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Abstract 

Background Prenatal exposure to metals in private well water may increase the risk of preterm birth (PTB) (deliv-
ery < 37 weeks’ gestation). In this study, we estimated associations between arsenic, manganese, lead, cadmium, 
chromium, copper, and zinc concentrations in private well water and PTB incidence in North Carolina (NC).

Methods Birth certificates from 2003–2015 (n = 1,329,071) were obtained and pregnancies were assigned exposure 
using the mean concentration and the percentage of tests above the maximum contaminant level (MCL) for the cen-
sus tract of each individuals’ residence at the time of delivery using the NCWELL database (117,960 well water tests 
from 1998–2019). We evaluated associations between single metals and PTB using adjusted logistic regression mod-
els. Metals mixtures were assessed using quantile-based g-computation.

Results Compared with those in other census tracts, individuals residing in tracts where > 25% of tests exceeded 
the MCL for lead (aOR 1.10, 95%CI 1.02,1.18) or cadmium (aOR 1.11, 95% CI 1.00,1.23) had an increased odds of PTB. 
Conversely, those residing in areas with > 25% MCL for zinc (aOR 0.77 (95% CI: 0.56,1.02) and copper (aOR 0.53 (95% 
CI: 0.13,1.34)) had a reduced odds of PTB. A quartile increase in the concentrations of a mixture of lead, cadmium, 
and chromium was associated with a small increased odds for PTB (aOR 1.02, 95% CI 1.01, 1.03). This metal mixture 
effect was most pronounced among American Indian individuals (aOR per quartile increase in all metals: 1.19 (95% CI 
1.06,1.34)).

Conclusions In a large study population of over one million births, lead and cadmium were found to increase the risk 
of PTB individually and in a mixture, with additional mixtures-related impacts estimated from co-exposure with chro-
mium. This study highlights critical racial and ethnic health disparities in relation to private well water thereby empha-
sizing the urgent need for improved private well water quality to protect vulnerable populations.
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Background
Preterm birth (PTB), defined as delivery prior to 37 
completed weeks of gestation, affects 11.1% of births 
worldwide and is a leading cause of neonatal mortality, 
making it a pressing global public health challenge [1]. 
Though its etiology is complex and multifactorial, PTB 
does have multiple known risk factors including mater-
nal infection, medical co-morbidities, psychosocial 
stress, poverty, and smoking during pregnancy [2]. Envi-
ronmental chemicals remain underexamined despite 
their potential association with PTB risk [2, 3]. Metals, 
both essential and toxic, are of particular interest for 
investigation given high exposure levels among repro-
ductive-aged women [4]. Essential metals, including 
chromium, copper, manganese, and zinc, can be toxic at 
high concentrations and prior studies have found vary-
ing associations with PTB [5–8]. For instance, in some 
cases, essential metals have been shown to mitigate the 
effect of toxic metals whereas in others they have been 
found to accentuate risk [5–8]. Further, despite evidence 
linking toxic metals, such as lead, with PTB, the hazards 
posed by other toxic metals/metalloids (e.g., arsenic and 
cadmium) and their mixtures are less known [6, 8]. Note 
that while arsenic is technically a metalloid, for ease of 
reading it will henceforth  be referred to as part of  the 
collective term "metals".  

A major source of exposure to metals in the United 
States (US) is private well water, which serves as the 
primary drinking water source for approximately 42.5 
million Americans (13% of the population) [9].  North 
Carolina (NC), has the largest population of any state 
relying on private well water (2.4 million people) [9–11]. 
The US Environmental Protection Agency (EPA) regu-
lates public drinking water systems under the Safe Drink-
ing Water Act, enforcing standards for arsenic, cadmium, 
lead, and manganese, among other contaminants [12]. 
In contrast, private wells are not federally regulated, and 
water quality stewardship falls on the individual well 
owner. Consequently, private wells are vulnerable to 
metal contamination and high arsenic, lead and manga-
nese concentrations have been reported in private well 
water in NC and elsewhere [13–15]. Well water con-
tamination translates into higher body burdens of met-
als for well water users compared to public water system 
users, as has been documented for lead and arsenic [16, 
17]. While exposure to metals via private well water has 
been linked to birth defects, infant mortality and cancer 
[18–21], few studies have examined the relationship with 
PTB.

Disparities in rates of PTB by race and ethnicity 
throughout the US are stark [22]. NC shares a similar 
pattern: between 2019–2021, the highest prevalence of 
PTB was among Black individuals (14.6%), followed by 

American Indian individuals (11.1%), compared to the 
lowest prevalence among Asian/Pacific Islander individu-
als and non-Hispanic White individuals, 8.5% and 9.6%, 
respectively [23]. Recently, there has been a growing 
recognition of the unequal burden of exposure to envi-
ronmental chemicals and its potential role in maternal 
health disparities [24, 25]. When examining upstream 
forces of environmental health disparities, it is critical 
to consider that different historical and current forces 
shape the environmental “riskscape” to which different 
minority groups are exposed [24, 26]. This is especially 
pertinent to consider when evaluating private well water-
based exposure in NC, as structural environmental rac-
ism has led to poor and minority communities being 
more likely to rely on private well water through the 
practice of municipal underbounding. With this practice, 
municipal borders engulf poor and minority communi-
ties without expanding services such as water and sewer 
lines [27–29]. Disproportionate environmental exposures 
among racial and ethnic groups within the US interact 
with other complex structural factors including systemic 
racism, poverty, poor housing, stressful life events and 
discrimination within the healthcare system; factors that 
can lead to inflammation, oxidative stress, and a biologi-
cal phenomenon termed weathering [30–37]. Environ-
mental chemicals can potentially overpower the body’s 
natural detoxification mechanisms, or enhance the bio-
logical pathways linking pollutants to adverse effects. 
They may achieve this by influencing similar mechanisms 
as the pollutants themselves, such as through epigenetic 
modifications or disrupting endocrine functions [38, 39]. 
Thus, social disparities that modify pollutant-outcome 
associations are increasingly being recognized in envi-
ronmental health [24, 26, 40, 41]. In a racially stratified 
society such as the US, self-identified race and ethnic-
ity is often used an imperfect proxy for aforementioned 
social stressors [34].

