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Abstract 

Backgrounds The vulnerability of fetuses differs at different developmental stages, in response to environmental 
stressors such as fine particulate matter  (PM2.5), a ubiquitous air pollutant. Whether gestational age (GA) modifies 
the association between prenatal fine particulate matter  (PM2.5) exposure and fetal death remains unclear.

Methods We selected approximately 47.8 million eligible United States (US) livebirth and fetal death (defined 
as a termination at a GA of 20–43 weeks) records from 1989 to 2004. For each record, we took the level of prenatal 
exposure to  PM2.5 as the average concentration in the mother’s residential county during the entire gestational 
period, or a specific trimester (i.e., GA-specific exposure), according to well-established estimates of monthly levels 
across the contiguous US. First, we evaluated the associations between  PM2.5 exposure and fetal death at a specific GA 
(i.e., GA-specific outcome) using five different logit models (unadjusted, covariate-adjusted, propensity-score, double 
robust, and diagnostic-score models). Double robust model was selected as the main model due to its advantages 
in causal inference. Then, we conducted meta-analyses to pool the estimated GA-specific associations, and explored 
how the pooled estimates varied with GA.

Results According to the meta-analysis, all models suggested gestational  PM2.5 exposure was associated with fetal 
death. However, there was slight heterogeneity in the estimated effects, as different models revealed a range of 3.6–
10.7% increase in the odds of fetal death per 5-µg/m3 increment of  PM2.5. Each 5-µg/m3 increase in  PM2.5 exposure 
during the entire gestation period significantly increased the odds of fetal death, by 8.1% (95% confidence interval 
[CI]: 5.1–11.2%). In terms of GA-specific outcomes, the odds of fetal death at a GA of 20–27, 28–36, or ≥ 37 weeks 
increased by 11.0% (5.9–16.4%), 5.2% (0.4–10.1%), and 8.3% (2.5–14.5%), respectively. In terms of GA-specific exposure, 
the odds of fetal death increased by 6.0% (3.9–8.2%), 4.1% (3.9–8.2%), and 4.3% (0.5–8.2%) with 5-µg/m3 increases 
in  PM2.5 exposure during the first, second, and third trimester, respectively. The association had the largest effect size 
(odds ratio = 1.098, 95% CI: 1.061–1.137) between  PM2.5 exposure during early gestation (i.e., first trimester) and early 
fetal death (i.e., 20–27 weeks).
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Conclusions Prenatal exposure to  PM2.5 was significantly associated with an increased risk of fetal death. The associa-
tion was varied by gestational-age-specific exposures or outcomes, suggesting gestation age as a potential modifier 
on the effect of  PM2.5. The fetus was most vulnerable during the early stage of development to death associated 
with  PM2.5 exposure.

Keywords Fetal death, PM2.5, Prenatal exposure, Effect modification, Gestational age

Introduction
Fetal death (or stillbirth) is an important but previously 
neglected public health issue. For instance, reducing fetal 
death was not included as one of the Millennium Devel-
opment Goals. Despite the scant global attention on this 
issue, fetal death is associated with substantial direct (e.g., 
medical expenditure), indirect (e.g., unemployment), and 
intangible (e.g., mental stress caused by anxiety or grief ) 
costs to women and their families, governments, and 
even entire societies [1]. In 2019, the estimated global 
rate of stillbirth during the third trimester was 13.9 per 
1,000 total births (90% uncertainty range: 13.5–15.4), 
and nearly 83.6% of stillbirths occurred in low-income 
and lower-middle income countries [2]. Preventing fetal 
death is not only beneficial with respect to reproductive 
health, but also promotes social equity. Therefore, it is 
necessary to identify the modifiable risk factors.

An association has been reported between prenatal 
exposure to ambient fine particulate matter  (PM2.5) and 
fetal death in North America [3], Europe [4], East Asia 
[5], South Asia [6], and Africa [7]. Although gestational 
 PM2.5 exposure generally increases the risk of fetal death, 
the strength of the effect appears to be modulated by 
gestational age (GA), for a number of reasons. First, the 
vulnerability of embryos varies by developmental stage, 
so the baseline risk of fetal death changes with GA. This 
baseline risk, which depends on the presence of factors 
that may interact with the effects of air pollution, can 
influence the strength of the association between  PM2.5 
and fetal death. For instance, a previous study reported 
that the odds ratio (OR) of stillbirth (death between 20 
and 44 gestational weeks) was 1.06 (95% confidence inter-
val [CI]: 1.01–1.11) per 7.23-µg/m3 increase in  PM2.5, 
while the OR of stillbirth before and after 28 gestational 
weeks was 1.05 (95% CI: 0.99–1.12) and 1.09 (95% CI: 
1.01–1.17), respectively [8]. Another study divided still-
births into several GA strata (i.e., 23–26, 27–30, 31–36, 
and 37–42 weeks); the corresponding relative risks (RRs) 
were 1.12 (95% CI: 0.57–2.20), 1.53 (95% CI: 0.66–3.52), 
0.71 (95% CI: 0.40–1.28), and 0.84 (95% CI: 0.44–1.59) 
per interquartile range (IQR) increase in  PM2.5, respec-
tively [9]. These studies suggest that GA can modify the 
effect of  PM2.5 on fetal survival. However, the statistical 
power in previous studies was insufficient because of lim-
ited sample sizes after stratification by GA.

