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Abstract 

Background Early‑life environmental exposures are suspected to be involved in the development of chronic 
diseases later in life. Most studies conducted so far considered single or few exposures and single‑health parameter. 
Our study aimed to identify a childhood general health score and assess its association with a wide range of pre‑ 
and post‑natal environmental exposures.

Methods The analysis is based on 870 children (6–12 years) from six European birth cohorts participating 
in the Human Early‑Life Exposome project. A total of 53 prenatal and 105 childhood environmental factors were con‑
sidered, including lifestyle, social, urban and chemical exposures. We built a general health score by averaging three 
sub‑scores (cardiometabolic, respiratory/allergy and mental) built from 15 health parameters. By construct, a child 
with a low score has a low general health status. Penalized multivariable regression through Least Absolute Shrinkage 
and Selection Operator (LASSO) was fitted in order to identify exposures associated with the general health score.

Findings The results of LASSO show that a lower general health score was associated with maternal passive 
and active smoking during pregnancy and postnatal exposure to methylparaben, copper, indoor air pollutants, high 
intake of caffeinated drinks and few contacts with friends and family. Higher child’s general health score was associ‑
ated with prenatal exposure to a bluespace near residency and postnatal exposures to pets, cobalt, high intakes 
of vegetables and more physical activity. Against our hypotheses, postnatal exposure to organochlorine compounds 
and perfluorooctanoate were associated with a higher child’s general health score.

Conclusion By using a general health score summarizing the child cardiometabolic, respiratory/allergy and mental 
health, this study reinforced previously suspected environmental factors associated with various child health param‑
eters (e.g. tobacco, air pollutants) and identified new factors (e.g. pets, bluespace) warranting further investigations.
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Introduction
It is recognized that the early-life period is particu-
larly vulnerable to the influences of environmen-
tal factors, in particular the pregnancy period and 
the first years of life [1]. The concept of “exposome” 
is defined by all the exposures that a human being 
undergoes since conception [2], ranging from air pol-
lution to chemical pollutants, the social environment 
etc. In recent years, an increased number of studies 
based on the exposome approach identified the main 
environmental threats for specific health parameters 
[3–5] or for a specific health domain [6–8]. However, 
this traditional approach of investigating exposures 
associated with single health parameter is limited. 
One main limit is that it fails to recognize the whole 
system nature of multiple interactive exposures that 
shape multiple health outcomes.

In addition to the outcome-wide approach previ-
ously proposed [9], an approach based on a general 
health indicator is relevant. While the outcome-wide 
approach assesses the impact of exposures on several 
health outcomes considered independently, a general 
health score aims to cover multiple health domains 
(e.g. cardiometabolic, respiratory/allergy and mental 
health) in a single indicator. This approach is based 
on the assumption that mental, cardiometabolic and 
respiratory outcomes partly share some biological 
pathways that are affected by environmental factors. 
This assumption is supported by the identification 
of pleiotropic genes and evidences for shared influ-
ence of major regulating systems such as inflamma-
tion and oxidative stress between these various health 
outcomes [10–13]. Pointing out early-life exposures 
associated with multiple health domains in children 
is needed to prioritise public health messages but also 
to prevent multimorbidity, i.e. the coexistence of sev-
eral conditions in the same individual. This approach 
may lead to the identification of new environmental 
health risk factors as some exposure affects in a low-
grade manner multiple health outcomes. As far as we 
know, few general health indicators exist out of the 
spectrum of questionnaire on quality of life related 
to self-perceived general health (e.g. the Child Health 
Questionnaire [14]) and no study has sought for 

environmental factors affecting a general health indi-
cator in children.

This project aimed to compute a general health score 
and assess its association with multiple prenatal and 
postnatal environmental factors, in the large European 
Human Early-Life Exposome (HELIX) cohort [15, 16]. 
Our main hypothesis is that this approach can reinforce 
the significance of some suspected environmental factors 
and identify new risk factors simultaneously affecting 
various health parameters.