In the present study, we set out to test three connected 
hypotheses to address gaps in the literature: (1) that 
exposure to toxic metals via private well water would 
increase the risk of PTB and that exposure to essential 
metals would reduce the risk of PTB; (2) that exposure 
to a mixture of both toxic and essential metals would 
increase the risk of PTB risk, with the essential metals 
counteracting some of the toxic effects; and (3) that there 
would be differences in the metal mixture-PTB associa-
tion by race and ethnicity.

Methods
Overview of study design
We constructed the NC-BIRTH cohort from birth cer-
tificates of live births in NC between 2003 and 2015. Each 
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birth certificate record was assigned exposure to private 
well water metal levels based on maternal residence at 
delivery and either (1) the census tract level mean con-
centration of the metal or (2) the percentage of exceed-
ances of EPA standard for that metal in well water tests in 
that census tract.

Private well water metals database
The NCWELL database was used to generate census 
tract level mean concentrations of the seven metals of 
interest: inorganic arsenic (iAs), cadmium (Cd), chro-
mium (Cr), copper (Cu), lead (Pb), manganese (Mn) and 
zinc (Zn) [13]. We also planned to include mercury in the 
analysis; however, the number of samples above the limit 
of reporting (LOR) in the NCWELL database was too 
low to impute (see further details on imputation below). 
Herein, arsenic, cadmium and lead were termed “toxic” 
as there are no known benefits to exposure [42–44]. In 
contrast, chromium, copper, manganese and zinc are 
termed “essential” metals as there are benefits to expo-
sure to these metals within safe ranges [45–48]. Note that 
these distinctions were primarily for interpretation of 
results and did not guide the analysis.

In brief, the NCWELL database consists of 
n = 117,960 geocoded well water tests analyzed at the 
NC Department of Health and Human Services, Divi-
sion of Public Health, State Laboratory of Public Health, 
between October 19, 1998, and May 20, 2019. The data-
base includes test reports from all 100 counties and 89% 
of census tracts in NC. Detailed methods for collecting 
the well water test reports, data cleaning and organiza-
tion, and state-level and county-level descriptive sta-
tistics are described elsewhere [13]. Of note, limited 
temporal variability over the twenty years of data collec-
tion was noted [13].

Imputation of metal concentrations missing or below the 
limit of reporting
In a well water test report, either a detected concentra-
tion of a metal was listed, or the concentration was listed 
as below the LOR. The number of non-missing, missing, 
and below the LOR tests for each metal are detailed in 
Table  S1. The multiple imputation framework was used 
to account for the missingness of a particular metal’s con-
centration, either due to lack of measurement in a given 
test or being below the LOR. For each metal, a left-cen-
sored log-linear regression (Tobit regression) was used to 
model the natural log values of each metal, given the nat-
ural log values of every other metal and the county (using 
indicator variable coding) in which each measurement 
took place. For measurements below the LOR, the LOR 
was used as the left censoring value. For missing meas-
urements due to the test not measuring a given metal, 

the left censoring value was the maximum observed 
concentration of that metal. The county was included in 
the model to allow for spatial structure in the measure-
ments. County was the smallest geographic unit at which 
there were tests within each unit (i.e., some census tracts 
had no tests recorded). Because cadmium was frequently 
missing, for statistical efficiency, data from all counties 
with values (i.e., no non-missing) were used for imputa-
tion. Out-of-sample prediction accuracy was assessed 
during model selection by splitting our sample into two 
equal proportions, which gave us a final imputation 
model that included the county and 15 well water meas-
urements (including the seven metals of interest (iAs, Cd, 
Cr, Cu, Pb, Mn, Zn) as well as calcium (Ca), chlorine (Cl), 
iron (Fe), magnesium (Mg), sodium (Na), sulfate, total 
alkalinity, total hardness).

This Tobit model was used within the multivari-
ate imputation through the chained equations (MICE) 
framework. To detail, first, random values were assigned 
for all missing metals. Next, for each metal, the model 
outlined above was fit to the observations with non-
missing values. The parameters of that fitted model were 
re-sampled according to a normal distribution with mean 
given by the maximum likelihood estimate and standard 
deviation given by the estimated standard error. Then, 
the missing values of the metal were imputed according 
to the expected values given by the fitted model and the 
re-sampled parameter values. This cycle was repeated 
over 30 iterations so that the imputations converged and 
were stable across sequential iterations (checked via trace 
plots of imputation means and standard deviations) and 
imputed values from the 30th iteration were kept for sub-
sequent analyses. The imputed data contained values for 
all metals of interest for every well measurement in the 
original dataset. Imputation was performed using the 
“mice” package in R [46, 47] and the Tobit regression rou-
tine is available as part of the “qgcomp” package [48, 49].

Birth certificate data
Birth certificate data were obtained from the NC Birth 
Defects Monitoring Program (NCBDMP). The NCBDMP 
is an active, population-based surveillance system oper-
ated by the State Center for Health Statistics that col-
lects information about all birth defect cases among NC 
resident infants [49]. The NCBDMP also collects birth 
certificate records of all live births in NC, which was the 
basis of the NC-BIRTH cohort used in this study. Obstet-
ric estimates of gestational age were used for gestational 
age for this study [50]. GPS-based latitude and longitude 
of maternal residence at delivery were recorded for most 
birth certificates. Births with missing GPS information 
on latitude and longitude were geocoded from maternal 
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residence addresses using ArcGIS (ESRI, Redlands, Cali-
fornia). The latitude and longitude coordinates for each 
birth were then matched to census tracts using the R 
“tigris” package [51].

We included data on all NC resident live births between 
2003 and 2015 (n = 1,600,409) (Figure S1). A total of 758 
records were removed for having non-NC addresses or 
inaccurate geographical information. Further, n = 104,128 
records were removed as they were the birth of multi-
ples or anomalous singletons. These were removed as 
they have a different etiology of PTB than non-anom-
alous singletons, the focus of the study. In addition, 
births reported at gestational ages less than 20 weeks or 
at or greater than 44 weeks were removed, as reporting 
of births less than 20  weeks is likely variable and over 
44 weeks is likely a clerical error due to current obstet-
ric practices. Lastly, n = 164,124 records had a maternal 
residence at delivery in a census tract with no well water 
tests; therefore, they could not be assigned exposure and 
were thus removed. Thus, the final cohort consisted of 
n = 1,329,071 non-anomalous singleton live births.