Additionally, developmental stage determines the 
susceptibility of an embryo to adverse environments. 
Therefore,  PM2.5 concentrations have been found to 
have differential effects according to GA. Most previ-
ous studies assessed exposure to  PM2.5 concentrations 
averaged over the entire gestational period, or a spe-
cific trimester. For instance, two recent meta-analyses 
reported that each 10-µg/m3 increase in  PM2.5 exposure 
over an entire pregnancy was associated with a 15% 
(95% CI: 7–25%) or 10% (95% CI: 7–13%) increase in 
the risk of stillbirth. Both studies found that the asso-
ciation was statistically significant for third-trimester 
 PM2.5 exposure, but not for first- or second-trimester 
exposure [10, 11]. These results suggest that the adverse 
effects of  PM2.5 on fetal survival can vary according 
to GA. However, it is difficult to compare the findings 
of previous studies because the fetal death rates were 
analyzed for different GA-specific exposure times. For 
instance, fetal deaths that occurred at an early GA (also 
known as an early stillbirth) could not be included in 
the analysis on the third-trimester exposure. In other 
words, to fully understand how GA modifies the associ-
ation between  PM2.5 and fetal death, GA-specific expo-
sure and outcomes should be analyzed simultaneously.

Understanding how GA modifies the association 
between fetal death and  PM2.5 has important conse-
quences for public health. Usually, population exposure 
to  PM2.5 is universal and prolonged, such that regular 
public interventions rely on long-term emission control 
measures, such as clean air action. If there is a specific 
time window during which per-unit exposure poses a 
particularly significant health risk, this risk could be 
addressed via personalized interventions (e.g., pro-
viding air purifiers to pregnant women). Therefore, 
identifying the time window for critical exposure is 
important for guiding the implementation of additional 
protections for developing fetuses.

In our previous study, we created a large population 
database by combining registration data on livebirths 
and fetal deaths across the contiguous United States 
(US) from 1989 to 2004, and utilized it to examine the 
effects of  PM2.5 on fetal death. Here, we further evalu-
ated the way in which GA modified this association to 
identify the most susceptible time window for  PM2.5 
exposure. Using a two-stage model, we estimated the 
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associations for all possible pairs of GA-specific out-
comes and GA-specific exposure times.

Methods
Study population
Our study participants were extracted from the publicly 
available datasets of the US National Center for Health 
Statistics, which collects birth and fetal death certifi-
cates (https:// www. cdc. gov/ nchs/ data_ access/ vital stats 
online. htm). Fetal death was defined as death prior to 
the complete expulsion or extraction from the mother 
of a product of human conception, irrespective of the 
duration of pregnancy, except for induced termination. 
Previous studies included stillbirth occurring from 20 to 
42 or 44 weeks of gestation [12, 13]. The period of gesta-
tion is the number of completed weeks elapsed between 
the first day of the last menstrual period (LMP) and 
the date of delivery. According to the recommendation 
from US Centers for Disease Control and Prevention 
and the distribution of GA in our dataset, we included 
records in which GA was between 20 and 43 gestational 
weeks. For GA-specific outcomes, we defined early, 
late, and term fetal deaths as those occurring at a GA 
of 20–27, 28–36, and 37–43 weeks, respectively [14]. 
Only records created before 2005 were geocoded to the 
county level, because geographic codes have not been 
provided publicly since 2005 for reasons of confiden-
tiality. According to the U.S. Census Bureau, there are 
more than 3000 counties in US, and more than half of 
all residents live in just 143 big counties with a median 
population of 821,725 (926 people per square mile), the 
remaining small counties with a median population of 
23,999 host less than half of the population (48 people 
per square mile). To maximize the number of records in 
the dataset, we imputed missing GA data when the birth 
date and LMP date were available. We excluded records 
with unknown GA after imputation (49,584 fetal deaths 
and 3,344,409 livebirths) or insufficient information, as 
described previously [15]. Ultimately, data for nearly 
47.8 million fetuses between 1989 and 2004, from 527 
counties across the contiguous US, were included in our 
analyses.

