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Abstract 

Background Early life exposure to lead, mercury, polychlorinated biphenyls (PCBs), polybromide diphenyl ethers 
(PBDEs), organophosphate pesticides (OPPs), and phthalates have been associated with lowered IQ in children. In 
some studies, these neurotoxicants impact males and females differently. We aimed to examine the sex-specific 
effects of exposure to developmental neurotoxicants on intelligence (IQ) in a systematic review and meta-analysis.

Method We screened abstracts published in PsychINFO and PubMed before December 31st, 2021, for empirical 
studies of six neurotoxicants (lead, mercury, PCBs, PBDEs, OPPs, and phthalates) that (1) used an individualized bio-
marker; (2) measured exposure during the prenatal period or before age six; and (3) provided effect estimates on gen-
eral, nonverbal, and/or verbal IQ by sex. We assessed each study for risk of bias and evaluated the certainty of the evi-
dence using Navigation Guide. We performed separate random effect meta-analyses by sex and timing of exposure 
with subgroup analyses by neurotoxicant.

Results Fifty-one studies were included in the systematic review and 20 in the meta-analysis. Prenatal exposure 
to developmental neurotoxicants was associated with decreased general and nonverbal IQ in males, especially 
for lead. No significant effects were found for verbal IQ, or postnatal lead exposure and general IQ. Due to the limited 
number of studies, we were unable to analyze postnatal effects of any of the other neurotoxicants.

Conclusion During fetal development, males may be more vulnerable than females to general and nonverbal intel-
lectual deficits from neurotoxic exposures, especially from lead. More research is needed to examine the nuanced 
sex-specific effects found for postnatal exposure to toxic chemicals.
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Background
The prevalence of neurodevelopmental disorders (NDDs) 
is on the rise. From 1997 to 2017, the prevalence of hav-
ing any one NDD increased from 13 to 18%, especially 
among males [1]. Males have a twofold higher prevalence 
of NDDs than females due to a complex and dynamic 
interplay between genetic, hormonal, and environmental 
factors [2]. The rapid increase in the prevalence of NDDs, 
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especially in males, shows that we need more research on 
environmental causes to guide policy decisions.

While a variety of environmental factors may con-
tribute to the prevalence of NDDs, mounting evidence 
suggests that exposure to toxic chemicals during criti-
cal periods of development increases children’s risk of 
NDDs, including intellectual disabilities (ID), attention-
deficit/hyperactivity disorder (ADHD), and autism spec-
trum disorder (ASD) [3–5]. Moreover, experimental and 
epidemiological studies demonstrate that early-life expo-
sure to toxic chemicals can impact males and females dif-
ferently [6–8], potentially accounting for sex differences 
in a variety of NDDs. Nonetheless, the literature remains 
inconclusive regarding a sex-specific vulnerability. A bet-
ter understanding of the impact of toxic chemicals on 
sex-specific differential susceptibility can provide critical 
insight into the mechanisms underlying risk of NDDs.

The developing brain is susceptible to even low levels of 
toxic chemicals that might not have an adverse effect on 
adults [9]. Development is a period of rapid growth when 
the blood–brain barrier is more permeable and growing 
cells are more susceptible to toxic chemicals [10]. Thus, 
as toxic chemicals traverse the blood–brain barrier, they 
can interfere with sensitive biological processes such as 
neuronal migration, differentiation, and synaptogenesis 
[3]. Additionally, fetuses, infants, and young children 
may have immature metabolic pathways and enzymes to 
metabolize and excrete toxic chemicals [4].

Unfortunately, pregnant women and infants are 
exposed to a wide range of chemicals (i.e., developmen-
tal neurotoxicants) that can interfere with the developing 
central nervous system [11–13]. To reduce exposure and 
harm, Project TENDR (Targeting Environmental Neuro-
Development Risks; 2016) – an alliance of more than 50 
leading scientists, health.

professionals, and advocates – identified the follow-
ing as developmental neurotoxicants: lead, mercury, 
polychlorinated biphenyls (PCBs), polybromide diphenyl 
ether (PBDE) flame retardants, organophosphate pesti-
cides (OPPs), and phthalates [14]. Each of these develop-
mental neurotoxicants is widespread in North America 
and has a substantial amount of empirical support indi-
cating that they can cross the placenta and alter brain or 
endocrine function, even at low levels [14–21].

Developmental neurotoxicants may impact males and 
females differently [6–8]. Males and females differ in their 
anatomy, physiology, and biochemistry, all of which can 
contribute to sex-linked variations in toxicokinetics and 
toxicodynamics [22, 23]. Sex refers to an individual’s physi-
cal and biological characteristics that differentiate them as 
male and female. Males and females may differ in their pat-
terns of exposure as hormonal and social influences shape 
behaviours, activities, and characteristics [24]. Once a toxic 

chemical is absorbed via inhalation, ingestion, or dermal 
absorption, sex differences can also be found in distribution 
and metabolism. On average, females have greater body fat 
percentage than males [25, 26]. As a result, females may be 
more vulnerable to lipophilic chemicals that preferentially 
accumulate in fat tissue [27]. Moreover, there is evidence 
for sex differences in the activity of various cytochrome 
P-450  s (CYP450), the class of enzymes involved in the 
metabolism of toxic chemicals [28–30], as well as in the 
activity of glutathione peroxidase, which protects against 
oxidative damage [31].. Differential activity of detoxifica-
tion mechanisms can place one sex at heightened vulner-
ability compared with the other depending on the chemical 
of exposure.

In recognition of sex-based biological differences, the 
Institute of Medicine (IOM) published a report in 2001 
concluding that sex is a fundamental variable that should 
be considered at all levels of basic and clinical research 
[32]. Nevertheless, until 2005, sex was typically used as 
a confounder in neurotoxicology studies; few studies 
examined differential effects by sex. In 2005, the Scien-
tific Group on Methodologies for the Safety Evaluation 
of Chemicals (SGOMSEC) extended the arguments 
made by the IOM to the field of toxicology [33]. SGOM-
SEC recommended that future toxicological research 
should consider sex when designing and analyzing their 
studies [33].