Covariate selection
Confounders were selected a priori using a directed acy-
clic graph (DAG) approach and analyzed utilizing Dag-
itty (v3.0) [52, 53]. The DAG used is shown in Figure S2. 
The minimally sufficient set of covariates to control for 
confounding was identified as an individual’s age, race 
and ethnicity, smoking status, and socioeconomic status 
(education and income) as well as season of conception 
and co-pollutants. Covariates were coded in the follow-
ing manner: age (years, using a quadratic term), race and 
ethnicity (White non-Hispanic, Black non-Hispanic, His-
panic, Asian/Pacific Islander, American Indian, Other/
unknown, using categorical disjoint indicator variables), 
smoking status (smoker, non-smoker, as a binary vari-
able), education (less than high school, completed high 
school, more than high school, as an ordinal categorical 
variable), tract level income (percentage of residents in a 
census tract below the poverty line, using quartiles as an 
ordinal categorical variable), season of conception (win-
ter, spring, summer, fall, as disjoint indicator variables), 
and co-pollutants (average of the nitrates and nitrites 
concentration as less than or equal to the  50th percentile, 
above the  50th percentile and less than or equal to the  90th 
percentile, or above the  90th percentile, as an ordinal cat-
egorical variable). Further details regarding justification 
for and generation of covariate variables are provided in 
Additional File 1.

Single metals modeling
Crude and adjusted (for confounders listed above) 
logistic regression models were fit to generate odds 

ratios (OR) and 95% confidence intervals for each of 
the seven individual metals of interest. Models were 
fit in R (v4.0.2) using the glm function. The primary 
outcome was PTB (< 37  weeks’ gestation). Secondary 
outcomes of interest included very PTB (< 32  weeks’ 
gestation) and extremely PTB (< 28  weeks’ gestation). 
Using the imputed data described above, for each 
metal the census tract level mean concentration as well 
as the percentage of tests exceeding the EPA MCL (or 
other regulatory standard) were calculated. All stand-
ards utilized are listed in Table S1. We note that MCLs 
are not health-based standards but are set as close as 
is deemed feasible given treatment and detection tech-
nologies to the public health goal of Maximum Con-
taminant Level Goal (MCLG). The MCLG is the level 
at which no known adverse effects are expected to 
occur, including reproductive outcomes such as pre-
term birth, based on the available epidemiologic and 
toxicologic evidence. For reference, Table S1 also lists 
the MCLGs.

Two parameterizations were used to model expo-
sure: one based on the tract level mean concentration 
and one based on the proportion of tests exceeding 
the EPA regulatory standard in a tract. For the first, 
tract level mean metal concentrations were coded as 
less than or equal to the  50th percentile, above the  50th 
percentile and less than or equal to the  90th percen-
tile, or above the  90th percentile, generating an ordinal 
categorical variable. This coding scheme was decided 
by balancing three competing factors: (1) accurately 
capturing the functional form (evaluated using quad-
ratic spline plots), (2) generating a reasonable expo-
sure contrast with the constraints of right-skewed data 
(given a high percentage of values below the LOR), and 
(3) not relying on extremes of the exposure distribu-
tion with lower sample size. For the second approach, 
binary variables were generated to compare census 
tracts in which over 25% of well water tests for a given 
metal exceeded EPA regulatory standard, to those in 
which less than 25% of tests exceeded the EPA regula-
tory standard.

Metal mixtures modeling
To estimate the effect of exposure to metal mixtures via 
private well water on PTB, we utilized quantile-based 
g-computation, accessible via the “qgcomp” R package 
[54, 55]. Quantile-based g-computation estimates an 
overall mixture effect, defined as the effect of simultane-
ously increasing all metal concentrations by one quartile, 
as well as weights for each component exposure, cor-
responding to its proportion of the negative or positive 
“partial effect.” Using the qgcomp.noboot function, we fit 
crude and adjusted logistic regression models assessing 
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the effect of all metals on PTB, very PTB, and extremely 
PTB.

We used sample splitting to estimate partial effects. 
In this process, the sample is split into a training (30%) 
and a validation (70%) set with random allocation. In the 
training dataset, a quantile-based g-computation model 
was fit to assess whether a metal was considered to have a 
positive or negative weight. Then, utilizing the validation 
set, quantile-based g-computation is used to estimate the 
effect of two distinct metal mixtures while adjusting for 
other metals: metals found in the training set to have a 
positive (or negative) effect in the metal mixture. Further 
details regarding the metal mixtures modeling are pro-
vided in Additional File 1.

Effect measure modification by maternal race and ethnicity
Adjusted ORs (with 95%CI) were estimated within strata 
of race and ethnicity groups using the “qgcompint” pack-
age (v0.7.0) [56], an extension of the qgcomp package. 
The stratum-specific estimates can be interpreted as the 
effect of increasing all metal concentrations by one quar-
tile within the index race and ethnicity group.

Sensitivity analysis
To refine exposure assessment, we repeated the analysis 
on two subsets of individuals in this cohort more likely 
to be using private well water as their primary drinking 
water source, leveraging a dataset of the number of pre-
dicted private well users in a census tract based on John-
son et al. 2019 [57]. Specifically, one subset was restricted 
to only birth certificate records where residence at deliv-
ery was in a census tract with 50% or more predicted well 
water users (n = 202,897, 15.3% of the study population), 
and the second was restricted to census tracts with 25% 
or more predicted well water users (n = 445,002, 33.5%). 
Further details regarding the sensitivity analysis are pro-
vided in Additional File 1.

Results
Study population characteristics
The study population included 1,329,071 singleton, 
non-anomalous (i.e., without congenital defects or 
aneuploidy) live births in NC between 2003 and 2015 
(Table  1). Among these, 124,227 (9.4%) were born pre-
term, which included 9,495 (0.7%) very PTBs (≥ 28 weeks’ 
gestation and < 32  weeks’ gestation) and 7,718 (0.6%) 
extremely PTBs (< 28 weeks’ gestation). PTB prevalence 
was greater for male infants, individuals who identified 
as non-Hispanic Black, individuals with less than a high 
school education, and individuals who smoked during 
pregnancy. Education and smoking status had the great-
est proportion of missing data, with both variables hav-
ing 8.9% missing.