Environmental variables
We estimated monthly  PM2.5 levels at a high spatial res-
olution of 0.01° × 0.01° with a well-validated chemical 
transport model using satellite remote-sensing measure-
ments and ground-based monitoring observations across 
North America from 1989 to 2004. Residential addresses 
were not available; we could only access county-level 
information about the locations of the pregnant moth-
ers. First, we calculated county-level averages based 
on administrative boundaries. Then, each birth and 

fetal death record was matched with the environmental 
exposure data of the county of residence. As an indica-
tor of overall exposure during pregnancy, we averaged all 
monthly  PM2.5 values from the month of the LMP to the 
birth month for each eligible record. The average  PM2.5 
concentrations between the  1st and  3rd months and  4th 
and  7th months, and after the  7th month (truncated at the 
corresponding month of last gestational age), were calcu-
lated to determine the first-, second-, and third-trimester 
exposure, respectively.

We also obtained monthly data on temperature, rela-
tive humidity, and wind speed from the North American 
Regional Reanalysis (NARR) project to control for the 
confounding effects of these climate variables. The NARR 
provides meteorological data for North America with a 
grid size of 32 km × 32 km; the data are freely available 
from the website of the NOAA-ESRL Physical Sciences 
Laboratory, Boulder, Colorado (https:// psl. noaa. gov/ 
data/ gridd ed/ data. narr. html). The assessment process 
was the same for the climate and  PM2.5 exposure data.

Covariates
The birth and fetal death certificates included maternal, 
paternal, and fetal information, which were transformed 
into categorical variables and adjusted for potential con-
founders including maternal age (≤ 15, 16–20, 21–25, 
26–30, 31–35, 36–40, 41–45, or > 45 years), maternal 
education (≤ 8, 9–12, 13–16, or > 16 years), maternal and 
paternal ethnicity (White, African American, Chinese, 
American Indian/Alaskan Native, Japanese, Hawaiian, 
or other), marital status (yes or no), prenatal care attend-
ance (yes or no), whether the infant was born in a hos-
pital (yes or no), previous history of pregnancy (yes or 
no), plurality (one, two, or more than three fetuses), pre-
vious history of at least one livebirth (yes or no), history 
of abnormal terminations (none, one, two or ≥ three), 
maternal tobacco usage (yes or no), maternal alcohol 
usage (yes or no), chronic diabetes (yes or no), hyper-
tension (yes or no), gestational weight gain (≤ 15, 16–20, 
21–25, 26–30, 31–35, 36–40, 41–45, or > 45 pounds), and 
fetal sex (female or male).

Statistical analysis
We used a two-stage analysis approach. In the first stage, 
we conducted a series of regressions to evaluate the asso-
ciations between GA-nonspecific  PM2.5 exposure (i.e., 
exposure during the entire gestation period) and GA-
specific  PM2.5 exposure (i.e., exposure during a specific 
trimester) with GA-specific fetal death (i.e., fetal death at 
a specific GA). Second, we combined these GA-specific 
results via meta-analysis or meta-regression to explore 
GA-dependent patterns in the association between  PM2.5 
exposure and fetal death.

https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm
https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm
https://psl.noaa.gov/data/gridded/data.narr.html
https://psl.noaa.gov/data/gridded/data.narr.html
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After stratifying the data according to gestational week, 
we used a logistic regression model with fetal deaths 
taken as cases and all livebirths as controls to estimate 
the GA-specific association between  PM2.5 exposure and 
fetal death for each stratum, based on the OR of fetal 
death per 5-µg/m3 increment in gestational  PM2.5 expo-
sure. Without adjustment, this type of analysis is clas-
sified as an unmatched case-control study. As such an 
analysis can be easily confounded, we fitted four other 
models, including causal inference models. Below, we 
describe the four models in detail.

Covariate‑adjusted logistic model
To employ this widely used method, we adjusted for a 
set of individual- and county-level covariates within each 
GA-stratum:

where i indicates a given fetus, yi denotes the binary out-
come (1: fetal outcome; 0: normal delivery) for a specific 
fetus, xi denotes the average  PM2.5 concentration over 
the full gestation period for a specific fetus, zi denotes 
the abovementioned individual-level covariates used 
for adjustment, and f1, f2, and f3 denote spline functions 
with three degrees of freedom for capturing the nonlin-
ear effects of temperature (T), relative humidity (RH), 
and wind speed (WS), respectively. si is a dummy vari-
able representing the residential state, which we used to 
control for unmeasured confounders at the regional level, 
and ti and mi are dummy variables representing the birth 
year and birth season, to control for long-term trends and 
seasonality, respectively. β, b, γ, κ, and λ are regression 
coefficients. We used a code to denote missing values for 
all categorical variables except maternal marital status 
(0.79%). Because the marital status was likely unrecorded 
because of fetal death, the missing values were randomly 
imputed in such cases. This process to handle missing 
values was identical in other models listed followed.