To determine whether there were any existing system-
atic reviews or meta-analyses on the sex-specific effects 
of developmental neurotoxicants, we searched the data-
bases PubMed and PsychINFO for “systematic review” 
and “meta-analysis” in the title, combined with the search 
keywords “neurotox*”, “metal*”, “endocrine disrupt*”, “sex”, 
“gender”, “cognition”, “neurodev”. While some systematic 
reviews have examined sex-specific neurodevelopmental 
impacts from heavy metals [6, 8, 34, 35], phthalates [36], 
and developmental neurotoxicants more broadly [7], 
they have aggregated data across a variety of endpoints 
or timing of exposure [6–8, 34]. Aggregating data in such 
a way can result in vague conclusions and make it diffi-
cult to conduct a meta-analysis and quantitatively assess 
the strength of evidence. Most previous studies have also 
not considered risk of bias, weighing studies of varying 
quality equally. Without a better understanding of these 
sex effects, we may overlook a potentially harmful effect 
on one sex, especially given the higher rates of NDDs in 
males. Thus, a systematic review and meta-analysis of the 
data on sex-specific outcomes from neurotoxic exposure 
is of high research importance.

The present study aims to examine the sex-specific 
effects of developmental neurotoxicants in the con-
text of the specific neurotoxicant, the window of expo-
sure, and a specific outcome. IQ is the most studied 
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neurodevelopmental outcome in children [37]. Even mild 
IQ deficits predict poorer academic and occupational 
success as well as reduced emotional and physical well-
being [38]. Thus, the present study is a systematic review 
and meta-analysis to determine the sex-specific effects of 
general, verbal, and nonverbal IQ deficits from pre- and 
postnatal exposure to six developmental neurotoxicants: 
lead, mercury, PCBs, PBDEs, OPPs, and phthalates.

Methods
Our systematic review and meta-analysis was conducted 
according to the Preferred Reporting Items for System-
atic Reviews and Meta-Analysis (PRISMA) statement. The 
protocol for our review was registered with PROSPERO 
in 2019 prior to formal screening and was revised in 2020, 
given changes in our methodology after the pilot screening 
(CRD42020156526). The changes in methodology and rea-
sons for those changes are in our PROSPERO registration.

Study question
The search question was: “Among the general population, 
what are the sex-specific effects of exposure to develop-
mental neurotoxicants (i.e., lead, mercury, PCBs, PBDEs, 
phthalates, and OPPs) on intellectual abilities?”.

Search strategy
Titles and abstracts up until December 31st, 2021, were 
extracted from the electronic databases PubMed and 
PsycINFO. The search strategy was developed in collabo-
ration with an academic librarian at York University and 
the collective expertise of review authors (see Table  1). 

Additional filters were applied to ensure we extracted 
English, peer-reviewed human studies on children.  We 
also screened the reference lists of included papers 
to identify any additional studies. The search strategy 
was first piloted to ensure the sensitivity and specific-
ity in retrieving articles aligned with our PECO state-
ment (changes to our search after pilot testing are in our 
PROSPERO protocol).

Study selection and eligibility criteria
Abstracts were screened by four reviewers (JR, JJ, AD, 
and CG) and then independently re-reviewed by a fifth 
reviewer (CG or RG) to determine whether they met 
the eligibility criteria. Eligibility criteria for Population, 
Exposure, Comparator, and Outcomes were defined and 
summarized in a PECO statement (Table 2) [39].

A full-text review was then independently carried 
out by three reviewers (CG, RG, and AD) for all study 
abstracts that met inclusion criteria. Included in the 
analysis were studies that [1] evaluated general, verbal, 
and/or nonverbal IQ and [2] reported the interaction by 
sex (i.e., interaction coefficient/p-value) or effects sepa-
rately by sex. Sex was defined as an individual’s physical 
and biological characteristics that differentiate them as 
male or female. A full-text review was also carried out for 
study abstracts in which there was ambiguity concerning 
whether they met the inclusion criteria or in which no 
abstract was available.

Data extraction
Two reviewers (CG and one of JJ, JR, RM, NS, and AD) 
independently extracted data on authors, publication 
year, study aim, design, population, sample size, exposure 
characteristics (toxicant, timing of exposure, biomarker, 
mean of exposure), outcome characteristics (IQ test, 
and age at IQ test), and results (regression coefficients, 
standard errors, p-values), using a standardized extrac-
tion form in Covidence (a systematic review software 
tool). A third reviewer (RG) settled any discrepancies. If 
a study was missing quantitative data, its corresponding 
author was contacted. If the author did not respond after 

Table 1 Example PubMed Search Strategy

No Search

1 neurotoxic* OR mercury OR PCB OR “polychlorinated biphenyl” 
OR PBDE OR “polybrominated diphenyl ethers” OR “flame retardants” 
OR phthalates OR OP OR organophosphates OR pesticides OR lead

2 cogniti* OR neurodev* OR intel* OR IQ

3 #1 AND #2

Table 2 PECO Statement

Population Humans of age 3–17 years at time of IQ test with toxicant exposure measured during the prenatal or early postnatal period (up to age 
six);

Exposure Exposure to one of the six neurotoxicants (lead, mercury, PCBs, PBDEs, OPPs, and phthalates; level of toxicant exposure was determined 
through an individualized biomarker (e.g., blood, hair, urine)

Comparator Children with lower levels of lead, mercury, PCBs, PBDEs, OPPS, or phthalates

Outcome IQ measured in individual children at ages 3–17 years. IQ assessments include (but are not limited to): Wechsler Preschool and Pri-
mary Scale of Intelligence (WPPSI), Wechsler Intelligence Scale for Children (WISC), Wechsler Abbreviated Scale of Intelligence (WASI), 
Stanford-Binet Intelligence Scale, and the McCarthy Scales of Children’s Abilities (MSCA)

Study Design Empirical epidemiological studies excluding case studies
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three attempts of contact over the course of a two-month 
period, the data were considered unretrievable.

Risk of bias
We evaluated risk of bias using Navigation Guide, a sys-
tematic review methodology developed by Woodruff and 
Sutton [43]Click or tap here to enter text.. This system-
atic review tool was designed to evaluate evidence relat-
ing environmental exposures to adverse health outcomes 
and has been recommended for use over similar tools 
[40]. Nine areas were assessed for risk of bias: selection 
bias, blinding, confounding, exposure, outcome, incom-
plete outcome data, selective outcome reporting, conflict 
of interest, and other threats to internal validity. Each 
area could be rated as “low”, “probably low”, “probably 
high”, or “high” risk of bias. Instructions for making risk 
of bias determinations were modified from Lam and col-
leagues’ systematic review [20] (Additional file 1: Appen-
dix A). Two reviewers (CG and one of JJ, JR, RM, NS, and 
AD) independently made risk of bias determinations for 
each study and all discrepancies were resolved by a third 
reviewer (RG).