Effects of individual metals in private wells on the odds 
of PTB
Metals associated with an increased risk of PTB
We found that cadmium and lead were individually asso-
ciated with an increased risk of PTB and that chromium 
may also be a contributing factor. Compared to individu-
als residing in census tracts with cadmium below the  50th 
percentile, individuals residing in tracts with cadmium 
between the  50th and  90th percentile or above the  90th 
percentile had a slight increase in adjusted odds of PTB 
(aOR: 1.02 (95% CI: 1.00,1.04), 1.02 (95% CI: 0.99,1.05), 
respectively) (Table  2, Fig.  1). The effect size was more 
substantial when evaluating the percentage of tests 
exceeding the standard as the exposure. Compared to 
individuals in tracts with less than 25% of tests exceed-
ing the MCL for cadmium (5  ppb), individuals residing 
in census tracts where 25% or more of the tests exceeded 
the MCL had 11% higher adjusted odds of PTB (aOR 1.11 
(95% CI: 1.00,1.23) (Table 2, Fig. 2).

Lead demonstrated an increasing monotonic trend 
with respect to PTB. As with cadmium and chromium, 
the effect sizes were generally small. Compared to indi-
viduals residing in census tracts with lead below the  50th 
percentile, those residing in tracts with lead between 
the  50th and  90th percentile had a 1% increase in the 
adjusted odds of PTB (aOR 1.01 (95% CI: 1.00,1.03)) and 
those in tracts with lead above the  90th percentile had a 
4% increased adjusted odds of PTB (aOR 1.04 (95% CI: 
1.02,1.07) (Table 2, Fig. 1). In addition, compared to indi-
viduals in tracts with less than 25% of tests exceeding the 
MCL for lead (15  ppb), individuals residing in census 
tracts where 25% or more of tests exceeded the MCL had 
1.10 (95% CI: 1.02,1.18) times the adjusted odds of PTB 
(Table 2, Fig. 2).

Chromium was associated with a small increased 
risk of PTB, although findings were more imprecise 
and varied across different exposure parameters. Com-
pared to individuals residing in census tracts with chro-
mium below the  50th percentile, individuals residing 
in tracts with cadmium between the  50th and  90th per-
centile had 1.02 times the adjusted odds of PTB (95% 
CI: 1.00, 1.03) (Table  2, Fig.  1). However, the adjusted 
odds ratio corresponding to individuals in tracts with 
chromium above the  90th percentile was 0.99 (95% CI 
0.97, 1.02), thus a monotonic dose response was not 
observed. While the confidence intervals were wide, 
when evaluating exposure as the percentage of tests 
that exceeded the MCL, chromium was also associated 
with an increase in PTB (aOR 1.06 (95% CI: 0.77,1.43) 
(Table 2, Fig. 2).

In general, for these three metals, evaluations compar-
ing the  50th and  90th percentile exposures yielded small 
aORs that were close to the null, suggesting that there 
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may be a true small effect at these exposure ranges or 
that the effect is null. However, assessing exposure based 
on the percentage of exceedances of the MCL within a 

tract yielded stronger effect sizes, which suggests that the 
effect on preterm birth may occur primarily at high expo-
sure levels.

Table 1 Summary of sociodemographic and clinical characteristics of the study population

The NC-BIRTH study population includes singleton, non-anomalous live births between 2003 to 2015 in NC. Specifically, it includes live births in NC of individuals 
with known date of last menstrual period (LMP) between August 14, 2002 and February 19, 2013 (i.e. gestational age > 20 weeks by January 1, 2003 and < 45 weeks by 
December 31, 2013)

All births Term birth ≥ 37 weeks’ 
gestation

Preterm 
birth < 37 weeks’ 
gestation

N (%) N (%) N (%)

1,329,071 1,368,968 124,227

Fetal sex
 Male 675,994 (50.9) 617,728 (50.7) 58,266 (53.0)

 Female 653,074 (49.1) 601,443 (49.3) 51,631 (47.0)

 Missing 3 1 2

Race/ethnicity (of birthing parent)
 White non-Hispanic 773,537 (58.2) 715,722 (58.7) 57,815 (52.6)

 Black non-Hispanic 292,088 (22.0) 258,455 (21.2) 33,633 (30.6)

 Hispanic 200,411 (15.1) 186,729 (15.3) 13,682 (12.4)

 Asian/Pacific Islander 41,364 (3.1) 38,595 (3.2) 2769 (2.5)

 American Indian 19,286 (1.5) 17,484 (1.4) 1802 (1.6)

 Other/unknown 2385 (0.2) 2187 (0.2) 198 (0.2)

Age
 < 20 134,939 (10.2) 122,173 (10.0) 12,766 (11.6)

 < 30, >  = 20 711,355 (53.5) 654,089 (53.7) 57,266 (52.1)

 < 40, >  = 30 453,069 (34.1) 416,445 (34.2) 36,624 (33.3)

 >  = 40 29,690 (2.2) 26,451 (2.2) 3239 (2.9)

 Missing 23 19 4

Education
 Less than high school 249,935 (20.4) 226,962 (20.2) 22,973 (22.7)

 Completed high school 319,452 (26.1) 290,188 (25.9) 29,264 (28.9)

 More than high school 654,490 (53.5) 605,434 (53.9) 49,056 (48.4)

 Missing 118,089 108,399 9690

Smoking during pregnancy
 Non-smoker 1,086,801 (88.9) 1,001,059 (89.2) 85,742 (84.8)

 Smoker 136,343 (11.1) 120,916 (10.8) 15,427 (15.2)

 Missing 118,824 109,012 9812

Season of conception
 Winter (Dec, Jan, Feb) 336,098 (25.3) 308,664 (25.3) 27,434 (25.0)

 Spring (Mar, Apr, May) 329,472 (24.8) 301,626 (24.7) 27,846 (25.3)

 Summer (June, Jul, Aug) 324,489 (24.4) 297,646 (24.4) 26,843 (24.4)

 Fall (Sept, Oct, Nov) 339,012 (25.5) 311,236 (25.5) 27,776 (25.3)

