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Abstract 

Background Air pollution is a large environmental health hazard whose exposure and health effects are unequally 
distributed among individuals. This is, at least in part, due to gene‑environment interactions, but few studies exist. 
Thus, the current study aimed to explore genetic susceptibility to airway inflammation from short‑term air pollution 
exposure through mechanisms of gene‑environment interaction involving the SFTPA, GST and NOS genes.

Methods Five thousand seven hundred two adults were included. The outcome measure was fraction of exhaled 
nitric oxide (FeNO), at 50 and 270 ml/s. Exposures were ozone  (O3), particulate matter < 10 µm  (PM10), and nitrogen 
dioxide  (NO2) 3, 24, or 120‑h prior to FeNO measurement. In the SFTPA, GST and NOS genes, 24 single nucleotide 
polymorphisms (SNPs) were analyzed for interaction effects. The data were analyzed using quantile regression in both 
single‑and multipollutant models.

Results Significant interactions between SNPs and air pollution were found for six SNPs (p < 0.05): rs4253527 (SFTPA1) 
with  O3 and  NOx, rs2266637 (GSTT1) with  NO2, rs4795051 (NOS2) with  PM10,  NO2 and  NOx, rs4796017 (NOS2) with 
 PM10, rs2248814 (NOS2) with  PM10 and rs7830 (NOS3) with  NO2. The marginal effects on FeNO for three of these SNPs 
were significant (per increase of 10 µg/m3):rs4253527 (SFTPA1) with  O3 (β: 0.155, 95%CI: 0.013–0.297), rs4795051 
(NOS2) with  PM10 (β: 0.073, 95%CI: 0.00–0.147 (single pollutant), β: 0.081, 95%CI: 0.004–0.159 (multipollutant)) and  NO2 
(β: ‑0.084, 95%CI: ‑0.147; ‑0.020 (3 h), β: ‑0.188, 95%CI: ‑0.359; ‑0.018 (120 h)) and rs4796017 (NOS2) with  PM10 (β: 0.396, 
95%CI: 0.003–0.790).

Conclusions Increased inflammatory response from air pollution exposure was observed among subjects with 
polymorphisms in SFTPA1, GSTT1, and NOS genes, where  O3 interacted with SFTPA1 and PM10 and  NO2/NOx with 
the GSTT1 and NOS genes. This provides a basis for the further exploration of biological mechanisms as well as the 
identification of individuals susceptible to the effects of outdoor air pollution.

Keywords Gene‑environment interaction, Short‑term air pollution exposure, Airway inflammation, FeNO, Quantile 
regression

*Correspondence:
Hanne Krage Carlsen
Hanne.krage.carlsen@amm.gu.se
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12940-023-00996-7&domain=pdf


Page 2 of 12Bouma et al. Environmental Health           (2023) 22:50 

Introduction
Adverse respiratory health effects due to air pollution 
are extensively researched, but the specific mechanisms 
through which air pollution affects different aspects of 
respiratory health are not completely understood [1]. 
However, the interplay between genetic and environmen-
tal factors is important in inducing asthma and other res-
piratory diseases [2].

Airway inflammation occurs when infectious or non-
infectious agents infiltrate the lung tissue and trigger an 
inflammatory response. Fraction of exhaled nitric oxide 
(FeNO) is a non-invasive biomarker for airway inflam-
mation [3, 4] which is elevated following short-term 
air pollution exposure in the general healthy popula-
tion [5, 6], healthy children [7, 8], as well as adults with 
asthma [9], asthma and/or atopy [10], or in asthmatic 
children [11, 12]. The inter-individual variability in the 
inflammatory response characterized by FeNO may be 
explained by genetic variability [13].

Previously identified candidate genes, of which the 
protein products are thought to influence the molecu-
lar mechanism that underlie the effects of air pollution 
exposure, often form the basis for gene-environment 
interaction research. The amount or function of the pro-
tein product of a gene might be influenced by relevant 
polymorphisms in that gene, which can clarify mecha-
nisms of susceptibility to air pollution-related health 
effects [14]. The genes encoding surfactant protein A (SP-
A), Glutathione S-Transferase (GST) and Nitric Oxide 
Synthase (NOS) play potential roles in the association 
between short-term air pollution exposure and airway 
inflammation.

SP-A, encoded by two STFPA genes (SFTPA1 and 
SFTPA2), forms an important component of pulmo-
nary surfactant, a lipoprotein complex that consists 
of approximately 90% lipids and 10% proteins, includ-
ing surfactant proteins A, B, C and D, with SP-A as the 
most abundant [15]. SP-A and SP-D play important roles 
in the host defense of the lungs as components of the 
innate and adaptive immune systems, interacting either 
directly with the pathogens or indirectly by activating 
immune cells and alleviating infection and inflammation 
in the lungs [16]. SFTPA gene variation is associated with 
acute and chronic lung diseases, both infectious and non-
infectious, including asthma, COPD and lung cancer, as 
SFTPA genes are involved in inflammation mechanism 
[15]. Oxidation, a process induced by e.g.  O3 exposure, 
modifies SP-A’s ability to enhance phagocytosis and 
stimulate cytokine production, two important functions 
of host defense [17, 18]. A lack of, or dysfunctional, SP-A 
might lead to increased oxidative stress and thus airway 
inflammation and increased FeNO [19].

GST genes encode proteins that are involved in the 
glutathione metabolism pathway, a part of the oxida-
tive stress metabolism pathway. These enzymes detoxify 
endogenous and exogenous agents. Polymorphisms in 
these genes affect the functional oxidative capacity in the 
lungs and increase susceptibility to oxidative stress and 
thus airway inflammation [20]. The GST theta 1 (GSTT1) 
and GST pi 1 (GSTP1) genes are involved in detoxifica-
tion of air pollutants and some polymorphisms are asso-
ciated with increased susceptibility to air pollutants and 
other environmental toxicants [20]. They are involved in 
the anti-oxidant response and can increase or decrease 
the risk of adverse respiratory health outcomes [14], with 
heterogeneous results [21].

