 
where the model is correctly specified.

Benchmark analysis based on summary data
This section briefly discusses statistical consequences of 
using summary data instead of the individual data when 
conducting Benchmark analysis of continuous outcome 
data. We first consider a linear dose-response model

where Yi is the response and di is exposure concentration 
of subject i. The residual term ǫi is assumed to follow a 
normal distribution ǫi ∼ N (0, σ 2).

(7)Yi = α + βdi + ǫi,
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We consider data with exposure groups g = 1, ...,K  (e.g. 
decile groups). In each group, we have the mean exposure 
dg and the mean outcome Y g . From Eq. 7 it is easy to derive 
the distribution of the average outcome

where ǫg ∼ N (0, σ 2/ng ) and ng is the sample size in 
group g. Therefore we conclude that parameters α and β 
can be estimated without bias using the summary data. 
However, estimates from the summary data will have a 
larger variance. This means that if the Benchmark dose 
is defined as a function of the parameters α and β then 
a consistent estimate of the BMD can be obtained from 
the summary data, but because of the increased estima-
tion uncertainty BMDLs will tend to be lower compared 
to those from the individual level data.

In non-linear models, analysis based on summary data 
will generally not be unbiased. For illustration we con-
sider the model Yi = α + βf (di)+ ǫi , where f is a known 
non-linear dose-response function. Here β could be esti-
mated with no bias using the covariate f (d)g - the mean 
transformed exposure in each group. However, this quan-
tity cannot be obtained from the summary data. One can 
transform the mean exposure, but that will not be equal to 
the mean transformed exposure, i.e., f (dg )  = f (d)g . This 
problem might be addressed by increasing the number of 
groups so that the dose response is approximately linear 
within each group to obtain f (dg ) ≈ f (d)g . However, for 
non-linear models, some degree of bias from using sum-
mary data must be expected even in large data sets. It is 
interesting that if groupings are chosen suitably then a 
piecewise linear model with specific break-points can be 
estimated consistently in summary data. This is the case 
for the German data [11] as it consists of decile data that 
include the mean exposure in each group. If the break-
point is placed at the median (or one of the other deciles) 
then the model can be consistently estimated as the dose-
response relation will be linear in all decile groups.

Evaluation of the hypothesis of equal potency 
and estimation of alternative weights
Previous calculations were based on models on the form

where the exposure index is the sum of concentrations to 
d1 =PFOA, d2 =PFOS, d3 =PFHxS and d4 =PFNA. Such 
analysis relies on an assumption of equal potency. In this 
section, we evaluate the hypothesis of equal potency in 
the Faroese data, and develop more general exposure 
indices.

(8)Y g = α + βdg + ǫg ,

(9)logY (d1, d2, d3, d4, z1,… , zp) = �0 +

p
∑

j=1

�j zj + � index + �,

The hypothesis of equal weights was evaluated using 
a more flexible model including the four PFAS concentra-
tions as covariates

where dk , k = 1, ..., 4 denotes the four PFAS concentra-
tions. In this model we tested the hypothesis of equal 
potency H0 : β1 = β2 = β3 = β4 using a likelihood ratio 
test comparing models (9) and (10). Furthermore, we 
tested the appropriateness of EFSA’s index by adding 
each of the PFAS concentrations (PFOS, PFOA, PFHxS 
or PFNA) to model (9) as an additional covariate, i.e.,

where k = 1, ..., 4 . If the PFAS effect is closely approxi-
mated by the index variable, then we would expect to see 
only a weak effect of dk in this model. Therefore, in model 
(11), we tested the hypothesis H0 : βk = 0 and recorded 
the p-value.

Next, we explored the sensitivity of Benchmark results 
to the assumption of equal potency by using the Faroese 
data to estimate alternative weights. Thus, we considered 
more general exposure indices on the form

where the sum of the weights ( w1,w2,w3,w4) equals 1. 
The summed concentration is a special case, where are 
weights are equal. We estimated weights in an approach 
similar to weighted quantile sum (WQS) regression [23]. 
Thus, we linked the exposure index to the antibody out-
come in a linear model

Here the parameter β describes the effect of the index, 
while the weights describe the contribution of each PFAS. 
The model was fitted under the restriction 