Certainty of the evidence
Quality
We rated the overall quality of the evidence for each 
grouping in our meta-analysis as "high," "moderate," or 
"low." Initial classification of human observational stud-
ies was set at "moderate" quality [41]. Subsequently, we 
considered modifications ("decreases" or "increases") 
in the quality rating, taking into account eight different 
aspects: bias risk, indirectness, inconsistency, impre-
cision, the likelihood of publication bias, considerable 
effect size, dose–response, and the potential of residual 
confounding to lessen the overall impact estimate [42]. 
Guidelines for reviewers were based on those outlined 
in the Navigation Guide methodology protocol [43]. The 
rating possibilities consisted of 0 (no deviation from ini-
tial quality rating), − 1 (single level decrease), -2 (double 
level decrease), + 1 (single level increase), or + 2 (double 
level increase).

Strength
We rated the overall strength of the evidence for each 
grouping in our meta-analyses (i.e., associations between 
prenatal exposure and general, verbal, and nonverbal 
intelligence, as well as associations between postna-
tal lead exposure and general intelligence in males and 
females) based on four considerations:  quality of body 
of evidence;  direction of effect;  confidence in effect; 
and  other characteristics of the data that may influ-
ence certainty. Possible ratings were “sufficient evidence 
of toxicity,” “limited evidence of toxicity,” “inadequate 

evidence of toxicity,” or “evidence of lack of toxicity”, 
based on guidelines from Navigation Guide [43].

All study authors contributed to assessing the overall 
quality and strength of the evidence. Discrepancies were 
discussed until consensus was reached.

Evidence synthesis
Quantitative synthesis
Studies suitable for quantitative synthesis We identi-
fied studies suitable for quantitative synthesis based on 
the study features, exposure assessment, outcome assess-
ment, and method of data analysis (i.e., linear regres-
sion techniques). We considered studies that measured 
the exposure at any point during pregnancy or at birth 
as combinable measures of prenatal exposure. We con-
sidered studies that measured the exposure at any point 
from infancy to age six years as combinable measures of 
postnatal exposure. When regression coefficients were 
available for groups of chemicals, for instance, PBDE, 
PCB, phthalate, and OPP congeners, we considered stud-
ies that evaluated the sum of exposures (i.e., ΣDEHPs 
for phthalates, ΣPCBs for PCBs, ΣBDEs for PBDEs, and 
ΣDAPs for OPPs) as combinable.

We considered Full-Scale IQ (FSIQ) evaluated by any 
Wechsler test and the General Cognitive Index (GCI) 
evaluated by the McCarthy Scale of Children’s Abilities 
(MSCA) as combinable measures of general intelligence 
[44]. We considered verbal IQ (VIQ), or the Verbal Com-
prehension Index (VCI) evaluated by any Wechsler test 
and the Verbal Scale evaluated by the MSCA as combin-
able measures of verbal intelligence. We considered per-
formance IQ (PIQ) or the Perceptual Reasoning Index 
(PRI) evaluated by any Wechsler test, the Perceptual-Per-
formance Scale (PPS) evaluated by the MSCA, and the 
Snijders-Oomen Non-Verbal Intelligence Test (SON-R) 
as combinable measures of nonverbal intelligence [45]. 
Since Weschler, MSCA, and SON-R tests are standard-
ized with mean scores of 100 and a standard deviation of 
15, they were not rescaled.

When multiple effect sizes (i.e., Beta coefficients) were 
available from the same study or sample (e.g., multiple 
exposure measurements or outcome measurements), 
effect sizes based on the methodologies that most closely 
resembled the methodologies of the other included stud-
ies in the meta-analysis were selected to minimize het-
erogeneity among studies. If the same prospective cohort 
study included data on more than one neurotoxicant, 
they were considered as separate effects.

Effect size transformation To homogenize the mag-
nitude of effect observed in each study, results were 
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recalculated as an absolute change in the dependent vari-
able (i.e., IQ) for a relative difference of k = 1.5 times in 
the exposure variable (i.e., a 50% difference; see Addi-
tional file 1: Appendix B for additional information) [46]. 
For studies that did not report a standard error or con-
fidence interval, we calculated the standard error as a 
function of the t-statistic for the regression coefficient of 
the exposure.
 
Meta analysis We ran separate random effects meta-
analyses using the DerSimonian-Laird method [47] 
examining the male- and female-specific effects of pre-
natal exposures on general, nonverbal, and verbal intel-
ligence. Further, given that each neurotoxicant may differ 
in its route of exposure and toxicological effects, we also 
ran subgroup analyses by neurotoxicant, for those with at 
least two studies. Due to the limited number of studies 
available, we did not perform a separate analysis of PCBs 
for any intelligence outcome, nor separate analyses of 
OPPs or PBDEs for verbal intelligence.
Moreover, we ran separate random effects meta-analyses 
of the male- and female-specific effects of postnatal lead 
exposure on general intelligence. Due to the limited num-
ber of studies (i.e., fewer than two per neurotoxicant), 
we were unable to analyze postnatal effects of any of the 
other neurotoxicants. The results from the meta-analyses 
are graphed with forest plots.

Heterogeneity and publication bias We assessed the 
heterogeneity of studies using the τ2,  I2 and  H2 statistics 
[48]. We used Egger’s Test to assess potential publication 
bias via funnel plot asymmetry [49].
Sensitivity analyses To examine the influence of each 
study on the overall effect-size estimate, we used the 
leave-one-out method whereby the overall effect size was 
re-computed from a meta-analysis excluding one study at 
a time [50]. Moreover, we ran additional meta-analyses in 
which only included studies rated as “low” or “probably” 
low risk of bias across all areas.
All statistical analyses were run using Stata 17.0 
(Stata Corporation, College Station, TX, U.S.A.). 
A  p-value < 0.05 was considered statistically significant 
for all analyses in our study.