NOS gene SNPs and haplotype variations are associ-
ated with FeNO levels [22, 23]. The association between 
NOS and FeNO is modified by exposure to PM air pol-
lution [8, 24]. Together, these findings suggest that gene-
environment interaction could play a role with regards to 
air pollutants and the NOS genes.

Although genetic susceptibility seems to play an 
important role in the health effects experienced from air 
pollution exposure, evidence of its effects on population 
health is lacking as there are few studies investigating 
this in large cohorts. The aim of this study was to explore 
gene-environment interaction between SFTPA, GST and 
NOS SNPs and short-term exposure to air pollution on 
FeNO.

Methods
Study population
The study population consists of participants from the 
ADONIX (adult-onset asthma and exhaled NO) cohort 
of 6,686 men and women between the ages of 25 to 74 
from the general population living in Gothenburg, Swe-
den [5]. The participants of this cohort were genotyped 
as part of the larger international INTERGENE-ADO-
NIX cohort. Cross-sectional data consisting of clinical 
examinations and questionnaire answers were collected 
from 2001 until 2008 [25]. Current smokers (n = 984) 
were excluded from the analysis because smoking signifi-
cantly influences the production of NO [26, 27], resulting 
in a study population of 5,702 participants.

Exposure
Air pollution measurements were provided by the local 
environmental agency in Gothenburg (https:// goteb 
org. se/ wps/ portal? uri= gbglnk% 3a201 20702- 161602) as 
hourly mean concentrations from a roof-level monitoring 
station in the center of the city. To assess individual expo-
sure for each study participant, the prior 3-, 24- and 120- 
hour averages of  O3,  PM10,  NOx, and  NO2 were matched 

https://goteborg.se/wps/portal?uri=gbglnk%3a20120702-161602
https://goteborg.se/wps/portal?uri=gbglnk%3a20120702-161602
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to the time of clinical examination using the data pre-
sented in Modig et al. 2014 [5].

Outcome
The outcome measure for airway inflammation was the 
biomarker FeNO, measured at the clinical examina-
tion using an online NO monitoring system at exha-
lation flow rates of 50  ml/s and 270  ml/s [25]. Lower 
flow rates, 50  ml/s (FeNO50), represent more proxi-
mal, bronchial, parts of the airways. Higher flow rates, 
at 270 ml/s (FeNO270), represent more distal, alveolar 
parts [28]. FeNO levels are highly influenced by age, 
height and atopy [29] and predicted values have been 
established [26].

Genes
The selection of genes and SNPs for genotyping was 
based on previous literature on candidate genes,the theo-
retical background for potential interaction with air pol-
lution and association with FeNO, as well as cost–benefit 
balance for the study. Furthermore, a focused a priori 
selection of genes decreases issues pertaining to multiple 
testing.

For GSTP1, GSTT1, SFTPA1, and SFTPA2 the geno-
typing was focused on a few specific candidate SNPs with 
prior association evidence. For GSTP1 eight SNPS were 
genotyped and four had reasonable coverage and were 
used in the analysis. One GSTT1 SNP was genotyped and 
was analysed. Four SFTPA1 SNPs were genotyped and 
used, and three SFTPA2 SNPs were genotyped success-
fully and used (one assay failed). These SNPs are the same 
as are previously reported from the same cohort [30]. For 
NOS2 and NOS3 we did broader tagging SNP genotyp-
ing (including also obviously known candidate SNPs) 
across the genes to capture LD and haplotype variation.

For NOS2 good coverage of 10 SNPs with low inter-
SNP linkage disequilibrium (LD) based on haplotype 
analysis was observed in previous papers [22] and one 
more SNP was associated with FeNO was genotyped 
[23]. For NOS3 we used the SNP that was significantly 
related to FENO values in the 2012 paper [23].

Thus, in the current paper, a total of 24 SNPs in the 
SFTPA, GST and NOS genes were analysed.

For SFTPA1 four SNPs were included, three for 
SFTPA2, four for GSTP1, one for GSTT1, 11 for NOS2 
and one for NOS3.

When investigating genetic association with certain 
disease traits, it is important to take different types of 
genetic modelling into account. SNPs are made up of 
major (A) and minor (a) alleles, whereby the minor allele 
represents the one that is less frequently present in the 
population. These alleles can occur in individuals in three 
different genotypes: homozygotic for the major allele 

(AA), heterozygotic (Aa) and homozygotic for the minor 
allele (aa). Some SNPs only occur with homozygotic gen-
otypes. Commonly used models are the additive, domi-
nant and recessive models [31]. Additive models compare 
the association between predictor and outcome variables 
across all different genotypes. Dominant models compare 
AA versus Aa and aa, recessive models compare aa ver-
sus AA and Aa [32]. The choice of genetic model in this 
study was based on the Kruskal–Wallis test of difference 
in median FeNO values across the genotype variations. 
If there was a significant difference (p < 0.05) between 
all three genotypes, an additive model was applied. In all 
other cases, a dominant model for the rare allele (based 
on homozygote major versus minor allele genotype fre-
quencies) was applied.

Covariates
Potential covariates were age, height, atopy, year and 
month of measurement, and current cold symptoms, 
and ambient temperature when available for the relevant 
exposure window. The inclusion of these covariates was 
based on an earlier study on air pollution and FeNO in 
this cohort [5]. Atopy was defined as having a positive 
Phadiatop IgE test (> 0.35 kUA/L) [33] and current cold 
was defined as having a cold or sore throat at the time 
of FeNO measurement, as self-reported from the ques-
tionnaire. Outside temperature was also included as a 
covariate in the analysis of air pollutants at 24 and 120 h, 
these data were not available for measurements at the 3 h 
exposure window.