∑
i wi = 1 and 

wi ≥ 0, i = 1, . . . , 4 . In practise, this can be done using a 
standard regression model

where regression coefficients θk , k = 1, ..., 4 are restricted 
to be non-positive. In a given data, the weights can be 
estimated as ŵl = θ̂l/(

∑
k θ̂k) . To achieve more stable 

estimation, the final weights of the different PFAS con-
centrations were estimated by generating 1000 versions 
of the data using Bootstrap sampling. In each sample, the 
model was fitted, and the weights were estimated. Finally, 

(10)logY (d1, d2, d3, d4, z1,… , zp) = �0 +

p
∑

j=1

�j zj +

4
∑

k=1

�kdk + �,

(11)logY (d1, d2, d3, d4 , z1 … , zp) = �0 +

p
∑

j=1

�j zj + � index + �k dk + �,

(12)index = 4 (w1PFOA + w2PFOS + w3PFHxS + w4PFNA),

(13)logY (d1, d2, d3, d4, z1,… , zp) = �0 +

p
∑

j=1

�j zj + �

4
∑

k=1

4wkdk + �,

(14)logY (d1, d2, d3, d4, z1,… , zp) = �0 +

p
∑

j=1

�j zj +

4
∑

k=1

�kdk + �,
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the weight was estimated as the mean across the Boot-
strap data. Weights were estimated using the raw expo-
sure concentrations and based on concentrations that 
had been standardized to achieve a mean of zero and a 
variance of 1. Having estimated the weights, we then cal-
culated Benchmark results for the corresponding index 
using the linear and the piecewise linear model. The lat-
ter calculation did not take uncertainty of the weights 
into account and therefore the BMDLs may have been 
overestimated [24].

Results
To help the overview, this section is divided into two 
parts: one part that is focused on the risk assessment for 
PFAS and one that is focused on the statistical properties 
of the proposed BMD methodology. The first part mainly 
compares results from the two studies and here we focus 
at a BMR of 10% as this value was selected by EFSA.

Risk assessment for PFAS
In the Faroese cohort data, we saw a close agreement in 
Benchmark results for tetanus and diphtheria (Table  1). 
For both outcomes the power parameter K was estimated 
at 1 and the linear model provided a fit which was almost 
as good as the best fitting model (piecewise linear). In the 
linear model, BMDLs at a BMR of 10% were about 3.0 ng/
mL, while the piecewise linear model showed a BMDL10 
of about 1.3 ng/mL. As expected, these results were in 
agreement with results obtained when data were grouped 
into decile groups (Table 2).

In the German data set (Fig.  1), the association 
between antibodies against Haemophilus infuenza type 
B (HiB) and PFAS concentrations was well described 
using a linear model (Table 3). Thus, in the power model, 
K was estimated at 1 and the linear model had the best 

AIC-value. For this outcome a BMDL10 of 2.5 ng/mL was 
obtained from the linear and K-power model, while the 
piecewise linear model yield a value of 1.5 ng/mL. For 
tetanus and diphtheria, the K-power model, the piece-
wice linear model and the hockey stick model fitted 
clearly better than the linear model. The fit showed a flat 
curve at low doses and a steep curve at elevated expo-
sures (Fig.  1). This finding agrees with the hockey stick 
analysis presented in the EFSA report. As a consequence 
of the relatively weak slope at low doses, Benchmark 
results were higher than the HiB results, with BMDL10
-values ranging from about 7.8 - 17.1 ng/mL (piecewise 
linear model) to 19.8-24.2 ng/mL (K-power model). For 
these two outcomes, the full data Benchmark analysis 
has been published in the recent EFSA report. Despite 
the strong non-linear dose-response relationship, we 
see a reasonably good agreement with the decile-based 
results. Thus, the full data analysis with a BMR of 10% 
and using the K-power model yielded BMD10=31.6 ng/
mL, BMDL10=17.6 ng/mL for diphtheria, while the cor-
responding result from our grouped analysis was BMD10

=35.8 ng/mL, BMDL10=24.2 ng/mL. Full data results 
were not provided for HiB by EFSA as they found the 
exposure effect to be statistically insignificant in all mod-
els that were considered.