Narrative synthesis Studies not included in the meta-
analysis were narratively described in a table with data 
on the country/cohort, biomarker, mean of exposure, 
outcome measure, and a general interpretation of the 
study findings. Studies identified as “low” or “probably 
low” risk of bias across all nine areas were organized into 
meaningful groups based on our PECO components and 
then narratively described based on these same group-
ings [i.e., by timing (pre- or post-natal) and outcome 

measure (general, nonverbal, or verbal IQ)]. Given the 
limited number of studies in each grouping with data on 
each developmental neurotoxicant, we did not further 
subdivide these studies by neurotoxicant.

Results
Study selection
The PRISMA 2020 flow diagram is shown in Fig. 1. Our 
search retrieved 2843 unique articles, of which 450 met 
the initial inclusion criteria and were included in the full-
text review. Fifty-one articles fulfilled the full-text inclu-
sion criteria and were included in the systematic review 
[51–102]. Of the 51 studies included in the systematic 
review, 17 pertained to lead, 13 mercury, nine phtha-
lates, six OPPs, five PCBs, and five PBDEs. Four articles 
included data from exposure to more than one neuro-
toxicant, thus data on each neurotoxicant was included 
in the systematic  review86−89. Of the 51 studies included 
in the systematic review, 20 were included in the meta-
analyses [53–55, 57, 63, 64, 66, 67, 69, 73, 76, 79, 80, 83, 
88, 90, 95–97, 97, 99, 101].

Meta‑analysis study characteristics
We tabulated the characteristics of the studies in the 
meta-analysis, including the country/cohort, biomarker, 
mean of exposure in parts per billion (ppb), and the out-
come measure (Table 3).

Included studies were published between 1987 and 
2021 and involved between 188 and 1827 study partici-
pants from 14 different cohorts around the world. Nine 
studies were conducted in North America, seven in 
Europe, one in Australia, and three in Asia. Seven studies 
pertained to lead, four to mercury, two to PBDEs, three 
to OPPs, and five to phthalates. Studies measured neu-
rotoxicant exposure in urine (n = 9), blood (n = 9), inci-
sor teeth (n = 1) or umbilical cord tissue (n = 1). Sixteen 
studies measured toxicant exposure during the prenatal 
period, three measured toxicant exposure during the 
postnatal period, and one measured toxicant exposure 
during both the prenatal and postnatal period. Among 
the 20 studies included, 14 assessed intelligence using a 
Wechsler test. Nineteen studies examined general intel-
ligence, 14 examined nonverbal intelligence, and ten 
examined verbal intelligence.

We rated the risk of bias for the studies in the meta-
analysis (Table  4). Nine studies were rated as “low” or 
“probably low” risk of bias in all areas assessed. Eleven 
studies were rated as “high” or “probably high” risk of 
bias in one or more area. Many of the studies that had 
at least one rating of “probably high” risk of bias were 
rated as such in the area of confounding. Our rationale 
for each study’s rating across each area is provided in 
Supplementary Tables 1–20.
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Prenatal exposures
General intelligence
The meta-analysis of prenatal exposures and general intel-
ligence included 14 studies: four lead [53, 54, 63, 95], four 
mercury [53, 54, 76, 80], two PBDEs [55, 66], two OPPs 
[57, 88], and four phthalates [69, 73, 79, 96]. Two articles 
included data from exposure to more than one neurotoxi-
cant (i.e., lead and mercury), thus data on each neurotoxi-
cant were included in the meta-analysis [53, 54].

Prenatal exposure to developmental neurotoxicants 
was associated with decreased general intelligence 
in males (B = -0.38; 95% CI -0.72, -0.04;  I2 = 57%; see 
Fig.  2). In subgroup analyses, prenatal exposure to lead 
(B = -1.07; 95% CI: -1.63, -0.52), and ΣPBDEs (B = -0.57; 
95% CI: -1.14, -0.01) were significantly associated with 
decreased general intelligence in males. Nonetheless, 
the effects did not significantly differ by neurotoxicant 
 (Qb = 7.77, p = 0.10), and effect sizes were largely nega-
tive across neurotoxicants. In contrast, prenatal exposure 
to developmental neurotoxicants was not significantly 

associated with general intelligence in females (B = 0.14; 
95% CI: -0.14, 0.42;  I2 = 46%; see Fig. 3). Effect sizes were 
either largely near zero or slightly positive, regardless of 
the neurotoxicant  (Qb = 4.00, p = 0.41).

Nonverbal intelligence
The meta-analysis of prenatal exposures and nonverbal 
intelligence included 13 studies: five lead [53, 54, 63, 64, 
95], three mercury [53, 54, 80], two PBDEs [55, 66], three 
phthalates [69, 73, 97], and two OPPs [77, 88]. Two arti-
cles included data from exposure to more than one neu-
rotoxicant (i.e., lead and mercury), so we included results 
for each neurotoxicant in the meta-analysis [53, 54].

Prenatal exposure to developmental neurotoxicants was 
associated with decreased nonverbal intelligence in males 
(B = -0.42; 95% CI: -0.71, -0.14;  I2 = 26%; see Fig. 4). In sub-
group analyses, prenatal exposure to lead (B = -1.18; 95% 
CI: -1.78, -0.59) was significantly associated with decreased 
nonverbal intelligence. Nonetheless, effect sizes were 
largely negative across the neurotoxicants, and the effects 

Fig. 1 PRISMA 2020 Flow Diagram
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did not significantly vary by neurotoxicant  (Qb = 8.27, 
p = 0.08). In contrast, prenatal exposure to developmental 
neurotoxicants was not significantly associated with non-
verbal intelligence in females (B = 0.14; 95% CI: -0.07, 0.34; 
 I2 = 3%; see Fig. 5). In subgroup analyses, prenatal exposure 
to ΣDEHP (B = 0.62; 95% CI: 0.17, 1.08) was significantly 
associated with greater nonverbal intelligence in females; 
however, effect sizes did not significantly vary by neuro-
toxicant  (Qb = 7.02, p = 0.13).