Statistical analysis
Descriptive statistics were performed for demographic 
characteristics of the study population, the distribution 
of FeNO, the allele frequencies of the SNPs and the esti-
mates of air pollution exposure. Quantile regression was 
used to first investigate the association between short-
term air pollution exposure and FeNO, because the dis-
tribution of both FeNO50 and FeNO270 were skewed. 
In quantile regression, the exposure is regressed on one 
or more percentiles of the outcome variable, and thus, 1) 
gives the possibility to investigate effects on the outcome 
variable beyond effects on the mean, and 2) does not rely 
on the assumption of normal distribution of the outcome 
variables [34]. The interpretation of the quantile regres-
sion coefficients is similar to those of linear regression, 
but instead of interpreting the parameter coefficients as 
the associations between a unit change in the exposure 
and the outcome variable mean value, the coefficient cor-
responds to a change in the outcome variable at the indi-
cated percentile [35]. Examining associations between 
exposure and FeNO outside the mean value can give a 
more detailed picture of the effects, and previous studies 
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have found stronger effects of genetics at the  50th and 
 75th percentiles of FeNO [36] and thus, we chose those 
percentiles to study associations beyond the mean, while 
maintaining adequate statistical power.

SNPs were added to the regression as interaction 
terms where both the main effects of the pollutant 
and the SNP and their interaction were included in 
the models. Interaction was tested in both single pol-
lutant models as well as multipollutant models, where 
the main pollutant was added as an interaction term 

while the other pollutants were included in the model 
as covariates. Interaction terms with a p-value below 
0.05 in the  50th and/or  75th percentile of FeNO were 
considered significant. When a significant interaction 
was found, the marginal effects, that is, the stratum-
specific effects, of the air pollutant on FeNO across the 
different genotypes were calculated to clarify the direc-
tion and strength of the association [37]. The marginal 
effect coefficients per 10 µg/m3 increase in exposure are 
presented with their 95% confidence intervals (95% CI) 
and p-value for the interaction in the tables.

All statistical analyses were performed using StataSE 
16. The study protocol for ADONIX was approved by 
the regional ethical review board.

Results
Descriptive results
Of all 5,702 participants, 3,819 had data on all rel-
evant covariates and constitute the analysis popula-
tion (Table  1). Of them, 3,780 had measured values of 
FeNO50, and 3,546 of FeNO270. The proportions of 
females and males were nearly equal, and the mean age 
was 51.4 years. Since current smokers were not included, 
1,708 were former smokers and 2,111 had never smoked. 
The 50th and 75th percentile values of FeNO50 were 
17.48 and 24.18 ppb, respectively. For FeNO270 these val-
ues were 5.55 and 7.26 ppb. FeNO50 and FeNO270 were 
significantly positively correlated (r spearman = 0.84). Air 
pollution exposure estimates were moderately high, with 
shorter exposure windows showing a larger range across 
the population (Table 2), and the pollutants were signifi-
cantly correlated (Table A1). All genotype frequencies are 
shown in appendix Table A2.

Table 1 Characteristics of the study population (n = 3,819)

N (%)

Sex
 Female; n (%) 1,947 (51.0%)

 Male; n (%) 1,872 (49.0%)

Age (years); mean ± SD 51.4 (11.3)

Height (centimeters); mean ± SD 172.9 (9.2)

Smoking
 Never; n (%) 2,111 (55.3%)

 Former; n (%) 1,708 (44.7%)

Asthma; n (%) 253 (6.7%)

Atopy; n (%) 936 (24.5%)

Current cold; n (%) 357 (9.4%)

FeNO50 (ppb) (n = 3,780)
  25th percentile 12.9

  50th percentile 17.5

  75th percentile 24.2

FeNO270 (ppb) (n = 3,546)
  25th percentile 4.2

  50th percentile 5.6

  75th percentile 7.26

Table 2 Air pollution exposure averaged over 3, 24 and 120 h before FeNO measurement, based on measurements from a central 
monitoring station 2001–2008. Distribution of exposures estimated in the study population (mean, quantiles). All units µg/m3

Air pollutant Exposure window 
(hours)

Minimum 25th % Median 75th % Maximum Mean (SD)

O3 3 0.1 22.6 44.4 61.8 126.8 43.4 (25.2)

24 1.8 37.8 52.2 66.1 128.3 51.4 (20.6)

120 6.7 41.6 53.0 63.7 107.2 52.5 (15.9)

PM10 3 0.3 16.6 23.3 32.5 171.0 27.1 (16.4)

24 4.9 16.8 21.7 28.1 76.0 23.8 (10.3)

120 9.5 18.1 21.9 26.8 64.6 23.4 (8.1)

NO2 3 5.7 19.0 28.0 42.0 250.3 34.1 (22.4)

24 5.1 17.1 23.5 32.3 104.9 26.5 (12.9)

120 10.5 18.6 22.9 29.2 71.7 24.8 (8.9)

NOx 3 5.7 22.8 35.7 62.8 981.0 62.3 (78.6)

24 6.0 19.8 28.8 48.6 330.9 40.6 (34.0)

120 12.0 23.0 30.2 43.1 317.1 36.9 (23.8)
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Air pollution and FENO
In adjusted single-pollutant models, only 3  h- and 
120  h-average  O3 were significantly associated, with 
FeNO270 at the  50th percentile. Although few coeffi-
cients are statistically significant, the results are fairly 
consistent across the quantiles (Table  3, unadjusted 
results in Table A3).