Delivery
 Vaginal 947,615 (71.3) 878,675 (72.1) 68,940 (62.7)

 Caesarean 381,239 (28.7) 340,309 (27.9) 40,930 (37.3)

 Missing 250 214 36

Preterm birth severity subtypes
 Extreme preterm birth (< 28 weeks) 7718 (0.6) n/a 7718 (7.0)

 Very preterm birth (28 to < 32 weeks) 9495 (0.7) n/a 9495 (8.6)

 Moderate to late preterm birth (32 to < 37 weeks) 92,686 (7.0) n/a 92,686 (84.3)
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Table 2 Crude and adjusted ORs for PTB (< 37 weeks’ gestation) based on tract-level metal concentrations in private wells

Note that for each metal, two models were fit. First, models were fit comparing individuals in tracts with low (mean tract-level metal concentration =  <  50th percentile 
of state-wide metal concentration), medium (mean tract-level metal concentration >  50th and < 90th percentile of state-wide metal concentration) and high (mean 
tract-level metal concentration >  = 90th percentile of state-wide metal concentration). Second, models were fit comparing individuals in tracts in which at or over 25% 
of well water test reported concentrations above the EPA standard. Models were adjusted for smoking, age, race/ethnicity, education, season of conception, tract-level 
poverty, tract-level nitrates and nitrites

Metal ppb Non-cases Cases Crude OR (95% CI) Adjusted* OR (95% CI)

Arsenic
 <  =  50th perc 0.220 609,926 55,433 1.00 (ref.) 1.00 (ref.)

 >  50th perc to < 90th perc 487,868 43,709 0.99 (0.97,1.00) 0.98 (0.97,1.00)

 >  = 90th perc 2.838 121,378 10,757 0.98 (0.95,1.00) 0.97 (0.94,0.99)

 tract with < 25% of tests >  = EPA standard Standard=10 1,197,886 21,286 1.00 (ref.) 1.00 (ref.)

 tract with >  = 25% of tests >  = EPA standard 107,999 1900 0.99 (0.94,1.04) 0.97 (0.92,1.02)

Cadmium
 <  =  50th perc 0.007 609,466 55,164 1.00 (ref.) 1.00 (ref.)

 >  50th perc to < 90th perc 488,279 43,653 0.99 (0.98,1.00) 1.02 (1.00,1.04)

 >  = 90th perc 0.127 121,427 11,082 1.01 (0.99,1.03) 1.02 (0.99,1.05)

 tract with < 25% of tests >  = EPA standard Standard=5 1,214,353 4819 1.00 (ref.) 1.00 (ref.)

 tract with >  = 25% of tests >  = EPA standard 109,433 466 1.07 (0.97,1.18) 1.11 (1.00,1.23)

Chromium
 <  =  50th perc 0.579 608,834 55,735 1.00 (ref.) 1.00 (ref.)

 >  50th perc to < 90th perc 488,409 43,538 0.97 (0.96,0.99) 1.02 (1.00,1.03)

 >  = 90th perc 2.872 121,929 10,626 0.95 (0.93,0.97) 0.99 (0.97,1.02)

 tract with < 25% of tests >  = EPA standard Standard= 100 1,214,353 435 1.00 (ref.) 1.00 (ref.)

 tract with >  = 25% of tests >  = EPA standard 109,850 49 1.25 (0.92,1.66) 1.06 (0.77,1.43)

Copper
 <  =  50th perc 21.096 608,590 56,031 1.00 (ref.) 1.00 (ref.)

 >  50th perc to < 90th perc 488,791 43,089 0.96 (0.95,0.97) 1.01 (0.99,1.03)

 >  = 90th perc 141.545 121,791 10,779 0.96 (0.94,0.98) 0.98 (0.95,1.01)

 tract with < 25% of tests >  = EPA standard Standard = 1300 1,214,840 4332 1.00 (ref.) 1.00 (ref.)

 tract with >  = 25% of tests >  = EPA standard 109,510 389 1.00 (0.90,1.10) 0.52 (0.13,1.34)

Lead
 <  =  50th perc 1.433 609,888 54,784 1.00 (ref.) 1.00 (ref.)

 >  50th perc to < 90th perc 487,904 43,740 1.00 (0.99,1.01) 1.01 (1.00,1.03)

 >  = 90th perc 9.104 121,380 11,375 1.04 (1.02,1.06) 1.04 (1.02,1.07)

 tract with < 25% of tests >  = EPA standard Standard= 15 1,191,607 27,565 1.00 (ref.) 1.00 (ref.)

 tract with >  = 25% of tests >  = EPA standard 107,257 2642 1.07 (1.02,1.11) 1.10 (1.02,1.18)

Manganese
 <  =  50th perc 33.626 609,411 55,515 1.00 (ref.) 1.00 (ref.)

 >  50th perc to < 90th perc 488,057 43,761 0.98 (0.97,1.00) 0.99 (0.97,1.00)

 >  = 90th perc 188.923 121,704 10,623 0.96 (0.94,0.98) 0.98 (0.95,1.00)

 tract with < 25% of tests >  = EPA standard Standard= 300 1,176,657 42,515 1.00 (ref.) 1.00 (ref.)

 tract with >  = 25% of tests >  = EPA standard 106,221 3678 0.96 (0.93,0.99) 0.96 (0.92,1.01)

Zinc
 <  =  50th perc 126.764 608,922 55,763 1.00 (ref.) 1.00 (ref.)

 >  50th perc to < 90th perc 487,844 43,642 0.98 (0.96,0.99) 1.01 (0.99,1.02)

 >  = 90th perc 1592.883 122,406 10,494 0.94 (0.92,0.96) 0.95 (0.92,0.97)

 tract with < 25% of tests >  = EPA standard Standard= 5000 1,210,117 9055 1.00 (ref.) 1.00 (ref.)

 tract with >  = 25% of tests >  = EPA standard 109,200 699 0.86 (0.79,0.92) 0.77 (0.56,1.02)
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Metals associated with a reduction in the risk of PTB
Copper and zinc concentrations in private wells were 
associated with reduced odds of PTB (Table 2, Fig. 1). 
Specifically, compared to individuals residing in cen-
sus tracts with copper or zinc below the  50th percen-
tile, individuals residing in census tracts with copper or 
zinc above the  90th percentile had 2–5% lower adjusted 
odds of PTB (copper aOR 0.98 (95% CI: 0.95,1.01), 
zinc aOR 0.95 (95% CI: 0.92, 0.97)). When assessing 

residence in tracts with > 25% of tests exceeding the 
MCL as the exposure, both copper and zinc were asso-
ciated with substantial reductions in the adjusted odds 
of PTB (copper aOR 0.53 (95% CI: 0.13,1.34), zinc aOR 
0.77 (95% CI: 0.56,1.02)) (Table  2, Fig.  2). However, 
both of these estimates were accompanied with large 
confidence intervals.