Propensity score model
The propensity score (PS) is commonly used to make 
causal inferences when adjustment for confounders is 
needed. First, we used linear regression to estimate the 
conditional probability density function of the exposure 
(xi) given the independent variables shown in Eq.  (1). 
Then, we created a pseudo-population using the PS 
weights, calculated as the inverse of the probability. For 
stabilization, the PS weights were trimmed using cut 
points at the  1st percentile (low weights) and  99th per-
centile (high weights). We fitted a weighted univariate 

(1)Logit yi = βxi + bzi + f1(Ti) + f2(RHi) + f3(WSi) + γ si + κti + �mi

logistic regression model to estimate the effect of  PM2.5 
exposure.

Double robust model
In the double robust model (DRM), PS weights and 
covariate adjustment are simultaneously applied. Thus, 
the effect estimation is robust to misapplication of one 
of these strategies [16]. We combined the multivari-
able logistic model of Eq. (1) with the above-mentioned 
PS weights to derive our main model before the data 
analysis.

Diagnostic score model
Similar to PSs, but with matching of outcomes to pre-
vent confounding, diagnostic scores create comparable 

pseudo-populations of cases and controls. Therefore, this 
method represents a generalization of the matched case-
control design. The diagnostic score weights were the 
inverse probabilities of an outcome given the measured 
confounders; the probabilities were derived from a logit 
regression identical to Eq.  (1), except for the removal 
of exposure level (xi). We fitted a weighted univariate 
logistic regression model to estimate the effect of  PM2.5 
exposure.

In the second stage, we utilized a meta-analysis with 
random effects to pool GA-specific associations for the 
whole gestation period and each trimester. Heterogeneity 
in the GA-specific associations was evaluated using the 
 I2 statistic. Considering the temporal auto-correlation in 
 PM2.5 concentrations, we did not simultaneously regress 
the three trimester-specific exposures with fetal death, 
and estimated the effects of GA-specific exposure using 
separate two-stage models. Because of the high compu-
tational burden, only DRMs were developed in the first 
stage to estimate the effects of trimester-specific  PM2.5 
exposure. Note that not all GA-specific exposure-out-
come pairs are theoretically possible. For instance, while 
the adverse effect of first-trimester  PM2.5 exposure could 
be estimated for all fetal death subtypes, the influence of 
second-trimester exposure could only be evaluated for 
late and term fetal deaths (GA ≥ 28 weeks). Therefore, 
we derived pooled estimates for all possible GA-specific 
exposure-outcome pairs. Because of the high temporal 
resolution of the GA at fetal death data, we conducted 
a sensitivity analysis focusing on how GA modified the 
effect of  PM2.5 exposure during the entire gestational 
period. We then performed a meta-regression of the GA-
specific estimates against the spline expansion of GA in 
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weeks (degrees of freedom = 4). All statistical analyses 
were performed using R packages. The PS and diagnostic 
scores were estimated using ipw, and the meta-analysis 
and meta-regressions were run in meta.

Results
Descriptive statistics
As shown in Table 1, of the 47.8 million cases analyzed in 
this study, 316,875 were recorded as fetal deaths (crude 
rate of 0.66%). Among the 527 counties, the median size 
of study population (including fetal deaths and livebirths) 
was 49,340  (P2.5 –  P97.5: 3,170–388,769). Nearly 21.8 mil-
lion of the fetuses had mothers (45.7%) who had received 
9–12 years of education, and 31.8 million had mothers 
(66.6%) who were multipara. The mothers of 36.7 million 
(76.7%) and 7.8 million (16.3%) fetuses were white and 
African-American, respectively. The average age of the 
mothers was 27.3 (standard deviation [SD]: 6.1) years. 
The average exposure concentration of  PM2.5 over the 
full gestational period was 12.6 (SD: 4.1) µg/m3, and the 
concentration in the fetal death group was higher than 
that in the livebirth group (13.2 ± 4.2 vs. 12.6 ± 4.1 µg/
m3). The mean exposure concentration during the first, 

second, third trimester was 12.7 (SD: 4.5), 12.6 (SD: 4.3), 
and 12.5 (SD: 4.4) µg/m3, respectively. Detailed statis-
tics regarding the population characteristics are shown 
in Table S1. Figure  1 shows the sample size, crude rate 
of fetal death, and  PM2.5 exposure level by gestational 
week. The majority of the fetuses were born between 37 
and 41 gestational weeks. The crude rate of fetal death 
varied with GA, showing a U-shaped trend whereby the 
lowest rate was at the  40th gestational week. However, 
the average  PM2.5 exposure during the entire gestational 
period was relatively stable, ranging from 12 to 14 µg/m3 
among the GA-specific fetal death subgroups.