Gene‑environment interaction analysis
Analyzing the effects of gene-environment interactions 
on FeNO, we observed significant interactions (p < 0.05) 

in the  50th and/or  75th percentile of FeNO for six SNPs: 
rs4253527 SFTPA1), rs2266637 (GSTT1), rs4795051 
(NOS2), rs4796017 (NOS2), rs2248814 (NOS2) and 
rs7830 (NOS3). The results for FeNO50 at the  50th per-
centile are shown in Table 4. Table 5 contains the results 
for FeNO270 at the  50th percentile and Table 6 the results 
for FeNO270 at the  75th percentile.

FeNO50 at the  50th percentile
For FeNO50 at the  50th percentile (Table  4), rs7830 
(NOS3) showed significant interactions with 24 h-average 

Table 3 Adjusted associations between FeNO and air pollutants  PM10,  NO2, NOx, and  O3 estimated from quantile regression

All models are adjusted for age, height, year, month, current cold, and atopy. All estimates are given per 10 µg/m3 increase in air pollutant exposure
a n = 3780 for 3 h, n = 3770 for 24 and 120 h
b n = 3546 for 3 h, n = 3536 for 24 and 120 h
c Also adjusted for temperature

FeNO50 (ppb)a

β coefficient (95% CI)
FeNO270 (ppb)b

β coefficient (95% CI)

O3 50th % 75th % 50th % 75th %

 3 h 0.105 (‑0.046, 0.255) 0.053 (‑0.201, 0.307) 0.040 (0.002, 0.078) 0.023 (‑0.036, 0.082)

 24  hrsc ‑0.047 (‑0.268, 0.174) ‑0.106 (‑0.494, 0.282) 0.031 (‑0.030, 0.091) ‑0.023 (‑0.113, 0.068)

 120  hrsc 0.193 (‑0.151, 0.537) 0.122 (‑0.487, 0.731) 0.098 (0.007, 0.188) 0.081 (‑0.059, 0.221)

PM10

 3 h ‑0.068 (‑0.278, 0.142) ‑0.233 (‑0.585, 0.120) 0.016 (‑0.038, 0.071) 0.005 (‑0.078, 0.087)

 24  hrsc ‑0.222 (‑0.554, 0.111) ‑0.396 (‑0.994, 0.201) 0.024 (‑0.067, 0.114) ‑0.030 (‑0.166, 0.106)

 120  hrsc ‑0.183 (‑0.619, 0.254) ‑0.373 (‑1.183, 0.438) 0.042 (‑0.077, 0.160) 0.030 (‑0.153, 0.213)

NO2

 3 h ‑0.058 (‑0.211, 0.095) ‑0.163 (‑0.419, 0.093) ‑0.024 (‑0.064, 0.015) ‑0.028 (‑0.085, 0.029)

 24  hrsc ‑0.028 (‑0.305, 0.250) 0.033 (‑0.457, 0.523) 0.016 (‑0.060, 0.091) 0.055 (‑0.058, 0.167)

 120  hrsc ‑0.280 (‑0.684, 0.124) ‑0.384 (‑1.111, 0.345) ‑0.019 (‑0.129, 0.090) ‑0.030 (‑0.193, 0.132)

NOx

 3 h ‑0.011 (‑0.054, 0.032) ‑0.042 (‑0.115, 0.032) ‑0.001 (‑0.012, 0.011) ‑0.003 (‑0.019, 0.013)

 24  hrsc ‑0.021 (‑0.129, 0.088) 0.033 (‑0.157, 0.224) 0.009 (‑0.020, 0.038) 0.007 (‑0.037, 0.051)

 120  hrsc ‑0.112 (‑0.272, 0.048) ‑0.213 (‑0.498, 0.072) ‑0.0004 (‑0.043, 0.042) ‑0.025 (‑0.091, 0.040)

Table 4 Gene‑environment interactions between pollutant exposure and genotypes on FeNO50 estimated from single and 
multipollutant quantile regression models  (50th percentile)

All 3-h interaction analyses are adjusted for age, height, year, month, current cold, and atopy. All 24- and 120-h interaction analyses are adjusted for age, height, year, 
month, current cold, atopy, and temperature. All estimates are given per 10 µg/m3 increase in air pollutant exposure
a p-value for interaction term. For additive models the genotype with significant difference from the major allele genotype is presented in parentheses
b Dominant model
c Additive model

SNP Pollutant 
(exposure 
window)

Single pollutant Multi pollutant

p‑valuea Marginal effect coefficient (95%CI) p‑valuea Marginal effect coefficient (95%CI)

rs7830b 
(NOS3) 
(n = 3599)

NO2 (24 h) 0.047 GG
0.259 (‑0.150, 
0.668)

TG/TT
‑0.264 (‑0.628, 0.100)

0.033 GG
0.409 (‑0.277, 
1.094)

TG/TT
‑0.149 (‑0.825, 0.526)

rs4795051c 
(NOS2) 
(n = 3612)

NOx (3 h) 0.155 (GC) CC
‑0.060 (‑0.137, 
0.016)

GC 0.012 
(‑0.053, 0.076)

GG
‑0.033 (‑0.145, 
0.080)

0.048 (GC) CC
‑0.027 (‑0.153, 
0.098)

GC
0.073 (‑0.043, 
0.189)

GG
0.034 (‑0.111, 
0.179)
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 NO2 in both the single- and multipollutant models. 
Rs4795051 (NOS2) had significant interaction with 
3 h-average  NOx for FeNO50 at the  50th percentile, in the 

multipollutant model, the single pollutant model showed 
similar patterns, but did not reach significance (Table  4, 
all exposure windows are shown in Table A4).