Arsenic and manganese both demonstrated small 
monotonic dose response trends with increasing metal 

Fig. 1 Forest plots of aORs for PTB based on tract-level metal concentrations in private wells. Models were fit comparing individuals in tracts 
with low (mean tract-level metal concentration =  <  50th percentile of state-wide metal concentration), medium (mean tract-level metal 
concentration >  50th and < 90th percentile of state-wide metal concentration) and high (mean tract-level metal concentration >  = 90th percentile 
of state-wide metal concentration). Models were adjusted for smoking, age, race/ethnicity, education, season of conception, tract-level poverty, 
tract-level nitrates and nitrites

Fig. 2 Forest plots of aORs for PTB based on tract-level exceedances of standards in private wells. Models were fit comparing individuals in tracts 
in which at or over 25% of well water tests reported concentrations above the EPA MCL. Models were adjusted for smoking, age, race/ethnicity, 
education, season of conception, tract-level poverty, tract-level nitrates and nitrites
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concentrations associated with reductions in adjusted 
odds of PTB (Table  2, Fig.  1). Compared to individu-
als residing in census tracts with arsenic below the  50th 
percentile, those in tracts with arsenic above the  90th 
percentile had 0.97 times the adjusted odds of PTB (95% 
CI: 0.94,0.99). Similarly, compared to individuals residing 
in census tracts with manganese below the  50th percen-
tile, those in tracts with manganese above the  90th per-
centile had 0.98 times the adjusted odds of PTB (95% CI: 
0.95,1.00).

Effect of metal mixtures in private wells on the odds of PTB
Increasing the mean census tract concentration of all 
metals by one quartile was not notably associated with 
PTB (aOR: 0.98 (95% CI: 0.94,1.02) (Table 3). Cadmium 
and lead had the largest positive weights (0.52 and 0.33, 
respectively), indicating that they contributed the most 
towards increasing the odds of PTB within the mixture 
(Table  3). Conversely, zinc and arsenic had the largest 
negative weights (-0.37 and -0.36, respectively), indicat-
ing that they contributed the most towards decreasing 
the odds of PTB within the mixture.

In the partial effects approach, a more pronounced 
effect was observed. Specifically, cadmium, lead, and 
chromium were all identified to be positively associated 
with PTB in the training set. In the validation dataset, 
increasing the mean census tract concentration of each 
of these by one quartile was associated with 1.02 (95% 
CI: 1.01,1.03) times the adjusted odds of PTB (Table 3, 
Fig. 3). Cadmium most strongly contributed to this asso-
ciation with a 0.65 weight, followed by lead with a 0.20 

weight, mirroring the single metals findings (Table  3). 
Increasing the mean census tract concentration of man-
ganese, zinc, arsenic, and copper by one quartile (all 
identified to be negatively associated with PTB in the 
training set) was associated with 0.99 times the adjusted 
odds of PTB (95% CI: 0.97,1.00) (Table  3). Manganese 
within this metal mixture was positively associated with 
PTB (Table  3). Mixture components that switch direc-
tion between the training and validation sets can be 
interpreted to likely have null partial effects, reinforced 
by manganese’s small individual coefficient value. These 
results were robust to different training sets, which 
is described in further detail in Additional File 1 and 
Tables S2 and S3.

Racial and ethnic disparities of the effect of metal mixture 
exposure on PTB
When the effect of increasing all metals by one quar-
tile was examined within strata of race and ethnic-
ity, the effect was most pronounced among American 
Indian individuals. Specifically, a one-quartile increase 
in the mean census tract concentration of all metals 
was associated with 20% higher adjusted odds of PTB 
among American Indian individuals (OR: 1.19 (95% CI: 
1.06,1.34)) (Table  4). Asian and/or Pacific Islander indi-
viduals also had an increased risk of PTB in relation to 
the metal mixture (aOR: 1.08 (95% CI: 0.99, 1.18)). Black 
non-Hispanic individuals, Hispanic individuals, and indi-
viduals for whom their race was coded in the birth cer-
tificate as Other or unknown had stratum specific aORs 
slightly below the null.

Table 3 Summary of results from quantile-based g-computation modeling

Model A includes all metals in the exposure matrix. Model B and C contain metals that were associated in the positive direction and the negative direction, 
respectively in the training data set in the quantile-based g computation partial effect modelling. The weights, that sum to 1 or -1 for each direction, represent the 
proportion of each metal’s contribution to the partial effect in the negative (weight < 0) or positive (weight > 0) direction. The adjusted coefficient for each metal 
represents the independent effect size for that metal. Models were adjusted for smoking, age, race/ethnicity, education, season of conception, tract-level poverty, 
tract-level nitrates and nitrites

Model Interpretation Crude OR (95% CI) Adjusted* OR (95% CI) Adjusted weights Adjusted 
coefficients

A) Standard quantile-based 
g-computation

Increasing all metals by one 
quartile (ppb)

0.97 (0.96,0.98) 1.00 (0.99,1.02) Cadmium
Lead
Chromium
Zinc
Arsenic
Copper
Manganese

0.52
0.33
0.15
-0.37
-0.36
-0.20
-0.07

Cadmium
Lead
Chromium
Zinc
Arsenic
Copper
Manganese

0.015
0.009
0.004
-0.009
-0.009
-0.005
-0.002

B) Positive direction partial 
effects quantile-based 
g-computation

Increasing all metals 
that were in the positive 
direction in the training set 
by one quartile (ppb)