Materials and methods
Study population
This study is based from the HELIX project, which 
includes six existing population-based birth cohorts: 
Born in Bradford (BiB, UK) [17], Étude des Détermi-
nants pré et postnatals du développement et de la santé 
de l’Enfant (EDEN, France) [18], Infancia y Medio Ambi-
ente (INMA, Spain) [19], Kaunas Cohort (KANC, Lithu-
ania) [20], The Norwegian Mother, Father and Child 
Cohort Study (MoBa, Norway) [21], and Mother–Child 
Cohort (RHEA, Greece) [22]. Around 32,000 moth-
ers were recruited during pregnancy (2003–2009), from 
which 1,301 mother–child pairs were followed-up when 
the child was 6–11  years old (2014–2015). Standard-
ized protocols were used to collect biological samples 
and questionnaire  data, conduct health examinations 
and characterise a large range of exposures. The present 
study included 870 mother–child pairs for which data 
was available to build the general health score (see more 
details in the following part).

Health data: cardiometabolic, respiratory/allergy 
and mental health
Fifteen health parameters were considered for this study, 
covering the cardiometabolic, respiratory and mental 
health, as listed in Table 1 (see more details in eMethods 
1). The cardiometabolic parameters considered were the 
child blood pressure (diastolic and systolic), the waist 
circumference, lipids (high-density lipoprotein (HDL) 
cholesterol and triglycerides) and insulin levels. The first 
two parameters were measured by medical staff, and the 
last two were obtained through blood and serum, respec-
tively. The respiratory and allergy-related health was 

Table 1 List of health parameters studied

Abbreviations HDL High Density Lipoprotein, FEV1 Forced Expiratory Volume in 1 s, ADHD Attention Deficit Hyperactivity Disorders, CBCL Child Behaviour Checklist

Cardiometabolic health Respiratory health and allergies Mental health and cognition

‑ Lipids (HDL cholesterol, triglycerides)
‑ Blood pressure (diastolic, systolic)
‑ Circumference of the waist
‑ Insulin levels

- Lung function  (FEV1% pred)
- Asthma
- Food allergies
- Eczema
- Rhinitis

- ADHD index (Conners)
- Internalizing and externalizing indexes (CBCL)
- Test of fluid intelligence (Raven)
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assessed by spirometry (Forced Expiratory Volume in one 
second  (FEV1)) and by a questionnaire adapted from the 
International Study on Asthma and Allergy in Childhood 
(ISAAC) [23] including doctor-diagnosed asthma, food 
allergies, eczema, as well as rhinitis symptoms [3, 7]. The 
cognitive and behavioural parameters considered were 
the measured fluid intelligence (Raven Colour Progres-
sive Matrix™), an index regarding symptoms of Atten-
tion Disabilities and Hyperactivity Disorders (ADHD) 
(Conner’s rating scales of 27 items) and internalizing and 
externalizing scores (99-item Child Behaviour Checklist 
(CBCL) [6, 8]. All these health parameters were meas-
ured at the Helix follow-up when the child was between 
6–11 years old (see eTable 1).

From the whole HELIX population (n = 1,301), at least 
one health parameter was missing for 11.5% (n = 150) of 
children regarding cardiometabolic parameters, for 32.4% 
(n = 294) of children regarding respiratory and allergic 
parameters (mostly due to  FEV1), and for 0.8% (n = 23) 
of children regarding mental parameters. Children with 
all fifteen health parameters were included, leading to the 
inclusion of 870 mother–child pairs.

Characterisation of the exposome
A wide range of environmental exposures was assessed 
in each mother–child pair, covering 21 families of expo-
sures, with 53 prenatal and 105 postnatal exposures, as 
detailed in Table  2 (see also previous Helix papers [16, 
24, 25]). Briefly, outdoor exposures were assessed based 
on remote and spatial sensing data from a geographical 
information system (see eMethods 2). Factors regard-
ing the lifestyle were collected by questionnaire and 
included smoking habits of the mother, food intakes, the 
social environment (pregnancy and childhood), physical 
activity, sleep and the presence of pets (childhood) (see 
eMethods 3). Biomarkers of chemical compounds were 
measured through biological samples (mostly serum 
and urine, as detailed in eTable 2) during pregnancy and 
childhood (see eMethods 4). Collection time points for 
prenatal exposures are given in eTables 3 and 4.

Covariates
Covariates used for the prenatal analyses included 
cohort, child age and sex, maternal age, highest paren-
tal education (primary, secondary or higher education), 
parental country of birth (none, one or both parents 
born in the cohort country), pre-pregnancy body mass 
index (BMI) and season of birth (winter, spring, summer 
or autumn). Regarding postnatal analyses, breastfeed-
ing duration (< 11  weeks, 11–35  weeks, > 35  weeks) was 
added to the set of covariates.