Table 5 Gene‑environment interactions between pollutant exposure and genotypes on FeNO270 estimated from single and 
multipollutant quantile regression models  (50th percentile)

All 3-h interaction analyses are adjusted for age, height, year, month, current cold, and atopy. All 24- and 120-h interaction analyses are adjusted for age, height, year, 
month, current cold, atopy, and temperature. All estimates are given per 10 µg/m3 increase in air pollutant exposure
a p-value for interaction term. For additive models the genotype with significant difference from the major allele genotype is presented in parentheses
b Additive model

SNP Pollutant 
(exposure 
window)

Single pollutant Multi pollutant

p‑valuea Marginal effect coefficient (95%CI) p‑valuea Marginal effect coefficient (95%CI)

rs2266637 
(GSTT1) 
(n = 2880)

NO2 (120 h) 0.038 CC
‑0.113 (‑0.255, 
0.030)

GG
0.170 (‑0.063, 0.403)

0.019 CC
‑0.035 (‑0.314, 
0.244)

GG
0.298 (‑0.080, 0.677)

rs4795051b 
(NOS2) 
(n = 3398)

PM10 (3 h) 0.003 (GC) CC
‑0.092 (‑0.179, 
‑0.006)

GC
0.073 (0.000, 
0.147)

GG
0.007 (‑0.107, 
0.120)

0.004 (GC) CC
‑0.079 (‑0.169, 
0.011)

GC
0.081 (0.004, 
0.159)

GG
0.028 (‑0.088, 
0.143)

PM10 (24 h) 0.050 (GC) CC
‑0.111 (‑0.262, 
0.040)

GC
0.075 (‑0.044, 
0.195)

GG
0.018 (‑0.190, 
0.195)

0.066 (GC) CC
‑0.129 (‑0.287, 
0.029)

GC
0.045 (‑0.085, 
0.175)

GG
‑0.004 (‑0.218, 
0.210)

NO2 (24 h) 0.039 (GG) CC
‑0.051 (‑0.173, 
0.072)

GC
‑0.009 (‑0.106, 
0.088)

GG
0.163 (‑0.007, 
0.333)

0.036 (GG) CC
‑0.059 (‑0.241, 
0.124)

GC
‑0.011 (‑0.184, 
0.162)

GG
0.157 (‑0.075, 
0.389)

NO2 (120 h) 0.004 (GG) CC
‑0.188 (‑0.359, 
‑0.018)

GC
‑0.007 (‑0.150, 
0.136)

GG
0.234 (‑0.008, 
0.475)

0.007 (GG) CC
‑0.213 (‑0.507, 
0.082)

GC
‑0.049 (‑0.308, 
0.209)

GG
0.189 (‑0.146, 
0.524)

NOx (120 h) 0.017 (GG) CC
‑0.057 (‑0.115, 
0.002)

GC
0.005 (‑0.055, 
0.064)

GG
0.065 (‑0.022, 
0.152)

0.035 (GG) CC
‑0.014 (‑0.106, 
0.078)

GC
0.051 (‑0.054, 
0.155)

GG
0.094 (‑0.022, 
0.209)

rs2248814b 
(NOS2)
(n = 3398)

PM10 (3 h) 0.033 (GA)
0.046 (AA)

GG
‑0.070 (‑0.157, 
0.017)

GA
0.055 (‑0.023, 
0.132)

AA
0.078 (‑0.041, 
0.197)

0.042 (GA)
0.079 (AA)

GG
‑0.063 (‑0.153, 
0.027)

GA
0.052 (‑0.028, 
0.133)

AA
0.064 (‑0.056, 
0.184)

Table 6 Gene‑environment interactions between pollutant exposure and genotypes on FeNO270 estimated from single and 
multipollutant quantile regression models  (75th percentile)

All 3-h interaction analyses are adjusted for age, height, year, month, current cold, and atopy. All 24- and 120-h interaction analyses are adjusted for age, height, year, 
month, current cold, atopy, and temperature. All estimates are given per 10 µg/m3 increase in air pollutant exposure
a p-value for interaction term. For additive models the genotype with significant difference from the major allele genotype is presented in parentheses
b Dominant model
c Additive model

SNP Pollutant 
(exposure 
window)

Single pollutant Multi pollutant

p‑valuea Marginal effect coefficient (95%CI) p‑valuea Marginal effect coefficient (95%CI)

rs4253527b 
(SFTPA1) 
(n = 3052)

O3 (3 h) 0.029 CC
‑0.015 (‑0.088, 
0.058)

TC/TT
0.155 (0.013, 0.297)

0.019 CC
‑0.028 (‑0.125, 0.069)

TC/TT
0.142 (‑0.014, 
0.299)

NOx (3 h) 0.050 CC
0.009
(‑0.012, 0.029)

TC/TT
‑0.0371
(‑0.078, 0.004)

0.089 CC
0.027 (‑0.018, 0.072)

TC/TT
‑0.014 (‑0.075, 
0.046)

rs4796017c 
(NOS2) 
(n = 3378)

PM10 (120 h) 0.047 (GG) AA
‑0.091 (‑0.394, 
0.212)

GA
‑0.125 (‑0.371, 
0.121)

GG
0.396 (0.003, 
0.790)

0.077 (GG) AA
‑0.032 (‑0.362, 
0.297)

GA
‑0.040 (‑0.318, 
0.238)

GG
0.404 (‑0.011, 
0.819)
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FeNO270 at the  50th percentile
For FeNO270 at the  50th percentile, the GSTT1 SNP 
rs2266637 had a significant interaction with 120 h-aver-
age  NO2 in both single- and multipollutant models 
(Table 5, all exposure windows are shown in Table A5).