Overall association between  PM2.5 and fetal death 
estimated by different models
The pooled ORs from the different two-stage models 
consistently indicated a significant association between 
 PM2.5 exposure and fetal death. However, the point esti-
mates of the association varied according to the model 
settings (Fig.  2). According to our main model (i.e., 
the DRM), the OR of fetal death was 1.081 (95% CI: 
1.051–1.112) per 5-µg/m3 increase in overall gestational 
 PM2.5 exposure. The PS model, in which the population 

Table 1 Characteristics of study participants (from gestational  20th week to  43rd week). Other characteristics were summarized in 
Supplemental Table S1

Characteristics Subgroup N (%) or mean (standard 
deviation, interquartile range 
[IQR])

Total 47,845,444 (100.00)

Maternal age (years) 27.3 (6.1, 23.0–32.0)

Fetal outcome Fetal death 316,875 (0.66)

Livebirth 47,528,569 (99.34)

Years of maternal education ≤8 2,891,993 (6.04)

9–12 21,854,907 (45.68)

13–16 17,025,390 (35.58)

17+ 4,197,367 (8.77)

Unknown 1,875,787 (3.92)

Previous pregnancy Yes 31,844,671 (66.56)

No 15,720,316 (32.86)

Unknown 280,457 (0.59)

Maternal ethnicity White 36,708,200 (76.72)

African American 7,798,101 (16.30)

Others 3,339,143 (6.98)

PM2.5 exposure (µg/m3) Full gestational 12.6 (4.1, 9.7–15.5)

First trimester 12.7 (4.5, 9.5–15.7)

Second trimester 12.6 (4.3, 9.5–15.5)

Third trimester 12.5 (4.4, 9.3–15.5)

Relative humidity (%) 70.1 (12.9, 68.0–78.1)

Temperature (°C) 14.1 (5.0, 10.2–17.5)

Wind speed (m/s) 3.5 (0.6, 3.0–3.8)
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characteristics were balanced between groups with dif-
ferent exposure levels, yielded the strongest association 
(OR: 1.107; 95% CI: 1.084–1.130), followed by the main 
model, unadjusted model (OR: 1.076; 95% CI: 1.050–
1.102), diagnostic score model (OR: 1.037; 95% CI: 
1.019–1.056), and covariate-adjusted model (OR: 1.036; 
95% CI: 1.017–1.056). Our meta-analysis showed that 
GA-specific results from the unadjusted and diagnostic 
models were heterogeneous, with estimated  I2 statistics 

of 87.7% and 63.7%, respectively. No heterogeneity was 
found for the other three models, suggesting that their 
estimates were reliable. The following analyses are based 
on our main model (i.e., the DRM).

GA‑specific associations between  PM2.5 and fetal death
The pooled ORs for associations between GA-specific 
 PM2.5 exposure and GA-specific fetal death are shown 
in Table  2. First, with regard to GA-specific outcomes, 

Fig. 1 Fetal sample size, level of  PM2.5 exposure during the entire gestation, and crude fetal death rate by subgroups of gestational weeks of fetal 
death

Fig. 2 The overall association between fetal death and 5 µg/m3 increment in entire gestational  PM2.5 exposure, estimated by different two-stage 
models. The pooled odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were derived from a random-effect meta-analysis 
of results from regressions stratified by gestational weeks. Heterogeneity among individual strata-specific estimates was evaluated using the  I2 
statistic
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the fetuses were categorized into early, late, and term 
fetal death groups. For each 5-µg/m3 increase in  PM2.5 
exposure during the entire pregnancy, the OR values for 
early, late, and term fetal death were estimated as 1.110 
(95% CI: 1.059–1.164), 1.052 (95% CI: 1.004–1.101), 
and 1.083 (95% CI: 1.025–1.145), respectively. The dif-
ferences between the estimated ORs of the GA-specific 
outcomes might have been due in part to the model set-
tings (Fig. S1). However, the three homogenous models 
(i.e., the DRM, PS model, and covariate-adjusted model) 
yielded a similar trend: the largest OR corresponded to 
early fetal death and the smallest to late fetal death.

Second, the pooled ORs of all types of fetal death 
according to  PM2.5 exposure during different trimesters 
varied slightly by GA-specific exposure. For each 5-µg/
m3 increase in  PM2.5 exposure during the first, sec-
ond, and third trimester, the ORs were 1.060 (95% CI: 
1.039–1.082), 1.041 (95% CI: 1.014–1.068), and 1.043 
(95% CI: 1.005–1.082), respectively. Comparison of the 
ORs indicated that fetuses were susceptible to the toxic 
effects of  PM2.5 during the early developmental stage 
(i.e., first trimester).

Last, for all possible GA-specific exposure-outcome 
pairs, except that including second-trimester expo-
sure and term fetal death, the associations were statisti-
cally significant. The largest OR was for the association 
between first-trimester exposure and early fetal death 
(OR = 1.098, 95% CI: 1.061–1.137). This highlights the 
considerable impact of maternal  PM2.5 exposure during 
early pregnancy on early fetal survival, suggesting that the 
first trimester is crucial for the prevention of fetal death.