When comparing the results form the two studies, we 
see a nice agreement between the Faroese results and 
the results for HiB in the German study, with BMDL10
-values of 2.5-3.0 ng/mL for the linear model and 1.3-
1.5 ng/mL for the piecewise linear model. However, for 
tetanus and diphtheria the German results are clearly 
higher than the Faroese. Thus, for the K-power model 
the German BMD10-values are approximately teen 
times higher than those from the Faro Islands study.

Table 1 Benchmark results for the age‑5 serum sum of serum‑PFAS concentrations (ng/mL) in regard to tetanus and diphtheria 
antibody concentrations at age 7 years in the Faroese individual data [15]. −2 log(L) is minus two times the log‑maximum likelihood 
function and p is the number of parameters. �AIC is the difference in AIC [ −2 log(L)+ 2p ] of current model and the model with the 
minimum AIC (disregarding Hockey stick model as BMDL was not available). Coverage is the coverage probability of the BMDL as 
estimated in a simulation study

BMR=5% BMR=10%

Antibody DR-model BMD BMDL BMD BMDL −2 log(L) p �AIC coverage

Tetanus Linear 2.577 1.434 5.294 2.946 1717.94 5 0 0.944

K‑power 2.577 1.448 5.294 2.959 1717.94 6 2.00 0.880

Piecewise 1.516 0.673 3.113 1.383 1717.59 6 1.65 0.951

Hockey stick 15.067 ‑ 17.762 ‑ 1717.91 6 ‑ ‑

Diphtheria Linear 2.672 1.513 5.488 3.108 1656.10 5 0 0.954

K‑power 2.672 1.531 5.488 3.123 1656.10 6 2 0.890

Piecewise 1.222 0.632 2.511 1.298 1655.02 6 0.92 0.951

Hockey stick 2.672 ‑ 5.488 ‑ 1656.10 6 ‑ ‑
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In the Faroese data, we evaluated the appropriate-
ness of the EFSA index by testing the hypothesis of 
equal PFAS potency ( H0 : β1 = β2 = β3 = β4 ). The 
evidence against this hypothesis was not strong for 
diphtheria, but the likelihood ratio test was borderline 
significant for tetanus ( p = 0.069 ). In further investiga-
tions, we considered regression models which included 
the summed index together with one of the four PFAS 
concentrations. For tetanus, we found a significant 
( p = 0.020 ) adverse effect of PFOA even after adjust-
ing for the EFSA index. This indicates that the index 
does not sufficiently describe the effect of PFOA. More 
complex models allowing for different weights showed 
that PFOA was generally an important predictor, while 
PFHxS and PFNA had smaller weights. Despite these 

differences the Benchmark results were quite stable 
across the different indices.

Benchmark methodology
In these data, models that are linear in the parameters 
(linear and piecewise linear) performed well. They fitted 
data (almost) as closely as more complex models and the 
BMDL had coverage probabilities very close to the nomi-
nal level also in data with a limited sample size.

While the threshold is fixed in the piecewise linear 
model, in the hockey stick model it is estimated from 
the data. This has important consequences for the per-
formance of the model. As illustrated in Fig. 2, the like-
lihood function may not be concave and estimation 
techniques may get stuck in a local minimum and may 

Table 2 Benchmark results for the age‑5 serum sum of PFAS concentrations (ng/mL) in regard to tetanus and diphtheria antibody 
concentrations at age 7 years in decile data of the Faroese study [15]. −2 log(L) is minus two times the log‑maximum likelihood 
function and p is the number of parameters. �AIC is the difference in AIC [ −2 log(L)+ 2p ] of current model and the model with the 
minimum AIC. Coverage is the coverage probability of the BMDL as estimated in a simulation study

BMR=5% BMR=10%

Antibody DR-model BMD BMDL BMD BMDL −2 log(L) p �AIC Coverage

Tetanus Linear 2.110 1.290 4.334 2.649 ‑1.42 2 0 0.957

K‑power 2.110 1.373 4.334 2.815 ‑1.42 3 2.00 0.812

Piecewise 1.965 0.683 4.037 1.404 ‑1.43 3 1.99 0.949

Diphtheria Linear 2.073 1.203 4.259 2.471 1.52 2 0 0.952

K‑power 2.073 1.286 4.259 2.640 1.52 3 2.00 0.801

Piecewise 1.243 0.531 2.553 1.091 1.01 3 1.49 0.944

Table 3 Benchmark results for the sum of serum‑PFAS concentrations (ng/mL) in regard to tetanus, diphtheria and HiB antibody 
concentrations in the decile data of the German study [11]. −2 log(L) is minus two times the log‑maximum likelihood function and 
p is the number of parameters. �AIC is the difference in AIC [ −2 log(L)+ 2p ] of current model and the model with the minimum AIC 
(disregarding Hockey stick model as BMDL was not available). Coverage is the coverage probability of the BMDL as estimated in a 
simulation study