Creation of the general health score
The general health score averaged three sub-scores, each 
representing a specific health domain (cardiometabolic, 
respiratory/allergy and mental health). Beforehand, con-
tinuous health parameters were transformed in z-scores, 
using Generalize Additive Model for Location, Scale 
and Shape (GAMLSS) [26] to standardize on covariates 
(mostly age and sex, see eTables  5 and 6) and approach 
normality. The health parameters were not adjusted on 
each cohort in order to keep the between-cohort vari-
ability of the general health status for descriptive pur-
poses. As used previously in the Helix population, the 
cardiometabolic sub-score was defined as (-z waist cir-
cumference) + (- z insulin) + (z HDL cholesterol – z tri-
glycerides)/2 + (-z systolic BP – z diastolic BP)/2 [27, 
28]. Following the approach of Eisenmann [29] the res-
piratory/allergy sub-score and the mental sub-score were 
defined as the first principal component of a multiple fac-
torial analysis (see eFigures  1–2 and eTable  7–8). All of 
the three sub-scores were built such that a higher score 
means the child is in better health (see eMethods 5). The 
three sub-scores were scaled and aggregated into a sin-
gle general health score by taking their mean. By con-
struct, the general health score is low for children with 
conjointly low-to-moderate cardiometabolic, respira-
tory/allergy and mental health in children, as well as for 
children highly affected in one health domain while no or 
moderately affected for the other two.

Strategy of analysis for the exposome-health association
For all exposures and covariates, the optimal transforma-
tion to approach normality was applied (see eTable  9), 
which is necessary for following steps including imputa-
tion and penalized regression models. Imputation of the 
missing values on exposures and covariates was done 
using the method of chained equations [30]. (see more 
details in eMethods 6). It generated 20 imputed datasets, 
used in the statistical analyses with the Rubin’s rule. After 
imputation, continuous exposures were centred and 
standardized by the interquartile range (IQR).

The exposure-general health score association study 
was performed separately for the prenatal and postnatal 
exposures using the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) as the main analysis [31]. This 
penalized regression model considers all exposures and 
covariates simultaneously and selects the best predic-
tors of the outcome (note that covariates were forced in 
the model). Optimization of the penalizing parameter � 
was performed by minimizing the mean cross-validated 
error on each of the 20 imputed dataset. The exposures 
selected for at least 50% of LASSO models (10 imputed 
datasets out of the 20) were used as the final set of 
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exposures [32]. The main models consisted in two multi-
variable linear regressions (one prenatal and one postna-
tal) considering all the selected exposures, after removing 
all exposures with p-value higher than 10%. More details 
on the strategy of analysis can be found in eMethods 7.

As secondary analyses, an exposome-wide associa-
tion study (ExWAS) was conducted. It considered each 
exposure in separate linear regression models [33], 
adjusted on the same covariates, and corrected for mul-
tiple hypothesis testing (adapted from Li [34]). Moreover, 
some specific hypotheses were tested: 1) For organo-
chlorine compounds (OCs), the associations found were 
stratified on the terciles of the BMI because OCs are 
known to accumulate in fat; 2) for PFASs, the associa-
tions were adjusted on fish consumption as a correlation 
between PFASs and fish consumption has been noticed 
in the Helix population [35] 3) the final multivariable 
models were stratified on sex to address a potential gen-
der-specific association; 4) the final multivariable models 
were stratified on cohort to address the robustness of the 
findings to the multicentre study design; 5) the linearity 
of the associations was tested using a Generalized Addi-
tive Model (GAM) with smooth functions for all selected 
exposures. In addition, a sensitivity analysis to assess the 
robustness to extreme values was conducted by fitting the 
multivariable model after excluding the 2% lowest and 2% 
highest values for the general health score (n = 836).

For better comparability across exposures, estimates 
were expressed as an increase in interquartile range of 
the transformed exposure (continuous exposures). Sig-
nificance level was defined as 5% for all statistical tests. 
Analyses were done with R version 4.2.1, using the pack-
ages mice, gamlss, FactoMineR, psych and glmnet. The 
main steps in the analysis are summarized in Fig. 1.

Results
Description of the population
The study population, aged between 5.4 and 12.0  years 
old (median = 8.1 years old) at the HELIX follow-up was 
47% girls (Table  3). At birth, mothers were on average 
31  years old and about half of them (51%) had a high 
degree of education. Tables describing the exposures 
and health parameters (including percent of missing 
data) during pregnancy and childhood are available in 
the supplementary materials (eTables 10, 11, 12 and 13).