Verbal intelligence
The meta-analysis of prenatal exposures and verbal 
intelligence included seven studies: four pertaining to 
lead [53, 54, 63, 95], three mercury [53, 54, 80], and two 
phthalates [69, 73]. Two articles included data from expo-
sure to more than one neurotoxicant (i.e., lead and mer-
cury) so data on each neurotoxicant was included in the 
meta-analysis [53, 54]. Prenatal exposure to developmen-
tal neurotoxicants was not significantly associated with 
verbal intelligence in males (B = -0.02; 95% CI: -0.28, 0.25; 
 I2 = 0%; see Fig. 6), nor in females (B = 0.19; 95% CI: -0.17, 
0.56;  I2 = 34%; see Fig. 7). Effect sizes did not significantly 
vary by neurotoxicant in either males or females  (Qb 
males = 0.56, p = 0.76;  Qb females = 0.70, p = 0.70).

Postnatal exposure
Lead and general intelligence
The meta-analysis of postnatal lead exposure and gen-
eral intelligence included four studies [63, 83, 90, 101]. 
Postnatal exposure to lead was not significantly associ-
ated with general intelligence in males (B = -1.04; 95% CI: 

-2.21, 0.14; I2 = 45%; Fig. 8) or in females (B = -0.51; 95% 
CI: -1.87, 0.85; I2 = 61%; see Fig. 9).

Publication bias
Egger’s test did not indicate substantial funnel plot asym-
metry for any of the random-effects meta-analyses, 
except for postnatal lead exposure in females (z = -2.66, 
p = 0.008; see Supplemental Figs. 1, 2, 3, 4, 5, 6, 7, 8).

Sensitivity analyses
In both males and females, the overall effect size of pre-
natal exposure and general, nonverbal, and verbal intelli-
gence does not vary substantially regardless of the study 
excluded (see Supplemental Figs.  9, 10, 11, 12, 13, 14). 
However, for postnatal lead exposure in males, the over-
all effect size varies widely from -0.78 to -1.65, depend-
ing on the study excluded (see Supplemental Fig.  15). 
Similarly, in females, the overall effect size varies greatly 
from 0.15 to -1.34 (see Supplemental Fig. 16). The overall 
pooled effects of neurotoxicants on general and nonverbal 
intelligence in males and females did not change appreci-
ably when only low risk of bias studies were included (see 
Supplemental Figs.  17, 18, 19, 20). However, the overall 
pooled effect for verbal intelligence became more negative 
(-0.02 to -0.57; but remained nonsignificant) in males and 
became more positive (0.19 to 0.28; but remained nonsig-
nificant) in females (see Supplemental Figs. 21 and 22).

Narrative results
Study characteristics
We tabulated the studies included in the systematic 
review but excluded from the meta-analysis (see Table 5). 

Table 4 Risk of Bias Ratings for Studies Included in the Meta-Analysis
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Studies were published from 1982 to 2021 and involved 
between 35 and 2128 participants from 23 different 
cohorts around the world. Eleven studies were conducted 
in North America, seven from Africa, six in Europe, five 
from Asia, and four in Australia. Ten studies pertained 
to lead, nine to mercury, three to PBDEs, two to OPPs, 
five to phthalates, and five to PCBs. Most of these stud-
ies measured neurotoxicant exposure in blood (n = 16), 

followed by hair (n = 7) and urine (n = 7), teeth (n = 2), 
and the placenta (n = 1). Seventeen studies measured tox-
icant exposure during the prenatal period, seven studies 
measured toxicant exposure during the postnatal period, 
and seven measured toxicant exposure during both the 
prenatal and postnatal period. Intelligence was assessed 
using a variety of measures.

The risk of bias ratings for the studies included in the 
systematic review but excluded from the meta-analysis 

Fig. 2 Random-Effects Meta-Analysis—General Intelligence in Males 

(The range of beta coefficient values is on the X-axis and the included references are listed on the Y-axis. The blue boxes correspond to each 
reference’s beta coefficient and the size of the blue box represents the weight of the study in the meta-analysis, based on its’ standard error. 
The error bars on each box represent the upper and lower 95% confidence intervals. The subgroup pooled estimates are each provided by red 
diamonds. The overall meta-analysis pooled estimate is provided by a green diamond and a vertical dashed red line. The ‘line of no effect’ (i.e., 
the line at which the beta coefficient equals 0) is represented by a black vertical line)
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are shown (see Table 6). Ten studies were rated as “low” 
or “probably low” risk of bias across all the areas, whereas 
23 studies were rated a “high” or probably high” risk of 
bias in one or more area. Studies rated as “high” or “prob-
ably high” risk of bias were mostly rated as such in the 
areas of selection bias, confounding, and incomplete out-
come data. Our rationale for each study’s rating across 
each area is provided in Supplementary Tables 1– 32.

Seventeen studies examined the association between 
prenatal exposure to developmental neurotoxicants and 
general intelligence. Of those, six were rated as “low” or 
“probably” low risk of bias across all nine areas. Five of 
the six low risk of bias studies found no significant dif-
ferences between the sexes—two examined lead [65, 92], 
one BDE-47 [102], one OPPs [91], and one phthalates 
[67]. One low risk of bias study found a negative associa-
tion between MBP and general intelligence in males, but 

also a positive association between MEHP and general 
intelligence in males [99].

Twelve studies examined the association between pre-
natal exposure to developmental neurotoxicants and 
nonverbal intelligence. Five of those were rated as “low” 
or “probably” low risk of bias across all nine areas. Three 
of five low risk of bias studies found no significant differ-
ences between the sexes – one examined phthalates [67], 
one lead [65], and one OPPs [91]. One low risk of bias 
study found a negative association between PCBs and the 
mental processing scale in males [94]; another found a 
negative association between MBP and nonverbal intel-
ligence in males [99].

Eight studies examined the association between prena-
tal exposure to developmental neurotoxicants and verbal 
intelligence. Of those, four were rated as “low” or “prob-
ably” low risk of bias across all nine areas and three of 

Fig. 3 Random-Effects Meta-Analysis—General Intelligence in Females
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which found no significant differences between the sexes 
– one lead [65], one phthalates [67], and one OPPs [91]. 
One low risk of bias study found a positive association 
between MBzP and verbal intelligence in males [99].

Nine studies examined the association between post-
natal exposure to developmental neurotoxicants and 
general intelligence. Four of those were rated as “low” 
or “probably” low risk of bias across all nine areas, all 
of which found no significant differences between the 
sexes—two examined lead [85, 92], one mercury [60], 
and one PBDEs [98].