For FeNO270 at the  50th percentile, the NOS2 SNP 
rs4795051 had significant interactions with 24  h- and 
120  h-average  NO2, 120  h-average  NOx and 3  h- and 
24  h-average  PM10, however, the results only reached 
statistical significance in the single pollutant model for 
24  h-average  PM10 although the estimated coefficients 
were very similar. Another NOS2 SNP, rs2248814, inter-
acted with 3  h-average  PM10 on FeNO270 in both sin-
gle- and multipollutant models (Table  5, all exposure 
windows are shown in Table A6).

FeNO270 at the  75th percentile
One SNP on the SFTPA1 gene, rs4253527, interacted 
significantly with exposure to 3 h-average  O3 in both the 
single and multipollutant models for FeNO270 at the 
 75th percentile (Table 6, all exposure windows are shown 
in Table A7). This SNP also had a significant interaction 
with 3 h-average  NOx in the single pollutant model, but 
with opposite directions of the marginal effects (Table 6, 
all exposure windows are shown in Table A7). Lastly, ana-
lyzing FeNO270 at the  75th percentile (Table 6), the NOS2 
SNP rs4796017 interacted significantly with 120 h-aver-
age  PM10 in the single pollutant model (Table 6, all expo-
sure windows are shown in Table A6).

The interactions of SNPs on the associations between 
specific air pollutants and FeNO, are illustrated for SNPs 
with significant interactions in the appendix (Figs. A1, 
A2, A3, A4, A5, A6, A7 and A8) for predicted values of 
FeNO for the  25th to the  75th percentile values of the rel-
evant air pollutants.

Discussion
In our study, we observed suggested signs of gene-envi-
ronment interaction of short-term air pollution exposure 
with SNPs from each of the investigated candidate gene 
categories of SFTPA, GST and NOS on FeNO. Of the 24 
SNPs analyzed in this study, six had significant interac-
tions with at least one air pollutant in at least one of the 
included exposure windows on FeNO at different percen-
tiles. We noted that  O3 mainly interacted with SFTPA1, 
whereas  PM2.5 and  NO2/NOx had significant interactions 
with GSTT1, NOS2 and NOS3.

The direction of the marginal effect associations dif-
fered between the different genes. For NOS2 and GSTT1 
SNPs with significant air pollution interactions, the mar-
ginal effects indicated a positive association between 
air pollution exposure and FeNO in minor allele or het-
erozygote genotypes compared with the major allele 

genotypes. This was the opposite for NOS3, where the 
marginal effects indicated associations between air pol-
lution exposure and increased FeNO for the major 
allele carriers. In SFTPA1, opposing directions of asso-
ciation were observed.  O3 exposure was associated 
with increased FeNO in minor allele carriers, whereas 
 NOx exposure was associated with increased FeNO in 
homozygote major allele carriers (Table 6). The opposing 
direction of marginal effects associated with  NOx and  O3 
are likely related to their negative correlations (Appendix 
Table A1), which also complicates any interpretation of 
this result.

NOS genes
The NOS3 polymorphism rs7830 interacted significantly 
with 24  h-average exposure to  NO2 on FeNO50 at the 
 50th percentile with the minor allele genotype display-
ing a negative slope (Table  4). This is in line with what 
was previously reported for nicotine exposure and 
FeNO, where higher nicotine exposure was associated 
with lower FeNO levels in individuals with rs7830 TG/
TT genotypes [38]. A study of the effects of NOS3 poly-
morphisms on the association between short-term  PM10 
exposure and oxidative stress markers found that some 
haplotypes which included rs7830 were at risk for higher 
levels of oxidative stress [39]. As oxidative stress can be 
a cause of airway inflammation, this suggests a possible 
mechanism for the interaction between air pollutants 
and NOS3 polymorphisms on FeNO by. Although these 
studies did not specifically investigate exposure to  NO2, 
they indicate that the effects of pollutants and oxidants, 
including  NO2, can be modified by NOS3 and specifically 
the rs7830 SNP (Table 4).

The NOS2 SNP rs4795051 exhibited significant inter-
actions for the heterozygote genotype (GC) with  PM10, 
and for the minor allele genotype (GG) with  NO2 and 
NOx (Table 5), both with positive marginal associations 
with FeNO270 at the  50th percentile. Similar effect direc-
tions were seen for the NOS2 SNPs rs2248814 (Table 5) 
and rs4796017 (Table  6) with  PM10 on FeNO270 at the 
 75th percentile, where the heterozygote genotypes and/or 
the minor allele genotypes were positive associated with 
FeNO compared to the major allele genotypes. NOS2 
encodes the enzyme iNOS, which is the main determi-
nant of FeNO and is induced by different stimuli. An 
increase in iNOS response, which might be present in the 
heterozygote and/or minor allele genotypes, could mean 
an increase in effective inflammatory response, thereby 
protecting the lungs from pathogens and other stress-
ors. On the contrary, it might mean these genotypes have 
an adverse effect on pulmonary health as they entail an 
increase in inflammation, and inflammation can itself be 
damaging to the lungs.



Page 8 of 12Bouma et al. Environmental Health           (2023) 22:50 

Short-term exposure to  NO2,  PM2.5, a constituent of 
 PM10, and traffic-related air pollution have all been asso-
ciated with lower NOS2 methylation, leading to higher 
expression of iNOS and thus higher levels of FeNO 
[35]. Furthermore, individuals with different NOS2 hap-
lotypes were found to experience different degrees of 
methylation, pointing towards a combination of genetic 
and epigenetic effects [8]. In children, this was further 
investigated using quantile regression and the associa-
tions between  PM2.5 exposure, genetic and epigenetic 
effects and FeNO were more prominent among those 
with higher FeNO levels [35]. Epigenetic variations, such 
as differences in methylation, among specific SNPs have 
not been reported, but they might play a role in the inter-
actions that we found and could be a target for further 
research.