Description of the general health score
The cardiometabolic, respiratory/allergy and mental 
sub-scores ranged between -3.20 and 3.10, -4.53 and 
3.18, and -2.89 and 2.76, respectively. The three sub-
scores were poorly correlated (eTable  14), with more 
details and descriptions in the supplementary (eFigure 3, 
eTable 7– 8).

The general health score, calculated as the mean of 
the three sub-scores, had a normal distribution (Sha-
piro test p-value = 0.21) with a mean (sd) of 0.03 (0.60). 
The median general health score varied among cohorts, 
with the lowest in BiB (median = -0.21) and the high-
est in MoBA (median = 0.42), as shown in Fig.  2. The 
general health score increased with parental education, 
breast-feeding duration and maternal age, and decreased 
with pre-pregnancy BMI (eTable 15). The joint distribu-
tions of the sub-scores, key health parameters and the 
general health score are presented in the supplementary 
(eTable 16).

Which exposures were associated with the general health 
score?
Three exposures during pregnancy were selected by 
LASSO: maternal passive smoking (assessed by ques-
tionnaire), maternal active smoking (assessed by cotinine 
levels) and the presence of a bluespace near residency 
(Fig.  3 and Table  4). In the multivariable model, mater-
nal passive smoking remained significantly associated 
with a poorer general health score. Although not signifi-
cant, higher levels of cotinine (> 50  µg/L vs < 18.5  µg/L) 
were association with a poorer score (p-value = 0.09) and 
the presence of a bluespace was associated with a better 
score (p-value = 0.07).

Regarding the exposures during childhood, a total of 
23 variables was selected by LASSO and 16 of them were 
kept in the final multivariable model (p-value ≤ 10%) 
(Fig. 3 and Table 4). High intakes of caffeinated drinks 
(compared to low intakes), indoor levels of benzene 
and  PM2.5, exposure to methylparaben and copper were 
significantly associated with a poorer general health 
score. A non-significant association (p-value = 0.07) was 
observed between less frequent contact with family and 
friends (once a week vs daily) and a poorer health score. 
On the other hand, intakes of vegetables (high vs low 
intake), owning a pet, physical activity, cobalt, exposure 
to perfluorooctanoate (PFOA), dichlorodiphenyldichlo-
roethylene (DDE) and hexachlorobenzene (HCB) were 
significantly associated with a better score. Suggestive 
associations (0.05 < p < 0.10) were observed between 
medium intakes of sodas and bakery products and a 
better score.

The ExWAS approach led to similar results than 
LASSO, highlighting significant associations of the gen-
eral health score with postnatal exposures to pets, diet, 
metals, indoor air pollutants, OCs and PFOA. No asso-
ciation with prenatal exposure remained significant after 
correcting on multiple testing. All estimations are avail-
able in the supplementary materials (eTables 17 and 18).

After stratifying on the terciles of BMI, higher DDE 
exposure was associated with a better general health 
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score in the low BMI group, but tended to be associ-
ated with a poorer score in the high BMI group (see 
eFigure  4). Adding fish consumption as a confounder 
variable did not change the results estimated for PFOA 
(see eTable  19). Results of the multivariable models 
stratified by sex showed overall similar results in boys 
and girls (eFigures  5 and 6), although boys-specific 
associations were observed for postnatal exposures to 
indoor benzene and HCB. When stratifying on cohorts, 
results were overall consistent (see eFigures  7 and 8) 
although some differences were observed for postna-
tal exposure to copper, DDE, contact with family and 
friends and intake of bakery products. The results of 
GAM did not invalidate the assumption of linearity 

for most exposures at the exception of child HCB (see 
eFigure  9). The general health score first increased 
with child HCB for “low” HCB levels, but was con-
stant for “moderate-to-high” HCB level. In the sensitiv-
ity analysis where extreme values of the general health 
score were removed, the magnitude of the associations 
remained similar (see eFigure 10).