GA‑dependent effect of entire‑gestation exposure to  PM2.5 
on fetal death
Considering the fine temporal resolution of the GA-spe-
cific outcomes, we further focused on the variation in 
effect of entire-gestation exposure to  PM2.5 by gestational 

week of fetal death. We utilized a nonlinear meta-regres-
sion to derive GA-dependent effects. The results of the 
main model are shown in Fig. 3 and those from the other 
models (e.g., the unadjusted model) are shown in Fig. S2. 
The meta-regression of the DRMs showed a U-shaped 
pattern in the association between entire-gestation  PM2.5 
exposure and gestational week of fetal death (Fig. 3a). The 
smallest effect of  PM2.5 exposure was observed for fetal 
deaths occurring around the  33rd gestational week. A simi-
lar U-shaped pattern was observed the other two homog-
enous models (i.e., the PS model and covariate-adjusted 
models), which increased confidence in the findings.

We also estimated the GA-dependent effects for the three 
trimester-specific exposure periods (Fig.  3b). The GA- 
dependent effect of first-trimester  PM2.5 exposure showed 
a U-shaped trend, similar to that for entire-gestation expo-
sure (Fig. 3a). Although the GA- dependent effect of third-
trimester  PM2.5 exposure was only observed for fetal deaths 
occurring between the  37th and  43rd gestational week, we 
observed a comparable trend during over the entire gesta-
tional period (Fig. 3b). Therefore, the U-shaped effect might 
not be attributable to the effects of GA-specific exposure, 
but rather to differences in GA-specific outcomes, reflect-
ing GA-related variations in the baseline risk of fetal death. 
The effect of second-trimester  PM2.5 exposure gener-
ally decreased with GA, which might be explained by the 
increase in interval between exposure and outcome.

Discussion
Principal findings
By stratifying a birth and fetal death certificate data-
set by GA (from 20 to 43 weeks) and analyzing GA-
specific associations between  PM2.5 and fetal death, we 
found that each 5-µg/m3 increment in  PM2.5 exposure 
during the full gestation period significantly increased 
the odds of fetal death, by 8.1% (95% CI: 5.1–11.2%). 
Further, GA might modify the association between 

Table 2 The pooled odds ratios (ORs) of fetal death for 5 µg/m3 increment in  PM2.5 with 95% confidence intervals (CI), by specific 
subgroups of gestational age (GA). The GA-specific ORs are estimated by meta-analysis to pool results from double robust models 
together, for all possible GA-specific exposure-outcome pairs

PM2.5 exposure by GA ORs of outcomes by GA (95% CI)

Early fetal death
(20–27 weeks)

Late fetal death
(28–36 weeks)

Term fetal death
(37–43 weeks)

All fetal death
(20–43 weeks)

First trimester
(1st −  3rd month)

1.098
(1.061, 1.137)

1.037
(1.004, 1.071)

1.048
(1.008, 1.089)

1.060
(1.039, 1.082)

Second trimester
(4th −  7th month)

– 1.059
(1.024, 1.095)

1.015
(0.974, 1.056)

1.041
(1.014, 1.068)

Third trimester
(>  7th month)

– – 1.043
(1.005, 1.082)

1.043
(1.005, 1.082)

Entire gestation 1.110
(1.059, 1.164)

1.052
(1.004, 1.101)

1.083
(1.025, 1.145)

1.081
(1.051, 1.112)
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 PM2.5 and fetal death. Among all GA-specific expo-
sure-outcome pairs, that between  PM2.5 exposure dur-
ing early gestation (i.e., the first trimester) and early 
fetal death (i.e., 20–27 weeks) was the strongest. Our 
results suggest that early gestation is a critical time 
window for preventing the adverse effects of  PM2.5 in 
terms of fetal death.

Results in the context of what is known
To the best of our knowledge, this study is the first to 
comprehensively examine how GA modulates the effect 
of  PM2.5 exposure on fetal death in the contiguous US. 

Although previous studies reported an association 
between prenatal  PM2.5 exposure and fetal death or 
stillbirth, few focused on the modulating effect of GA 
[5, 13, 17–19]. Two studies have reported the effects of 
 PM2.5 exposure on GA-specific outcomes. First, after 
examining data from 12 clinical centers across the US 
from 2002 to 2008, Mendola et  al. divided stillbirths 
into four strata according to GA (23–26, 27–30, 31–36, 
and 37–42 weeks) and found that, for each IQR increase 
in average  PM2.5 exposure during the entire pregnancy, 
the RRs were 1.12 (95% CI: 0.57–2.20), 1.53 (95% CI: 
0.66–3.52), 0.71 (95% CI: 0.40–1.28), and 0.84 (95% 