1.00 (0.99,1.01) 1.02 (1.01,1.03) Cadmium
Lead
Chromium

0.65
0.20
0.15

Cadmium
Lead
Chromium

0.012
0.004
0.003

C) Negative direction 
partial effects quantile-based 
g-computation

Increasing all metals 
that were in the negative 
direction in the training set 
by one quartile (ppb)

0.96 (0.95,0.97) 0.99 (0.97,1.00) Zinc
Arsenic
Copper
Manganese

-0.51
-0.43
-0.05
1.00

Zinc
Arsenic
Copper
Manganese

-0.007
-0.006
-0.001
0.001
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Metals, metal mixtures and very or extremely PTB
Overall, similar point estimate trends were observed 
for all individual metals when looking at the outcome 
of very or extremely PTB, albeit most confidence inter-
vals were wide and spanned the null, likely due to the 
reduced sample size of cases (Table S4). Notably, for 
lead, compared to individuals in tracts with < 25% of 
tests exceeding the MCL, individuals residing in cen-
sus tracts where over 25% of tests exceeded the MCL 
had 1.46 (95% CI: 1.17,1.81) times the adjusted odds of 
extremely PTB, mirroring findings from the main PTB 
analysis (Table S4).

In the mixtures models, increasing all exposures by 
one quartile did not produce notable associations with 
very or extremely PTB as outcomes in the overall or 
partial effects approach (Table S5). Still, similar trends 
were observed as with the PTB analysis regarding the 
directionality of individual metals contributing to the 
overall mixture effects (Table S5).

Sensitivity analysis
As a sensitivity analysis, the models were run on two sub-
sets of the data: one restricted to only birth certificate 
records where maternal residence at delivery was in a 
census tract with 50% or more predicted well water users 
and one restricted to census tracts with 25% or more pre-
dicted well water users. In both subsets of the cohort, we 
observed similar estimates as in the full analysis. How-
ever, in most cases, the confidence intervals were wider, 
encompassing the null. Results for the sensitivity analysis 
are described in detail in Additional File 1 and in Tables 
S6 and S7.

Discussion
In this study, we evaluated over 1.3 million births in 
NC to assess the risk of PTB in relation to exposure to 
a suite of metals (arsenic, cadmium, chromium, copper, 
manganese, lead, and zinc), both individually and in mix-
tures. We focused on exposure via private well water, an 

Fig. 3 Results from the partial effects quantile-based g-computation modeling. Forest plot of aOR* for PTB associated with increasing all metal 
concentrations in private wells by one quartile (“Overall”), just the metals that had negative weights in the training set (“Negative direction”), 
and just the metals that had a positive weights in the training set (“Positive direction”). Models were adjusted for smoking, age, race/ethnicity, 
education, season of conception, tract-level poverty, tract-level nitrates and nitrites

Table 4 Metal mixture effects on preterm birth stratified by race 
and ethnicity

a adjusted for smoking, age, education, season of conception, tract-level poverty, 
tract-level nitrates and nitrites

Adjusteda OR (95% CI) for metal 
mixture within strata of race and 
ethnicity

White non-Hispanic 1.00 (0.98,1.02)

Black non-Hispanic 0.98 (0.96,1.00)

Hispanic 0.97 (0.94,1.01)

Asian/Pacific Islander 1.08 (0.99,1.18)

American Indian 1.19 (1.06,1.34)

Other/unknown 0.95 (0.69,1.30)
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under-researched source of exposure [27], and employed 
a novel mixtures methodology to understand the effect 
of exposure to multiple metals. To our knowledge, this 
study is among the first to utilize partial effects quantile-
based g-computation to test mixture effects of metals on 
PTB. This approach is beneficial for distinguishing the 
metals with the strongest influence on the outcome of 
PTB. We found that private well water levels of lead and 
cadmium were individually associated with an increased 
risk of PTB. In contrast, zinc and copper were associated 
with a reduced risk of PTB. A mixture of cadmium, lead, 
and chromium was also associated with an increased risk 
of PTB. In addition, we found that the effect of the overall 
metal mixture was most pronounced among individuals 
who identified as American Indian, highlighting the need 
to center environmental justice in consideration of the 
consequences of metal exposure via private wells.

Other studies have shown that lead exposure increases 
the risk of PTB, even at low levels [3]. The present study 
confirms this relationship and highlights the specific 
context of private well water exposure. This is critical 
because private well water users are often more vulnera-
ble to lead contamination than those on public water [11, 
15, 16, 27]. While fewer studies have assessed the rela-
tionship between cadmium exposure and PTB compared 
to lead, there is evidence to suggest that prenatal cad-
mium exposure increases the risk of PTB [58]. This may, 
in part, be driven by the well-recognized link between 
cadmium exposure and preeclampsia, the leading etiol-
ogy of medically-indicated PTB [59, 60]. Interestingly, 
selenium and zinc may attenuate the effect of cadmium 
on preeclampsia risk, suggesting a role for dietary inter-
ventions and reinforcing the potentially protective role of 
zinc, as observed in the present study [60, 61].

Our mixtures modeling approach also identified lead 
and cadmium to be key contributors to the overall mix-
ture effect on PTB. This finding reinforces the value of 
using a data-adaptive approach to parse out the effect of 
risk-inducing and risk-reducing components that, when 
examined together, may mask the toxicity of compounds 
within a mixture. This knowledge can be used to inform 
the development of targeted interventions, such as water 
filtration systems, that reduce toxic contaminants while 
avoiding reductions in beneficial nutrients. Few stud-
ies have evaluated the role of mixtures of metals on PTB 
risk. One study by Ashrap et al., found that lead was also 
a dominant driver of toxicity among a toxic metal group, 
mirroring our findings [6]. In contrast, Kim et al. found 
that only the essential metals, not the toxic or seafood-
intake-related metals, were associated with an increased 
risk of PTB [8]. Inconsistencies across studies may be 

driven by differences in exposure assessment (i.e., envi-
ronmental measures versus individual biomarkers), mix-
tures modeling approaches, and the populations studied.