Discussion
This novel study intended to approach the complexity 
of multiple exposures impacting multiple health param-
eters by assessing the association between a wide range 
of pre- and post-natal exposures and a general health 
score in children. Three prenatal and fourteen postnatal 

Fig. 1 Main steps of the analysis
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exposures associated with the child’s general health score 
were identified. Environmental factors already suspected 
of being associated with some child’s health parameters 
were reinforced, such as maternal smoking exposures 
during pregnancy, a healthy lifestyle, indoor air pollut-
ants and parabens. In addition, our findings pinpoint new 
environmental factors associated with child’s health, par-
ticularly the presence of a nearby bluespace during preg-
nancy and pets during childhood were associated with a 
better child’s general health score.

Interpretation of the results and comparison 
with the literature 
Previously suspected environmental factors were iden-
tified in this study, in particular tobacco, diet, the social 
environment, metals and parabens. While tobacco, caf-
feinated drinks, indoor air pollutants, parabens and few 
contacts with family were associated with a poorer gen-
eral health score, a healthy diet was associated with a bet-
ter general health score. Interestingly, these six families of 
exposures have been highlighted as being associated with 
at least two health domains (among cardiometabolic, res-
piratory/allergy and mental health) in previous ExWAS 

studies conducted on the HELIX population [3–8]. It val-
idates the assumption that using a  general health score 
allows to identify the exposures associated with multiple 
health parameters.

Noteworthy, our study identified three exposures, 
namely  pets, the presence of a bluespace and physical 
activity, that were not identified in previous HELIX stud-
ies on single health outcomes. It confirms our hypothe-
sis on the added value of this approach which is able to 
detect exposures associated in a low-grade manner with 
multiple health parameters. In particular, this study indi-
cates that the presence of pets during childhood could 
improve the overall child’s health. The literature on pet’s 
exposure reports conflicting findings on its impact on 
allergies and asthma [36, 37]. Pets is a well-established 
source of allergens [38, 39] but being exposed to them 
early in life could actually prevent allergic diseases [40–
42] through microbial and immune mechanisms [43]. 
Additionally, the literature supports that the presence of 
pets is associated with lower blood pressure and heart 
rate [44] as well as lower anxiety [45]. Moreover, our 
findings add to the limited but growing literature on the 
beneficial health impact of the presence of a bluespace 

Table 3 Description of the study population before imputation

Population: study population from the HELIX subcohort, n = 870 children

Abbreviations: ADHD Attention Deficit Hyperactivity Disorders, BMI Body Mass Index, BiB Born in Bradford, EDEN Étude des Déterminants pré et postnatals du 
développement et de la santé de l’Enfant, INMA Infancia y Medio Ambiente, IOTF International Obesity Task Force, KANC Kaunus Cohort, MoBa The Norwegian Mother, 
Father and Child Cohort Study, RHEA Mother–Child Cohort in Crete

Variable name N (%) Min Q1 Median Q3 Max

Maternal age at birth 863 (99.2) 17 27.7 31.0 34 43.3

Pre‑pregnancy BMI 855 (98.3) 16.2 21.3 23.2 27 43

Child age at the follow up 870 (100) 5.4 6.52 8.1 8.9 12

Category n (%)
Cohort 870 (100) BiB 134 (15.4)

EDEN 112 (12.9)

INMA 160 (18.4)

KANC 129 (14.8)

MoBA 193 (22.2)

RHEA 142 (16.3)

Highest parental education 858 (99) Primary 92 (10.7)

Secondary 266 (31.0)

Higher 500 (58.3)

Child sex 870 (100) Girl 411 (47.2)

Boy 459 (52.8)

Child weight status (IOTF) 870 (100) Underweight/Normal 700 (80.5)

Overweight 119 (13.7)

Obese 51 (5.9)

Child asthma (ever) 870 (100) No 767 (88.2)

Yes 103 (11.8)

ADHD score 870 (100) Not at risk for ADHD (≤ 16) 793 (91.1)

At risk for ADHD (≥ 17) 77 (8.9)
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nearby [46]. To the best of our knowledge, very few stud-
ies focused on the pregnancy period, but past studies in 
adults showed an association between better perceived 
health with the density of “coastal” land [47] and the 
proximity of coast [48]. Finally, our study confirmed the 
benefits of physical activity on child’s BMI [49], respiratory 
[50] and mental health [51, 52].