Fig. 3 Variation in the estimated effect of  PM2.5 exposure with different gestational week of fetal death. a entire-gestation exposure; 
b trimester-specific exposure. Dashed lines: estimates from individual double robust models by strata of gestational week of fetal death; Solid lines: 
point estimates from a nonlinear meta-regression; Ribbons: corresponding point-wise 95% confidence intervals
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CI: 0.44–1.59), respectively. Although the CIs were 
wide because of the small sample size in each stratum, 
the point estimates suggested that the adverse effects 
of  PM2.5 on fetal survival were strongest at a GA ≤ 30 
weeks [9]. Second, Ebisu et  al. performed a matched 
case-control study in California from 2002 to 2009, and 
reported that each 7.23 µg/m3 increase in  PM2.5 expo-
sure during the whole gestation period increased the 
risk of stillbirth before and after 28 gestational weeks by 
5% (95% CI: -1–12%) and 9% (95% CI: 1–17%), respec-
tively [8]. Although these findings suggest that GA 
modulates the effect of  PM2.5 exposure, the evidence is 
inconsistent. The heterogeneity in results between stud-
ies might be due to differences in their populations, 
design, exposure assessment accuracy, statistical mod-
els, or covariates, as well as pollution levels [13, 17, 18]. 
Additionally, although few studies have reported on the 
GA-specific effects of  PM2.5 on fetal death,  PM2.5 expo-
sure during early gestation was found to have serious 
consequences, including small for GA [20], large for GA 
[20], infant mortality [21], reduced fetal growth [22], 
and preterm birth [23]. These findings are generally 
consistent with our study, which included a large sam-
ple size, simultaneously considered GA-specific expo-
sure and outcomes, and improves our understanding of 
how GA moderates the effects of  PM2.5 exposure.

Clinical implications
Detecting critical exposure windows for ambient air pol-
lution in terms of fetal death is important for elucidating 
the biological mechanisms of this phenomenon, as well 
as to optimize prenatal prevention and management 
strategies. Our results suggest that prevention of  PM2.5 
exposure during the first trimester should be a priority. 
The biological mechanisms underlying the association 
between  PM2.5 and fetal death may include oxidative 
stress, systematic inflammation, endothelial function, 
and abnormal placental patterns [24, 25]. Early pregnancy 
might be the stage in which fetuses are most susceptible 
to  PM2.5 exposure because this is when fetal implanta-
tion and placenta formation occur. Prenatal exposure to 
air pollutants in the first trimester might influence pla-
cental adaptation via changes in DNA methylation [26]. 
 PM2.5 exposure during early gestation is likely to elevate 
the C-reactive protein concentration, which indicates an 
inflammatory response [27]. This systemic inflammation 
induced by  PM2.5 might increase the risk of adverse birth 
outcomes, including fetal death.

Different analysis models
Except for covariate-adjusted model, the current 
study utilized other different models to estimate the 

associations, including the propensity-score model and 
diagnostic-score model. The propensity-score method 
used exposure level to create pseudo-populations bal-
anced for observed covariates. Because the propensity 
score was conducted without use of the outcome, this 
approach separated the design and analysis stages in an 
observation study, and was considered as a causal infer-
ence approach, which mimicked a randomized trial. How-
ever, propensity score would prioritize variables by their 
importance in predicting exposure received, not out-
come. Variables that were related to the exposure but not 
to the outcome could undue influence in the propensity 
score, and increase the variance of the estimated expo-
sure effect without decreasing bias [28]. Previous research 
suggested variables that were thought to be related to 
the outcome, regardless of whether they were related to 
the exposure should be included in a propensity score 
model [29]. Diagnostic-score model creates a pseudo-
population makes the covariates comparable between dif-
ferent outcome groups (i.e., cases and controls), and this 
approach was regarded as a generalization of the matched 
case-control design. Unlike the propensity score model, 
diagnostic-score model focused on achieving balance on 
the variables highly predictive of the outcome. The vari-
ables most predictive of the outcome were typically of 
utmost concern, as such variables might cause the most 
bias if left unbalanced [30]. The double robust model 
combined the propensity score and covariate adjustment 
approaches, so that correctly specifying the presumption 
for either approach can make sure the estimates as unbi-
ased. The heterogeneity in GA-specific estimates might 
derive from unmeasured confounders. In other words, the 
heterogeneity should be minimized if confounders were 
well controlled in a model. Accordingly, in our meta-anal-
ysis results, covariate-adjusted model, propensity-score 
model, and double robust model reported GA-specific 
estimates with less heterogeneity. The heterogeneity 
among different models might arise from the covariate 
selection, unmeasured confounders, and models hypoth-
eses, therefore it was essential to conduct additional 
exploration through theoretical analyses, such as statisti-
cal simulations.