Four studies examined the association between post-
natal exposure to developmental neurotoxicants and 
nonverbal intelligence. Of those, two were rated as “low” 
or “probably” low risk of bias across all nine areas, both 

of which found no significant differences between the 
sexes—one examined lead [85] and one mercury [89].

Lastly, three studies examined the association between 
postnatal exposure to developmental neurotoxicants and 
verbal intelligence. Of those, two were rated as “low” or 
“probably” low risk of bias across all nine areas, both 
of which found no significant differences between the 
sexes—- one examined lead [85] and one mercury [89].

Certainty of the evidence
The certainty of the evidence is summarized in Table 7. 
All studies included in this meta-analysis were cohort 
studies, which led to an initial rating of "moderate 
confidence." Publication bias was identified as the pri-
mary factor downgrading the quality of evidence for all 

Fig. 4 Random-Effects Meta-Analysis—Nonverbal Intelligence in Males



Page 13 of 29Goodman et al. Environmental Health           (2023) 22:80  

outcomes because our results are limited by the exclu-
sion of studies that did not report sex-specific effects. 
Imprecision was deemed unlikely due to the tightness 
of the upper-to-lower 95% confidence interval ratios 
across outcomes. Directness was not downgraded, as 
all studies included human participants with validated 
biomarkers of exposure and standardized IQ measures. 
Moreover, there was neither a dose–response gradient 
nor large effects; thus, no upgrade in the quality of evi-
dence was warranted. Supplementary Tables 1, 2, 3, 4, 
5, 6, 7, 8 provide further rationale for each rating.

Overall, the quality of the evidence remained rated as 
“moderate” for prenatal exposure effects on general and 
nonverbal intelligence in males and general and verbal 

intelligence in females. In contrast, we downgraded the 
quality of the evidence to “low” for prenatal exposure 
to verbal intelligence in boys and general intelligence in 
girls. Similarly, we downgraded the quality of the evi-
dence to “low” for postnatal lead exposure in both boys 
and girls.

On the basis of our “moderate” level ratings for the 
confidence and quality of evidence that was synthe-
sized, we rated the overall strength of the evidence as 
providing “limited” evidence of toxicity for prenatal 
exposure on general and nonverbal intelligence in boys. 
In contrast, we rated the strength of the evidence as 
providing “insufficient” evidence for toxicity for pre-
natal exposure on nonverbal intelligence in females. 

Fig. 5 Random-Effects Meta-Analysis—Nonverbal Intelligence in Females
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Fig. 6 Random-Effects Meta-Analysis—Verbal Intelligence in Males

Fig. 7 Random-Effects Meta-Analysis—Verbal Intelligence in Females
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For all other outcomes, we rated the strength as “inad-
equate” evidence of toxicity, which could reflect either a 
“low” overall quality of evidence or a “moderate” overall 
quality with “limited” evidence of toxicity.

Discussion
We conducted a systematic review and series of meta-
analyses to examine effects of pre-and post-natal 
exposure to six neurotoxicants on males’ and females’ 
intelligence. Although there have been several sys-
tematic reviews examining the sex-specific neurode-
velopmental impacts from heavy metals [6, 8, 34] and 
developmental neurotoxicants [7], none have quan-
titatively examined the strength of the evidence while 
considering timing of exposure and IQ as the specific 
outcome measure. Combining data from individual 
studies using meta-analytic techniques produces a 
more precise and objective estimate of the underlying 
effects of neurotoxicants on males’ and females’ intel-
ligence compared to systematic review technqiues.

We found that prenatal exposure to developmental 
neurotoxicants (lead, mercury, phthalates, PBDEs, and 
OPPs) was associated with a decrement in general and 
nonverbal intelligence, but only among males. Specifi-
cally, the pooled effect demonstrated that a 50% differ-
ence in exposure level was associated with a 0.38 and 0.42 
decrease in general and nonverbal intelligence, respec-
tively, among males – the quality of the evidence was 

considered “moderate”. Despite these moderate ratings, 
we consider the overall strength rating to reflect “limited” 
evidence of toxicity (as opposed to “sufficient” evidence) 
given that the pooled effect size is relatively small in mag-
nitude and the conclusion could be affected by results of 
future studies based on potential for bias of the existing 
literature. Further, the observed sex-specific effect on 
general and nonverbal intelligence in males was largest 
for prenatal lead exposure.

Prenatal exposure
Theories and mechanisms underlying a male vulnerability 
to prenatal exposures
Various studies have documented the sex-specific effects 
of neurotoxicant exposure on a variety of cellular, hor-
monal, and molecular endpoints, providing potential 
mechanisms to explain the male vulnerability of prenatal 
exposure to intellectual abilities. The sex-specific impact 
of prenatal exposure to developmental neurotoxicants on 
intelligence is consistent with a growing body of research 
demonstrating a protective placental female effect in 
response to maternal perturbations [103]. Specifically, 
the female placenta conserves resources and adjusts to 
the maternal milieu through a greater expression of genes 
and proteins associated with transport, immune regula-
tion, growth, and development than the male placenta 
[104, 105]. The male placenta, instead, invests resources 
in growth [106]. As a result, the male fetus has a limited 

Fig. 8  Random-Effects Meta-Analysis—Postnatal Lead and General Intelligence in Males

Fig. 9 Random-Effect Meta-Analysis - Postnatal Lead and General Intelligence in Females
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ability to adjust to adversity and is at greater risk for 
subsequent morbidity and mortality [103]. This pattern 
is consistently seen in response to exposure to prenatal 
stress [107].