BMR=5% BMR=10%

Antibody DR-model BMD BMDL BMD BMDL −2 log(L) p �AIC Coverage

Tetanus Linear 4.213 2.326 8.654 4.778 ‑18.90 2 2.54 0.949

K‑power 31.10 13.51 36.16 19.82 ‑23.18 3 0.26 0.918

Piecewise 36.90 3.810 38.63 7.825 ‑23.44 3 0 0.954

Hockey stick 38.08 ‑ 39.34 ‑ ‑25.92 3 ‑ ‑

Diphtheria Linear 3.575 1.864 7.343 3.829 ‑13.14 2 6.51 0.941

K‑power 31.29 18.64 35.78 24.22 ‑20.17 3 1.48 0.895

Piecewise 40.96 8.309 42.14 17.07 ‑21.65 3 0 0.951

Hockey stick 37.58 ‑ 38.56 ‑ ‑22.27 3 ‑ ‑

HiB Linear 2.107 1.148 4.327 2.357 ‑4.44 2 0 0.955

K‑power 2.107 1.236 4.327 2.533 ‑4.44 3 2.00 0.818

Piecewise 2.075 0.724 4.261 1.487 ‑4.44 3 2.00 0.940

Hockey stick 13.52 ‑ 15.66 ‑ ‑4.55 3 ‑ ‑
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not correctly identify the global minimum. In the Faro-
ese data, there is very little information supporting 
the existence of a threshold. In fact for diphtheria, the 
global minimum of the profile likelihood function was 
achieved for thresholds below the lowest observed dose, 
meaning that a linear model without a threshold has 
the closest fit. However, the algorithm of the R-package 
“segmented” estimates a threshold at 12.9 ng/mL. This 
finding of course has important consequences for BMD 
estimation. The BMD estimate of the hockey stick model 
should have been 2.67 ng/mL, but instead the algorithm 

erroneously gives BMD=15.5 ng/mL. It may be possible 
to fine-tune the algorithm to achieve the correct solu-
tion in the current data, but the BMDL calculation would 
require correct calculation also in a high number of re-
sampled Bootstrap data. The problem was less critical for 
tetanus and diphtheria in the German data both showing 
evidence of a threshold around 37 ng/mL (Fig.  1). This 
was correctly estimated with the “segmented” algorithm. 
However, because of the incorrect result in the Faroese 
data set, we are not convinced that reliable confidence 
limits are available and we cannot recommend this for 

Fig. 2 Profile likelihood function for the break‑point in the hockey stick model. In the German study [11] (top graph), tetanus and diphtheria 
concentrations indicates a break‑point around 37 ng/mL, while the HiB concentration and the Faroese data [15] (lower graph) show no signs of a 
break‑point. The Faroese curves are both non‑concave and for diphtheria the best fitting model is a linear curve with no break‑point
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general use in Benchmark calculations. Still, as shown in 
Fig. 2, the profile likelihood function of the break-point 
may be a useful supplement to scatter plots when explor-
ing the possibility of a break-point in dose-response data.

As an alternative to the hockey stick model, we 
included the K-power model (see Fig. 1). This model pro-
duces smooth dose-response functions and is expected to 
have better statistical properties. However, also for this 
model, problems were observed with the coverage prob-
abilities below the expected level. In fact, for none of the 
outcomes the coverage probabilities of the profile likeli-
hood method was larger than 92%. There are two rea-
sons for the poor performance: a limited sample size and 
inference on the boundary of the parameter space. For 
tetanus and diphtheria in the German data, the power 
parameter K was estimated to be far above 1, so the sec-
ond problem is not relevant, but the decile sample size is 
low ( n = 10 ) and the BMDL depends on the asymptotic 
behavior of the likelihood function. Better results were 
obtained by instead using the (parametric) Bootstrap for 
BMDL calculation. This resulted in lower BMDLs for tet-
anus and diphtheria (6.52 ng/mL and 10.68 ng/mL) with 
coverage probabilities of 95.9% and 95.4%, respectively. In 
the Faroese data, the sample size is not small, but K was 
estimated at 1. When parameters are on the boundary 
of the parameter space, standard results from maximum 
likelihood theory may not hold [25, 26] and therefore the 
coverage probabilities are below 95%. Again we tried to 
use confidence intervals based on the Bootstrap, but this 
led to low coverage probabilities of around 80%. This may 
seem surprising, but also the Bootstrap method is known 
to be sensitive to parameters on the boundary [27].