Strengths and limitations
Compared to our previous study, the current findings are 
novel in the following ways: first, we confirmed a direct 
effect of  PM2.5 exposure on fetal death, i.e., independent of 
GA. In our previous study, we proposed an indirect patho-
logical pathway (i.e.,  PM2.5 → short GA → immaturity → 
fetal death) to explain why  PM2.5 exposure increases the 
risk of fetal death. To evaluate the overall effect of  PM2.5 
exposure, GA was not adjusted in the models and the OR 
of fetal death was estimated to be 1.47 (95% CI: 1.28–1.61) 
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for each 5-µg/m3 increase in prenatal  PM2.5 exposure [31]. 
Stratifying the data by GA in the current study enabled us 
to control for the mediating effect thereof. The significant 
results indicate a direct effect of  PM2.5 exposure on fetal 
death. Second, we focused on the mechanism through 
which GA could modify the effect of  PM2.5 exposure on 
fetal death. We generated new data by analyzing GA-spe-
cific exposure-outcome pairs. This was a unique approach; 
previous studies mostly distinguished only between tri-
mester-specific exposures. We found that the adverse 
effects on  PM2.5 with respect to fetal death differed by GA. 
Further, the association between  PM2.5 exposure and early 
fetal death was strongest during the first trimester. These 
results suggest that GA modifies the effect of  PM2.5 expo-
sure in a complex way, and that more attention should be 
paid to  PM2.5 exposure during early pregnancy.

Our study had several limitations. First, exposure mis-
classification is possible; although we matched the expo-
sure data according to the county of maternal residence at 
delivery, we did not consider variations in exposure within 
counties. However, due to the smaller within-county vari-
ation of  PM2.5 compared to the between-county varia-
tion, the model has successfully captured the majority of 
exposure variation.Furthermore, we did not account for 
indoor air pollution or long-distance migration during 
pregnancy. However, we assume that pregnant women are 
generally unlikely to migrate. Moreover, the high tempo-
ral correlation of  PM2.5 observed between distant loca-
tions has contributed to mitigating the potential impact 
of misclassification to a considerable degree. Additionally, 
we only had access to monthly  PM2.5 concentration data, 
so inaccuracies in the assessments of trimester exposure 
are possible; other maternal and fetal datasets with more 
refined exposure data (weekly or daily concentrations) are 
needed to further investigate this topic. Second, residual 
confounding bias is possible, such as lacking of socio-eco-
nomic indicators and lifestyle data. The models included 
the less detailed binary variables (yes or no) for maternal 
smoking and maternal alcohol use, given the relatively low 
occurrences of maternal smoking (9.24%) and maternal 
alcohol consumption (1.21%), the dichotomous variates 
could well-control these two confounders. Notably, other 
information of physical activity, dietary habit, drug use and 
mental health was missing. The dataset also lacked cor-
responding information regarding the father, which could 
have served as a proxy for assessing the socio-economic 
status of the family. We introduced the dummy variables 
of residential state and year of birth, season of birth to 
control for unmeasured spatiotemporal variation, which 
to some extent controlled the confounding bias. How-
ever, the relationship between some covariates and fetal 
death might be in complex nonlinear patterns. Therefore, 
a few risks could be unmeasured due to the less specific 

covariates. Also, the causal inference models (i.e., propen-
sity score model) was utilized based on the assumption 
that there was no unmeasured confounder, therefore the 
results should be interpreted carefully. Third, the differ-
ences in results among the three exposure periods should 
be interpreted carefully. For instance, the GA-dependent 
effect of first-trimester  PM2.5 exposure was similar to that 
of full gestation exposure (Fig. 3b), which might be partly 
due to the similarity in sample size. The effect of first-tri-
mester exposure to averaged levels of  PM2.5 was estimated 
for all samples, because all fetal deaths occurred after the 
 20th gestational week, i.e. after first-trimester exposure. 
In contrast, second-trimester  PM2.5 exposure did not 
affect early fetal death, while third-trimester  PM2.5 expo-
sure affected neither early nor late fetal death. To fully 
understand the modulating effect of GA on the relation-
ship between  PM2.5 exposure and outcomes, an advanced 
statistical model is needed. Fourth, the sample population 
was selected from1989 to 2004 due to the accessibility of 
the residential locations, and the poor timeliness of dataset 
limited the generalizability of the results to contemporane-
ous settings. Therefore, our findings should be confirmed 
by future studies using more timely datasets.

Conclusion
Registration data for 47.8 million fetuses in the contiguous 
US were analyzed in this population study, making it the 
largest study on the association between fetal death and 
prenatal  PM2.5 exposure to take GA into account. Overall, 
a 5-µg/m3 increase in prenatal exposure to  PM2.5 was asso-
ciated with a 8.1% (95% CI: 5.1–11.2%) increase in the odds 
of fetal death in the US. The effect of GA on outcomes was 
U-shaped, i.e., there were stronger effects for early and 
late GAs. These results provide additional evidence of the 
adverse effects of  PM2.5 exposure. Additionally, we identi-
fied acute effects of  PM2.5 exposure, and a long-term effect 
of first-trimester exposure. Improvements in air quality 
and other protective measures, especially during the first 
trimester, could help prevent fetal deaths.
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