A similar pattern can be seen in relation to expo-
sure to developmental neurotoxicants. While the pla-
centa plays an essential role in the regulation of the fetal 

environment, and in the communication and trans-
portation of nutrients to the developing fetus, it is also 
implicated in fetal exposure to neurotoxicants [108]. The 
greater expression of genes in female fetuses may then be 
better equipped to respond to and buffer against neuro-
toxicants. For example, neurotoxicants (e.g., lead, phtha-
lates) are known to impact intrauterine inflammation 

Table 6 Risk of bias ratings for studies included in the systematic review

Table 7 Ratings for the certainty of the evidence

Boys Girls

Outcomes Prenatal 
General

Prenatal 
Nonverbal

Prenatal 
Verbal

Postnatal 
Lead

Prenatal 
General

Prenatal 
Nonverbal

Prenatal 
Verbal

Postnatal Lead

Initial Rate of 
Confidence

Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate

Downgrading Factors
 Risk of Bias 0 0 -1 -2 0 0 0 -2

 Inconsist-
ency

0 0 0 -1 -1 0 0 -1

 Indirectness 0 0 0 0 0 0 0 0

 Imprecision 0 0 0 0 0 0 0 0

 Publication 
Bias

-1 -1 -2 -1 -1 -1 -2 -2

Upgrading Factors
 Large Mag-
nitude

0 0 0 0 0 0 0 0

 Dose 
Response

0 0 0 0 0 0 0 0

 Residual 
Confounding

0 0 0 0 0 0 0 0

Overall
 Quality Moderate Moderate Low Low Low Moderate Moderate Low

 Strength Limited 
Evidence 
of Toxicity

Limited 
Evidence 
of Toxicity

Inadequate 
Evidence 
of Toxicity

Inadequate 
Evidence 
of Toxicity

Inadequate 
Evidence 
of Toxicity

Insufficient 
Evidence 
of toxicity

Inadequate 
Evidence 
of Toxicity

Inadequate 
Evidence 
of Toxicity
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and oxidative stress [109, 110], and several studies dem-
onstrate that females are resilient to maternal immune 
perturbations or oxidative stress, while males are at 
increased risk [111]. Specifically, intrauterine inflam-
mation has been found to induce a neuroinflamma-
tory response (e.g., up-regulation of pro-inflammatory 
cytokines in the brain and greater macrophage activa-
tion) only in males [112–114]. One study examined 
twins exposed to the same environmental insult during 
fetal development and found that male infants at birth 
had higher levels of oxidative stress in the placenta than 
females, suggesting that the male fetus may be more sus-
ceptible to maternal oxidative stress than the female fetus 
[115]. Neuroinflammation and oxidative stress in off-
spring can alter fetal developmental trajectories, which 
can have detrimental downstream effects on the develop-
ment of cognitive abilities and ultimately the pathogen-
esis of intellectual disability [113, 116–118].

There is also evidence that male and female fetuses dif-
fer in the rate of neural maturation in utero, where male 
fetuses’ nervous system functioning matures at a slower 
rate than females. For example, using fetal heart rate 
responses to vibroacoustic stimulation (VAS) as a proxy 
for fetal nervous system development and functioning, 
studies have found that male fetuses recover more slowly 
to VAS at 31 weeks’ gestation compared to female fetuses 
[119]. This difference in maturation may reflect a greater 
sensitive time window in which males’ brains are more 
vulnerable to the impact of neurotoxicants.

Furthermore, estradiol and progesterone, the two main 
circulating female sex hormones, have been found to 
have neuro-protective and neuro-reparative properties 
during brain development [120–122]. For example, they 
can enhance cell proliferation, synaptic plasticity, axonal 
growth, and remyelination, as well as decrease oxidative 
stress and neuroinflammation [120, 122]. Males typically 
have fewer estrogen receptors throughout their central 
nervous system than females [24]. Thus, differing levels 
of sex hormones offer another reason that females may 
be more protected from adverse neurological effects 
from prenatal exposure to neurotoxicants.

Sex differences in epigenetics have been proposed 
as another mechanism to explain prenatal sex differ-
ential vulnerability [123]. DNA methylation, a type of 
epigenetic mechanism, may impact neurodevelopment 
[124], and some studies have found that neurotoxi-
cants can impact DNA methylation differently in males 
and females [123]. In one study, perinatal exposure to 
lead resulted in the hypomethylation of a gene in the 
hippocampal methylome associated with learning and 
memory, but only in males [125]. In humans, prenatal 
mercury levels were associated with cord blood DNA 
methylation changes at the Paraoxonase 1 (PON1) 

gene in males but not females [126]. Further, cord 
blood DNA methylation changes at the PON1 gene 
ultimately predicted lower cognitive test scores dur-
ing early childhood [126]. Lastly, in humans, mater-
nal exposure to persistent organic pollutants, such as 
PBDEs, has been found to be associated with increased 
methylation of the monocarboxylate transporter 8 
(MCT8) gene in the placenta, but only in male infants 
[127]. Importantly, the MCT8 is X-linked and thus, 
males are more vulnerable than females to impair-
ments in this gene [127]. Higher methylation of this 
gene can interfere with the transport of  T4 to the fetus, 
decreasing the amount of circulating thyroid hormone 
levels critical for neurodevelopment [127].

Domain‑specific effects
We found that prenatal exposure to developmental 
neurotoxicants was negatively associated with males’ 
general and nonverbal intelligence rather than verbal 
intelligence. Nonverbal intelligence encompasses an 
individual’s ability to perceive, process, and manipu-
late information using visual and spatial reasoning. This 
domain- and sex-specific effect may be explained by 
the vulnerability hypothesis based on evolutionary and 
sexual selection theory [128]. According to this theory, 
sexually selected cognitive advantages are supported by 
elaborated brain networks (i.e., more neural tissue and 
more intermodular connections) that are highly energy 
dependent [128]. Thus, more elaborated traits are more 
vulnerable to disruptions in energy production and 
oxidative stress, as they require more energy to build, 
maintain, and express [128]. Furthermore, cognitive 
vulnerabilities are likely to be greatest during trait 
development and under conditions that require maxi-
mum trait expression [128].