Thus, we have seen that in data with small sample sizes, 
the Bootstrap approach out-preformed the profile likeli-
hood with regard to coverage probabilities for BMDL 
calculation in the K-power model. However, when K̂ ≈ 1 
the performance of the Bootstrap deteriorated, and it is 
unclear how to achieve appropriate confidence intervals 
using the K-power model. Since K = 1 corresponds to 
the linear model, a simple solution would be to base the 
Benchmark analysis on the linear model only.

Discussion
In our detailed Benchmark analyses of PFAS immuno-
toxicity we examined a variety of dose-response models 
in two different data sets with several outcome variables. 
It is clearly challenging to derive a reference dose level 
based on multiple BMDLs. Still, EFSA has provided 
guidelines of how to proceed in this situation [3, 4, 16]. 
At the time of this calculation, the recommended pro-
cedure was roughly speaking: for each outcome, results 
from all models that fit almost as a as well as the best fit-
ting model is retained ( �AIC ≤ 2 ), and the BMDL for the 

outcome is given as the lowest of the retained BMDLs. 
Variability across outcomes is dealt with by choosing the 
minimum BMDL. The U.S.EPA has similar guidelines [5]. 
If we use this procedure for the Faroese data for the PFAS 
sum, we have to choose the piecewise linear model and a 
BMDL of around 1.5 ng/mL for a BMR of 10% (Table 1). 
If one instead considers the German decile data, a very 
similar BMDL is obtained based on the HiB concentra-
tion. These results are all based on the piecewise linear 
model which has so far not been applied by regulatory 
agencies. If this model is disregarded, there is still a close 
agreement between the two studies with a BMDL of 
about 3-4 ng/mL (Table 1).

EFSA had access to the scanned German data and to a 
decile version of the Faroese data. Based on the evidence 
that EFSA relied upon, a BMDL of 17.5 ng/mL was cho-
sen for a BMR of 10% [6]. This result was obtained for the 
diphtheria concentration using the K-power model in the 
German data. There are two main reasons why EFSA’s 
BMDL is higher than the one we derived. First, EFSA 
decided not to use the Faroese results due to the absence 
of legal access to the individual data. Second, EFSA 
decided not to consider BMDLs from the HiB concentra-
tion in the German data. The choice not to consider HiB 
was in apparent agreement with EFSA’s standard proce-
dure, because the association was not statistically signifi-
cant in all models considered. However, a requirement 
of statistical significance in the Benchmark approach 
could be considered controversial and seems not to have 
been considered by the U.S.EPA (2012) and a require-
ment of statistical significance seems to have excluded in 
EFSA’s recently updated guideline [16]. The Benchmark 
approach is built on the fundamental idea that the risk 
assessment should be based on an upper confidence limit 
of risk. Restricting calculations to statistically significant 
effects at p < 0.05 corresponds to redefining the condi-
tions for the lower confidence band. This concern is espe-
cially relevant for observational human studies where it 
may not have been possible to reach a sample size pro-
viding an appropriate power.