GST genes
The minor allele genotype of the GSTT1 SNP rs2266637 
was also positively associated with FeNO270 at the  50th 
percentile compared to its major allele genotype with 
exposure to 120  h-average  NO2 exposure (Table  5). 
Given the anti-oxidant properties of GST [20], this also 
suggests a dysfunctional enzyme in individuals with the 
minor allele genotype, leading to higher levels of airway 
inflammation as oxidation due to  NO2 exposure is less 
inhibited. Previous research into GSTT1 and respiratory 
health effects has mainly focused on differences between 
null, i.e. homozygous deletion, and non-null genotypes. 
Results from some of these studies have supported the 
presence of interaction but others found none [20, 40]. 
Specifically with  NO2 exposure or traffic-related air pol-
lution, some found interaction with GSTT1 [41–43] 
whereas others found nonE [44, 45]. Variations in study 
design, the outcome investigated or differences in allele 
frequencies based on ethnicity could be responsible for 
heterogeneity in the results [21].

SFTPA gene
Our results showed that for SFTPA, the SNP rs4253527 
on the SFTPA1 gene had significant interaction with 
3 h-average exposure to  O3 where minor allele genotypes 
were positively associated with FeNO270 at the  75th per-
centile (Table 6). SFTPA plays an important role in host 
defense of the lungs and aids in the alleviation of inflam-
mation [16]. This SNP, rs4253527, is characteristic for 
the SFTPA1 6A4 haplotype as it changes the amino acid 
encoded by this haplotype [46]. This is thought to result 
in a change in surfactant protein structure and function, 
affecting the carrier’s disease susceptibility [47]. Oxida-
tion of SP-A, an effect of  O3 exposure, has been found 
to decrease the ability of SP-A to enhance phagocytic 
activity and cytokine production. The effects of oxidation 

differ between SFTPA1 and SFTPA2 haplotypes, with a 
seemingly stronger effect on SFTPA2 [17]. Whether these 
effects and differences therein also occur between dif-
ferent SNPs in the respective genes have not been eluci-
dated, but this may play a role in the differential FeNO 
levels among the SNP genotypes found in this study.

FeNO and results related to exhalation flow
For FeNO50, only two SNPs showed significant inter-
actions whereas more interactions were found for 
FeNO270, which represents NO produced in the more 
distal parts of the airways [28]. Previous studies have 
reported more influences of short-term air pollution 
exposure on FeNO at higher flow rates and postulate 
that air pollution-induced inflammation processes likely 
occur in the smaller, distal airways [5]. Therefore, our 
observation of more significant genetic interactions for 
FeNO270 – a distal airway biomarker—than for FeNO50, 
are plausible.

Exposure windows
Currently, there is no consensus on which time lag, inter-
val, or average of pollution exposure are most appropriate 
for observing effects of short-term air pollution expo-
sure on FeNO, so the different interactions for different 
exposure windows for different pollutants observed in 
our study are difficult to interpret. The previous study 
within this cohort reported that the longer 120-h average 
seemed more applicable for  O3 whereas the 24-h aver-
age seemed more applicable for  NOx [5]. In our study, 
which is based on a slightly different study population 
and methods, only  O3 at 120 h and FeNO270, and  NO2 
at 120 h and FeNO50 had positive associations in either 
the crude (Table A2) or adjusted models (Table  4). The 
crude models showed additional associations with  NO2 
and  NOx at 24 and 120 h, and the adjusted models was 
additionally associated with  O3 at 3 h.

Interestingly, introducing interaction terms increased 
the number of pollutants and exposure windows with sig-
nificant associations with FeNO, such as  PM10, and  NOx 
at 3 h, indicating that genetic predisposition and suscep-
tibility are important when studying air pollution health 
effects. Also, the interactions occurred at different expo-
sure windows for the different pollutants, although the 
results for different exposure windows tended to be simi-
lar, and in some cases had indications of a dose–response 
pattern (e.g. Table A5 rs2266637 gg allele). Whereas most 
pollutants had interactions at more than one exposure 
window,  O3 only interacted at the 3-h exposure window, 
with SFTPA SNP rs4253527 indicating that the effect of 
 O3 were short-acting and transient.  PM10 had interac-
tions at 3, 24, and 120 h average exposure with either of 
the two NOS2 SNPs for FeNO270, which might be due 
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to the compositional complexity of  PM10 having multiple 
pathways for generating a FeNO response. All significant 
interactions for  NO2 and  NOx on FeNO270 were at the 
24- and 120-h exposure windows, indicating a longer 
time window of the FeNO response, and SFTPA interac-
tions were only observed at 3 or 24 h average exposure to 
 O3 and  NO2, indicating a faster biological response.

However, since only a limited selection of exposure 
windows and genes were tested in this study, more 
research is needed to further clarify the time windows in 
which gene-environment interaction can occur.

Quantiles
Our results were not homogenous across quantiles of 
FeNO, something that has previously been reported 
[35]. Zhang and colleagues found that joint effects of air 
pollution exposure and genetic and epigenetic variants 
occurred mainly in the upper tail of the FeNO distribu-
tion in children, suggesting that children with high FeNO 
have increased (epi)genetic susceptibility to air pollution, 
which supports what was observed in the current study 
in adults.

Single and multipollutant models
Results from single-and multipollutant models were in 
most cases largely similar (exceptions are 3-h  NOx and 
24-h  PM10), indicating that the effects of individual pol-
lutants are relatively independent of each other. For 
FeNO270, the rs4253527 interactions with  NOx and  O3 
with opposite directions in single-pollutant models, 
which remained only for  O3 in the multipollutant model 
(Table  6), may be explained by the negative correlation 
between  NOx and  O3 in our data and which is commonly 
seen (Table A1).