Unexpectedly, some positive associations have been 
found between postnatal blood concentration to three 
persistent organic pollutants (PFOA, HCB and DDE) and 
the child’s general health score. These cross-sectional 
associations could be due to an inverse causality phe-
nomenon, with lower blood levels of DDE and HCB in 
overweight children due to accumulation in fat. When 
stratifying on BMI, opposite trends of associations were 
found for HCB in the low vs. high BMI groups, which 
supports that the body composition might impact these 
associations. Plus, a non-linear association was suggested 
for HCB, calling for further investigations. A confound-
ing bias due to fish consumption could be induced for 
PFASs [35] but further adjusting on total fish consump-
tion did not change the results. Our results are in agree-
ment with similar unexpected results previously found in 
the HELIX population [4, 5, 8].

Strength and limitations of this study
This study has several strengths including first the longi-
tudinal design of the HELIX project that allowed for an 

extended study of the exposome, with a wide range of 
exposures measured both during pregnancy and child-
hood using standardised protocols for each cohort site. 
A novelty of this study lies in the use of a general health 
score built by aggregating fifteen health parameters, 
covering three health domains with frequent childhood 
disorders: the cardiometabolic health (overweight), the 
respiratory health and allergies (asthma) and mental 
health (anxiety and behavioural disorders). A further 
strength relates in the ability of this approach to highlight 
exposures particularly harmful because affecting several 
health domains simultaneously, which can help prioritising 
public health messages.

However, we acknowledge that our study has some 
limitations. Some errors in exposure assessment could 
impact the statistical power, in particular regarding the 
least persistent pollutants like phenols and phthalates 
[53]. More generally, variability in measurement error 
between the exposures limits the ability to hierarchize 
the risk factors. Also, results regarding cross-sectional 
associations may suffer from reverse causality bias, for 
example the concentration of some persistent pollut-
ants could be influenced by the child’s health (through 
fat mass) instead of vice versa. In addition, the general 
health score, designed for etiological research but not 
for clinical purposes, has not been validated clinically. 
Finally, the same dataset has been used for the optimiza-
tion of lambda and the model estimation which can be 

RHEA (Greece)

MoBa (Norway)

KANC (Lithuania)

INMA (Spain)

EDEN (France)

BiB (UK)

Whole population

−2 −1 0 1
General health score

Fig. 2 Distribution of the general health score by cohort
Boxplot showing the distributions of the built general health score in the whole population and in each cohort. Population: study population 
from the HELIX subcohort (n = 870). Accronyms: BiB: Born in Bradford, EDEN: Étude des Déterminants pré et postnatals du développement et de 
la santé de l’Enfant, INMA: Infancia y Medio Ambiente, KANC: Kaunus Cohort, MoBa: The Norwegian Mother, Father and Child Cohort Study, RHEA: 
Mother–Child Cohort in Crete
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considered as a limit, even though cross-validation has 
been used for the first step.

Public health impact
The identified early-life environmental exposures associ-
ated with the general health of children, are suspected to 
have an impact on several health parameters simultane-
ously, calling for prioritized public health messages. In 
terms of public health recommendations, it is helpful to 
disentangle environmental risk factors affecting multiple 

health outcomes to those affecting a single health outcome 
or affecting in different direction several health outcomes.

Conclusion
This first exposome study on child’s general health 
attempted to approach the system nature of multiple 
exposures from our environment that shape multiple 
health outcomes. Our results reinforced the impact of 
several environmental risk factors (prenatal exposure to 
smoking, postnatal exposure to methylparaben, indoor 

Fig. 3 Results of the final multivariable models
Population: n = 870 children from the HELIX subcohort. Method: multivariable models between the general health score and the exposures 
selected by LASSO for 50% of models, plus the covariates, separately for prenatal and postnatal exposures. All exposures with a p‑value > 10% 
were removed one by one from the final model. Covariates: cohort, child age, maternal education and age, parental country of birth, 
season of birth, pre‑pregnancy BMI, plus the breastfeeding duration for postnatal exposures only. Acronyms: Co: Cobalt, Cu: Copper, DDE: 
Dichlorodiphenyldichloroethylene, HCB: Hexachlorobenzene, MEPA: Methyl‑paraben, PFOA: Perfluorooctanoate, PM: Particulate matter
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Table 4 Results from LASSO Exposures selected in the final model

Population: n = 870 children from the HELIX subcohort. Methods: first, penalized linear regression model was applied, with regularization parameter (lambda) 
optimized with tenfold cross validation. Then, all exposures selected for at least 10 imputed datasets (50% of selection) were included in a multivariable linear 
regression adjusted for the covariates. All exposures with a p-value > 10% were removed one by one from the final model. Covariates: cohort, child age, maternal 
education and age, parental country of birth, season of birth, pre-pregnancy BMI, plus the breastfeeding duration for postnatal exposures only