This study explored a number of extensions of the cur-
rent methodology for Benchmark analysis of observa-
tional data. First of all, we considered the performance 
of dose-response models that are currently not usually 
recommended by regulatory agencies. As the main result 
of a Benchmark analysis is the lower confidence limit 
(BMDL), we emphasize the importance of using mod-
els where confidence intervals have the correct coverage 
probability. As could be expected, models that are lin-
ear in the parameters show superior performance. Such 
models are often sufficiently flexible to allow modelling 
of human observational data, where exposure effects are 
often relatively weak compared to the residual variation. 
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The piecewise linear model proved useful at least as a 
sensitivity analysis. Dose-response relations may differ 
at low and high exposures and the Benchmark calcula-
tion should not be affected the curve-shape at very high 
exposure concentrations. This is efficiently avoided in the 
piecewise linear model. We derived closed-form expres-
sions for the BMD and the BMDL in this model and 
showed that the BMDL had coverage probabilities close 
to 95%. We recommend that these models will play a 
more important role in future guidelines for Benchmark 
analysis of human data. Past guidelines have not consid-
ered the piecewise linear model, while the linear model 
has been given little attention. Thus, this model was 
completely ignored in the recently updated EFSA guide-
lines, but the WHO mentioned it as a possible model 
for benchmark analysis in human data based on similar 
experiences as ours showing that often this model pro-
vides a sufficient fit to observational human data.

The possibility of using summary (e.g., decile-based) 
data for Benchmark analysis was also considered. In 
regard to experimental data, with information from a 
limited number of exposure groups, a reliable BMD 
analysis can be achieved from the summary data [28]. 
However, when grouping observational data, some indi-
viduals’ exposure level will differ from the level assigned 
to their group. Generally, this exposure mis-classification 
will lead to a bias in the estimation of the dose-response 
function and the BMD. However, if the dose-response 
is linear, then the grouped analysis will be unbiased but 
less powerful. As a result the BMDL may be biased, but 
in this case the bias will be towards lower and more 
safe dose levels. In the Faroese data, the dose-response 
was well approximated by a linear function and a good 
agreement was observed between the individual and the 
group-level BMD analysis. This advantage may not be 

present in non-linear relations, but a possible solution 
could be to increase the number of subgroups. WHOs 
recent guidelines on Benchmark analysis describes the 
possibility of analysis of human data based on summary 
statistics, but the potential bias from the induced expo-
sure error is ignored [29].

In regard to the exposure index, EFSA’s approach was 
to use the arithmetic sum of serum concentrations of 
the four PFAS chosen represents the combined PFAS 
impact on the outcome. However, the molecular weights 
differ from a low of about 400 (PFHxS) to a high of 500 
(PFOS). Accordingly, the same mass will contain rather 
more PFHxS than of PFOS, and the molar-based potency 
of PFHxS is therefore assigned to be 80% of the one for 
PFOS. Although this is no doubt a practical approach, 
there is little evidence to support this choice. An alterna-
tive could be to assign equal molar potencies, although 
again, little documentation is available. In fact, more than 
one mode of action may be in operation, and an approach 
to obtaining a joint measure of the total potency is 
not easily identified [30]. In our modeling approaches 
(Table 4), we used an exposure index that was defined by 
the data. It allowed consideration of the relative potency 
of the individual PFAS, as indicated by effects on anti-
body concentrations. Perhaps not surprisingly, PFOS 
and PFOA obtained the greatest weight, although their 
higher serum concentrations provided better exposure 
precision that may have supported a greater weight. 
The relative potencies obtained from these calculations 
differ substantially from the equal weight-based poten-
cies assumed by EFSA and also from a uniform molar 
potency. Our results suggest that more attention need to 
be placed also on this aspect of Benchmark calculations 
for combined exposures. Alternatively, the idea of Bench-
mark analysis for a PFAS index could be abandoned and 

Table 4 Estimated weights of different PFAS and Benchmark results for the corresponding exposure index. Analysis was restricted 
to antibody concentrations in Faroese individual data [15]. Indices were generated from the four serum‑PFAS concentrations. 
Furthermore, weights were estimated using raw exposure concentrations (Raw) and after standardization (Stand.) of the 
concentrations. Benchmark results are for the age‑5 serum weighted sum of PFAS serum concentrations (ng/mL)

Weights BMR=5% BMR=10%

Antibody Method PFOA PFOS PFHXS PFNA Model BMD BMDL BMD BMDL

Tetanus Raw 0.739 0.059 0.163 0.040 linear 1.402 0.905 2.880 1.860

piecewise 1.232 0.515 2.532 1.059

Stand. 0.698 0.145 0.134 0.023 linear 1.761 1.115 3.618 2.290

piecewise 1.494 0.629 3.069 1.292

Diph. Raw 0.570 0.208 0.125 0.096 linear 2.488 1.467 5.111 3.014

piecewise 1.336 0.667 2.745 1.370

Stand. 0.456 0.408 0.085 0.052 linear 3.896 2.249 8.003 4.619

piecewise 1.862 0.967 3.824 1.986
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exposure limits calculated for each PFAS possibly after 
adjustment for other exposures. We have previously pub-
lished such results [12] and the new EPA limits seems to 
have used this strategy.