Strengths and limitations
In this study, air pollution exposure was assigned based 
on measurements from centrally located air pollution 
monitors, which provides a rough estimate of the true 
exposure of individuals as the distances to the residences 
of the participants varied, although all participants lived 
in the city of Gothenburg [48]. On the other hand, all 
clinical data were collected at the same site, so for the 
3-h average exposure in particular, all participants would 
have quite comparable accuracy of exposure. The data 
used for this study is relatively old, as it was collected 
between 2001 and 2008, which could affect the generaliz-
ability of the results to present day conditions of the same 
area, as air pollution exposure levels and composition 
have changed drastically over the past decades. However, 
the mechanism of genetic susceptibility to air pollution 
would not be expected to change over time and the pol-
lutants that were investigated are still present in current 

urban air pollution. In our data, both  NO2 and  NOx varia-
bles have a skewed distribution, but, short-term exposure 
to air pollution is extremely variable among individuals, 
because of its dependence on weather, spatiotemporal 
variability, time spent outside, and traffic. Therefore, the 
mean exposure was deemed to be more representative of 
the true exposure of individuals.

A limitation of all gene-environment interaction 
research that investigates certain SNPs or haplotypes is 
that only a selection of genetic information is included, 
which implies that even when no interactions are found, 
they might be present with other SNPs or haplotypes that 
were not included in the analysis. Another limitation is 
the lack of replication analysis, due to difficulty of finding 
a suitable replication cohort.

The number of hypotheses tested in gene-environ-
ment studies can lead to false positives and to ensure 
the validity of positive results, adjustment for multiple 
comparisons is sometimes advised, especially when 
testing is hypothesis-free. As this study aimed to ana-
lyse associations based on a-priori hypotheses based 
on plausible biological mechanisms and employed a 
selected number of SNPs, no adjustments for multiple 
comparisons [49, 50].

Conclusion
Airway inflammation induced by short-term effects of air 
pollution exposure can accumulate over time and con-
tribute to long-term symptoms, disease and even mor-
tality. Genetic susceptibility to the effects of air pollution 
are associated with greater inflammatory response, put-
ting individuals with certain genetic markers at greater 
risk. In this exploratory study, interactions between  O3 
and SFTPA1, and  PM10 and  NO2/NOx with GSTT1 and 
NOS genes were found to play a role in the association 
between short-term air pollution and FeNO, suggesting 
an increased inflammatory response among subjects with 
polymorphisms in these genes. These findings contribute 
to the understanding of the role that genetic susceptibil-
ity can play in the health effects of outdoor air pollution 
and provide a basis for the further exploration of biologi-
cal mechanisms as well as the identification of suscepti-
ble populations and individuals.
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Additional file 1: Table A1. Pearson correlation coefficients for all 
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frequencies. Table A3. Unadjusted associations between FeNO and air 
pollutants  PM10,  NO2, NOx, and  O3 estimated from quantile regression 
(crude models). Table A4. Gene‑environment interactions between 
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pollutant exposure and genotypes on FeNO50 estimated from single 
and multipollutant quantile regression models  (50th percentile). 
Table A5. Gene‑environment interactions between pollutant exposure 
and genotypes on FeNO270 estimated from single and multipollutant 
quantile regression models (GST genes). Table A6. Gene‑environment 
interactions between pollutant exposure and genotypes on FeNO270 
estimated from single and multipollutant quantile regression models 
(NOS genes). Table A7. Gene‑environment interactions between pol‑
lutant exposure and genotypes on FeNO270 estimated from single and 
multipollutant quantile regression models (SFTPA genes). Figure A1. 
SFTPA1 SNPs: Plots of predictive margins with significant interactions. 
(A) rs4253527 with  O3 at 3 hours, single pollutant model. (B) rs4253527 
with  O3 at 3 hours, multi pollutant model. (C) rs4253527 with NOx at 3 
hours, single pollutant model. Figure A2. GSTT1 SNPs: Plots of predic‑
tive margins with significant interactions. (A) rs2266637 with  NO2 at 120 
hours, single pollutan tmodel. (B) rs2266637 with  NO2 at 120 hours, multi 
pollutant model. Figure A3. NOS2 SNPs: Plots of predictive margins 
with significant interactions. (A) rs4795051 with  PM10 at 3 hours, single 
pollutant model. (B) rs4795051 with  PM10 at 3 hours, multi pollutant 
model. (C) rs4795051 with  PM10 at 24 hours, single pollutant model. 
Figure A4. NOS2 SNPs: Plots of predictive margins with significant 
interactions. (A) rs4795051 with  NO2 at 24 hours, single pollutant model. 
(B) rs4795051 with  NO2 at 24 hours, multi pollutant model. (C) rs4795051 
with  NO2 at 120 hours, single pollutant model. (D) rs4795051 with  NO2 
at 120 hours, multi pollutant model. Figure A5. NOS2 SNPs: Plots of 
predictive margins with significant interactions. (A) rs4795051 with  NOx 
at 3 hours, multi pollutant model. (C) rs4795051 with  NOx at 120 hours, 
single pollutant model. (D) rs4795051 with  NOx at 120 hours, multi 
pollutant model. Figure A6. NOS2 SNPs: Plots of predictive margins 
with significant interactions. rs4796017 with  PM10 at 120 hours, single 
pollutant model. Figure A7. NOS2 SNPs: Plots of predictive margins with 
significant interactions. (A) rs2248814 with  PM10 at 3 hours, single pol‑
lutant model. (B) rs2248814 with  PM10 at 3 hours, multi pollutant model. 
Figure A8. NOS3 SNPs: Plots of predictive margins with significant 
interactions. (A) rs7830 with  NO2 at 24 hours, single pollutant model. (B) 
rs7830 with  NO2 at 24 hours, multi pollutant model.
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