One unexpected finding was a lower risk of PTB asso-
ciated with arsenic and manganese well water concentra-
tions in both individual and mixture assessments. This 
finding is unlikely to be a true effect of arsenic, a known 
developmental toxicant that has been linked to low birth 
weight, spontaneous abortion, and other adverse birth 
outcomes [62, 63]. Manganese is essential at low doses; 
however, high manganese concentrations in NC well 
water have been linked to congenital disabilities and 
infant mortality, again making a true protective effect on 
PTB risk unlikely [18, 21]. Of note, this analysis excluded 
anomalous births; therefore, this etiology of PTB would 
not have been captured in these data. Arsenic and man-
ganese are highly co-occurring in NC; thus, their simi-
lar trends with PTB are likely due to their correlation 
[13, 18]. Furthermore, arsenic has been documented to 
co-occur with other metals, such as iron and selenium, 
that were not considered in this study that may represent 
residual confounding explaining this counterintuitive 
finding [64, 65].

Lastly, the metal mixture effect was most pronounced 
among American Indian individuals, which most likely 
reflects the environmental injustices American Indians 
have endured for centuries. American Indians – his-
torically forcefully removed from their tribal homelands 
and relocated to unoccupied lands contaminated and 
exploited by corporate and government entities – are 
disproportionately exposed to countless environmental 
hazards [66, 67]. American Indian populations, including 
pregnant women, have been documented to have higher 
than the national average blood and/or urine levels of 
lead, cadmium, arsenic, and manganese for which private 
well contamination is a likely contributor [68–73]. In the 
context of this study, in which we did not directly link 
individuals with well water exposures, this finding likely 
reflects variation between racial and ethnic groups in how 
accurately census tract level average well water concen-
trations equate to personal exposure. Specifically, given 
historical and current environmental injustices, includ-
ing municipal underbounding and relocation to polluted 
land, American Indian individuals are more likely than 
other groups to use contaminated well water [27, 29, 67]. 
Furthermore, given high levels of poverty among Ameri-
can Indian populations in NC (21.2% live below the pov-
erty line compared to 6.7% for non-Hispanic whites [74]), 
these communities likely face financial barriers to well 
water quality stewardship and household-level protec-
tions in the case of contamination. In a recent NC-based 
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study, American Indian participants were significantly 
less likely than White participants to have access to a 
water filter [75]. Furthermore, these populations may rely 
on support from county health department well water 
programs, which have been characterized as fractured 
and under-resourced, particularly in poorer counties [11, 
76, 77]. Thus, due to a lack of support for well water users 
among these communities, American Indians’ personal 
metal exposure may more directly correlate with local 
well water concentrations compared to other racial and 
ethnic groups. Despite evidence of the health effects of 
toxic metals among American Indians [78–81], few stud-
ies have examined metals’ contributions to reproductive 
health outcomes specifically, especially in the Southeast-
ern US, making our study finding particularly novel. Our 
findings highlight the need to tackle well water quality 
concerns among American Indian populations in NC 
by extending water service lines to peri-urban areas that 
have experienced municipal underbounding and provid-
ing resources for free or low-cost testing and treatment, 
such as household tabletop water filters [27, 82–84].

While this study is one of the largest to date to assess 
metal exposure via private drinking wells and PTB, it 
is not without limitations. First, while our finding that 
cadmium is associated with an increased risk of PTB is 
biologically plausible, it should still be interpreted cau-
tiously because air pollution, diet, and smoking, are other 
major exposure sources for cadmium, and detectable lev-
els of cadmium in the NCWELL database were low. Sec-
ond, it is important to note that data were constrained to 
maternal self-report of race and ethnicity among check-
list options on the birth certificate. There are numerous 
ways to measure race and ethnicity, and self-report does 
not capture experiences of discrimination and racism, a 
driver of racial health disparities [85]. This may explain, 
in part, why we did not observe an expected exacerbated 
metal mixture effect among Black non-Hispanic indi-
viduals, despite this community’s baseline risk and like-
lihood of exposure being higher. Other reasons for this 
unexpected finding could include the rural–urban resi-
dential distribution (which influences likelihood of being 
on private well water) of Black non-Hispanic individu-
als in the state and the representativeness of well water 
testing among different minority groups [86]. Further-
more, “American Indian” as a grouping is a conglomer-
ate term including federal and state-recognized tribes 
in NC, as well as members of non-recognized tribes, 
all with unique cultural and economic forces shaping 
the reproductive health of these individuals [74]. Third, 
by design, this study used an environmental exposure 
assessment, a proxy for personal internal dose which 
includes both actual intake of contaminated drink-
ing water and other sources of exposure including food 

and air pollution. However, the birth certificates do not 
include data on maternal drinking water source or use of 
water filters, likely leading to non-differential exposure 
misclassification. In this study design, we assumed that 
the residential address at birth was representative of the 
address throughout pregnancy, likely also leading to non-
differential exposure misclassification. Based on avail-
able data, it is not possible to determine the exact source 
of metals detected in well water (ie. geogenic sources, 
piping-derived and/or industry contamination, among 
other potential sources). Future research should inves-
tigate whether interventions to reduce well water-based 
toxic metal exposure impact PTB risk, especially among 
vulnerable communities, and should aim to identify spe-
cific sources of well water metals contamination. Fourth, 
while the NCWELL database is one of the largest data-
bases of its kind, it has limitations that have been previ-
ously documented [13]. Of particular relevance, the lead 
samples collected are generally flush samples which most 
likely underestimate true lead exposure [15, 87]. Lastly, 
the use of a birth certificate cohort allowed us to exam-
ine a large population; however, detailed information on 
each individual was limited therefore we could not dif-
ferentiate between spontaneous and medically-indicated 
PTB nor control for potential confounding by prior preg-
nancy and medical history. The use of birth certificates 
(live births only) also induces live-birth bias, which may 
underestimate social disparities resulting from environ-
mental exposures [88].

Conclusions
In conclusion, we analyzed 1.3 million birth certifi-
cates and the NC-WELL database  (twenty years of geo-
coded well water tests in NC) to evaluate the association 
between well water metal contamination and PTB. We 
found that concentrations of lead and cadmium in pri-
vate well water were associated with PTB both in sin-
gle-exposure and mixture-based analyses and that zinc 
was associated with a reduction in the risk of PTB. We 
also documented an enhanced metal mixture effect on 
increasing the risk of PTB among American Indian indi-
viduals, highlighting the need to use an environmental 
justice lens to address well water quality concerns and 
maternal/child health disparities in NC.
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