Conclusions
Overall our results indicate that EFSA’s exposure limit [6] 
may be too high. Further, a joint limit for the four PFASs 
seems poorly justified, when based on the total weight. In 
comparison, EPA’s recently proposed limits for PFOS and 
PFOA [13] individually appear in much better accord-
ance with our calculations [7, 12]. Because the details of 
EPA’s kinetic calculations are not yet publicly available, 
an exact comparison cannot be carried out at this time. 
Still, if EPA used a default 10-fold uncertainty factor, the 
difference from EFSA’s tolerable exposure limit can be 
explained by the lower BMDLs derived from the Faroese 
data.

Appendix: Benchmark analysis in piecewise linear 
model
Here we derive expressions for BMD and BMDL in the 
piecewise linear model with a known break-point d0 . The 
model is

with x1 = d for d < d0 and x1 = d0 for d > d0 ; and 
x2 = 0 for d < d0 and x2 = d − d0 for d > d0 . So for 
doses below the break-point the slope is β1 , while the 
slope is β2 above the break-point.

The Benchmark dose (BMD) is the dose d which leads 
to a decreased response level of BMR×100% . Thus, the 
BMD is found by solving the following equation in d.

If a loss of BMR ×100% happens before the d0 then 
β1d0 < log(1− BMR) , and the BMD will be

If a loss of BMR×100% happens after the d0 then 
β1d0 > log(1− BMR) , and if the slope after the break-
point is negative ( β2 < 0 ), the BMD will be

The BMD is infinity if β1d0 > log(1− BMR) and β2 > 0

.

(15)logY (d, z1,… , zp) = �0 +

p
∑

j=1

�j zj + �1x1 + �2x2 + �,

E[log Y (d, z1, . . . , zk)] − E[log Y (0, z1, . . . , zk)] = β1x1 + β2x2 = log(1− BMR).

(16)BMD =
log(1− BMR)

β1

(17)BMD = d0 +
log(1− BMR)− β1d0

β2

In applications, the BMD is estimated by first esti-
mating model (15) and then plugging regression coef-
ficients into expression (16) or (17). The BMDL, the 
lower confidence limit of the BMD, can be deter-
mined by first calculating the lower confidence limit 
for E[logY (d, z1,… , zk )] − E[logY (0, z1,… , zk )] = �1x1 + �2x2 as a function 
of d, and then determining when this function reaches 
log(1− BMR).

Below d0 , the lower limit for 
E[logY (d, z1,… , zk )] − E[logY (0, z1,… , zk )] is lowercl(β1) d , where 
lowercl(β1) is a lower 95% confidence limit of β1 . Here 
this value is given by lowercl(β1) = β̂1 − t(df , 95)se1 , 
where se1 is the standard error of the regression coeffi-
cient β̂1 and t(df, 95) is the 95’th percentile of the t-dis-
tribution with degrees of freedom given by df = n− k , 
where k is the number of parameters in the model for the 
mean. So if (β̂1 − t(df , 95)se1)d0 < log(1− BMR) then 
we get

For d > d0 the lower confidence limit for 
E[log Y (d, z1, . . . , zk)] − E[log Y (0, z1, . . . , zk)] can be 
derived as

where v1, v2 and cov are the variances of β̂1, β̂2 and 
the covariance between these estimators. The BMDL 
can be found as the value of d where the confi-
dence limit is log(1− BMR) . The solution can be 
found by solving a 2nd degree polynomial equa-
tion ( ax2 + bx + c = 0 ) with a = t(df , 95)2v2 − β2

2 , 
b = 2[t(df , 95)2 d0 cov + β2 log(1− BMR)− β1β2d0] and 
c = t(df , 95)2v1d

2
0 − [log(1− BMR)− β1d0]

2 to get the 

level of x2 . Then the BMDL is given by the sum of d0 and 
the solution for x2 , but as there will be two solutions one 
must chose the one where the sum is larger than d0 and 
lower than the estimated value of the BMD.
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