Co cobalt, Cu Copper, DDE Dichlorodiphenyldichloroethylene, HCB Hexachlorobenzene, MEPA Methyl-paraben, PFOA: Perfluorooctanoate, PM: Particulate matter
a The transformation was applied before the standardisation on the interquartile range (IQR). This last transformation consisted in removing the mean and dividing by 
the IQR
b t-test on the estimated coefficients, based on the Rubin’s rule
c  “- “ means that no transformation was applied, mainly because the variable was categorical

Exposures Transformationa LASSO Multivariable model from LASSO 
results

% of selection among the 20 
imputed datasets

Estimate change by IQR 
[95% CI]

p-valueb

During pregnancy
 Presence of a bluespace ‑c 60% 0.13 [‑0.02; 0.28] 0.08

 Passive smoking (yes) ‑ 90% ‑0.11 [‑0.21; ‑0.01] 0.02

 Cotinine levels ‑ 65%

    < 18.5 µg/L reference

    18.5–50 µg/L (passive smoking) ‑0.05 [‑0.18; 0.08] 0.43

    > 50 µg/L (active smoking) ‑0.1 [‑0.22; 0.01] 0.09

During childhood
 Sodas ‑ 100%

  Low (< 1 time/month) reference

  Medium (1 time/month – 1 time/week) 0.09 [0.00; 0.18] 0.06

  High (> 1 time/week) ‑0.01 [‑0.12; 0.10] 0.85

 Vegetables ‑ 100%

  Low (< 6 times/week) reference

  Medium (6–9 times/week) 0.00 [‑0.09; 0.1] 0.94

  High (> 9 times/week) 0.10 [0.02; 0.19] 0.02

 Bakery products ‑ 100%

  Low (< 2 times/week) reference

  Medium (2–6 times/week) 0.10 [0.00; 0.19] 0.04

  High (> 6 times/week) 0.00 [‑0.11; 0.10] 0.93

 Caffeinated drink ‑ 100%

  Low (Never) reference

  Medium (1 time/month) 0.00 [‑0.11; 0.10] 0.93

  High (> 1 time/month) ‑0.10 [‑0.21; 0.00] 0.05

 Pet (yes) ‑ 100% 0.14 [0.06; 0.22]  < 0.01

 Contact with family and friends ‑ 100%

  Daily reference

  Once a week ‑0.08 [‑0.16; 0.00] 0.05

  Less than once a week 0.06 [‑0.10; 0.23] 0.44

 Physical activity 95% 0.06 [0.00; 0.12] 0.06

 Benzene indoor Log 100% ‑0.08 [‑0.14; ‑0.03]  < 0.01

  PM2.5 indoor Log 100% ‑0.05 [‑0.10; ‑0.01] 0.01

 MEPA Log 100% ‑0.05 [‑0.09; ‑0.01] 0.01

 Co Log 100% 0.04 [0.01; 0.08] 0.02

 Cu Log 100% ‑0.10 [‑0.15; ‑0.05]  < 0.01

 PFOA Log 100% 0.08 [0.03; 0.13]  < 0.01

 DDE Log 100% 0.08 [0.01; 0.14] 0.02

 HCB Log 100% 0.07 [0.00; 0.13] 0.04
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air pollutants, caffeine and few social contacts) and pro-
tective factors (high intake of vegetables) on child’s health 
and identified new environmental protective factors 
(bluespace, pets) which calls for further investigation.
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variables of respiratory health and allergies (Helix subcohort, n=1009 with 
respiratory and allergic data). eFigure 3. Distribution of each sub‑score by 
cohort. eFigure 4. Multi‑exposure model on postnatal exposures strati‑
fiedon the terciles of z‑BMI. eFigure 5. Multi‑exposure model on prenatal 
exposures stratified on sex. eFigure 6. Multi‑exposure model on postnatal 
exposures stratified on sex. eFigure 7. Multi‑exposure model on postnatal 
exposures stratified on cohorts. eFigure 8. Multi‑exposure model on 
postnatal exposures stratified on cohorts. eFigure 9. GAM estimated 
curve for postnatal selected exposures by LASSO. eFigure 10. Multi‑
exposure model without the 4% most extreme values for the general 
health score.
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