The male advantage in visuospatial abilities is a sexu-
ally selected trait, as it supports aspects of male-male 
competition [129]. In line with the vulnerability hypoth-
esis, males have larger volumes and higher tissue den-
sity in the hippocampi than females [130], an area 
involved in higher-order visual-spatial perception [131]. 
The visual system develops early in the prenatal period. 
By the third trimester of pregnancy, the human fetus has 
the capacity to process perceptual information [132]. 
Thus, visual-spatial abilities in males could be suscepti-
ble to energy disruptions during prenatal development. 
Neurotoxicants can induce oxidative stress in males and 
that males may be more vulnerable to the effects of it 
[115, 133]. Thus, the combination of sex and develop-
mental neurotoxicity in fetal life may act synergistically 
as a double-hit model to disrupt energy production and 
ultimately affect visual-spatial abilities in males.
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Findings by Neurotoxicant
Lead
Although the effect sizes did not significantly vary 
by neurotoxicant in males, in subgroup analyses, the 
strongest and most consistent effects on general and 
nonverbal intelligence in males were for prenatal lead 
exposure. Specifically, the pooled effect demonstrated 
that every 50% difference in prenatal lead levels was 
associated with a 1.07-point and 1.18-point decrease 
in general and nonverbal intelligence, respectively, in 
males, whereas the pooled effect among females was a 
0.45-point and 0.15-point increase (albeit non-signifi-
cant) for general and nonverbal intelligence, respectively. 
This result is not surprising given that the global num-
ber of disabilities-adjusted life years of idiopathic devel-
opmental intellectual disability in 2019 was 4.39 million, 
of which 61.90% was attributable to lead exposure [134]. 
Further, despite global efforts to reduce lead exposure, 
and research demonstrating that no level of lead is safe, 
around 1 in 3 children – up to approximately 800 mil-
lion globally – have blood lead levels at or above 5 µg per 
deciliter (μg/dL) [135].

Moreover, relative to other neurotoxicants, lead may 
induce greater negative effects in males due to the 
interaction between lead and stress, as mothers with 
exposure to chronic stress (e.g., those with low socio-
economic status or resource deprivation) are more likely 
to be exposed to higher levels of lead, indicating the 
potential for a multiple stressor model [136–138]. Pre-
natal lead exposure and stress both disrupt the program-
ming of the hypothalamic–pituitary–adrenal axis [138]. 
Further, combined exposure to prenatal lead and stress 
has been found to alter epigenetic profiles in the brain in 
sex-specific manner [139–141].

Mercury
The subgroup effect of mercury on general intelligence 
in males had a moderate to high degree of heterogene-
ity across studies; some studies showed positive effects 
and others negative effects. This variability is expected 
and may be due to differences in exposure levels, the con-
found of fish intake, or the underlying genetic composi-
tion of the populations. For example, the mean or median 
of exposure ranged from 0.4 to 26.0 ppb across the stud-
ies [53, 54, 76, 80]. Lower levels of exposure may be indic-
ative of lower consumption of fish. Fish contains essential 
fatty acids and nutrients such as n-3 polyunsaturated 
fatty acids, iodine, selenium, vitamin D and B12 that are 
crucial for the development of the fetal brain [142]; thus 
lower consumption could also adversely impact neurode-
velopment. In fact, Llop and colleagues (2017) found that 
mercury concentration was only associated with lower 

scores among children whose mothers consumed fewer 
than three weekly servings of fish during pregnancy [80]. 
Moreover, in Julvez et al. (2013), the presence of a specific 
genetic polymorphism was associated with greater mer-
cury neurotoxicity [76]. The differences across and within 
studies demonstrate the complexity of isolating effects of 
exposure on IQ by sex without considering other envi-
ronmental and genetic factors.

Phthalates
We found that the sum of DEHPs was significantly posi-
tively associated with nonverbal intelligence in females. 
Despite this, the pooled effect of developmental neu-
rotoxicants on nonverbal intelligence in females was 
non-significant and effects did not significantly differ by 
neurotoxicant. However, generally, effect sizes for the 
sum of DEHPs were near zero or positive in females. The 
possible protective or positive effect in females is intrigu-
ing. Phthalates are endocrine disrupters and one study 
found that exposure to phthalates later in pregnancy was 
associated with increased estrogens in women carrying 
female fetuses [143]. In contrast, exposure to phthalates 
earlier in pregnancy was associated with decreased estro-
gen (albeit not significantly) in women carrying male 
fetuses [143]. While the increased estrogen may confer a 
benefit to females with respect to the neurotoxic effects 
of phthalates due to its neuro-protective properties [120], 
it may also put females at increased risk for other adverse 
health outcomes, such as endometriosis, earlier onset of 
puberty, polycystic ovarian syndrome, breast cancer, or 
metabolic disorders [144]. Given the relative inconsist-
ency in results of phthalates in females across outcomes 
(i.e., null for general and verbal intelligence, versus posi-
tive for nonverbal intelligence), more research is needed.

OPPs and BDEs
We found that the effect sizes for OPPs and BDEs in 
males were generally negative for general intelligence, 
consistent with the findings overall. Similarly, we found 
that the effect sizes for OPPs and BDEs in females were 
generally negative for general intelligence; however, there 
were moderate to high degrees of heterogeneity across 
studies. For nonverbal intelligence, we found that the 
effects sizes were generally closer to zero. Still, only two 
studies were available for each of these neurotoxicants 
and we found a high degree of heterogeneity for females, 
suggesting that more research is needed.

Postnatal exposure
We did not find a significant pooled effect of postnatal 
lead exposure on either males or females general intel-
ligence; however, the effect size in males was negative, 
as was seen with prenatal exposures. Nevertheless, we 
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were limited by the small number of estimates, most of 
the studies included were considered higher risk of bias, 
there was an indication of publication bias, and there 
were discrepancies in the pooled effect sizes when indi-
vidual studies were excluded. Further, we were unable to 
assess the effect of postnatal exposure to other chemi-
cals or on other domains of intelligence which could 
have been more sensitive to sex-specific effects. Since 
infancy is a critical period for the development of lan-
guage [145] and females have advantages in language 
competence, females may be more vulnerable to energy 
disruptions to verbal abilities during the early postnatal 
period, consistent with the vulnerability hypothesis [128]. 
More research on the sex-specific effects of postnatal 
neurotoxicant exposure is needed, with consideration of 
domain-specific effects of intelligence.

Qualitative findings
Most studies that were not included in the meta-anal-
ysis concluded that no differences were noted between 
the sexes. Many of these studies did not report sepa-
rate estimates for males and females, and therefore 
we were unable to determine the general trends of the 
individual effects. Further, studies of smaller sample 
sizes may have had inadequate power to detect sex dif-
ferences through an interaction effect, which highlights 
the need for studies to report individual effect esti-
mates for males and females to allow for inclusion in a 
meta-analysis.

Moreover, few studies published to date have evaluated 
the sex-specific impact of PCB exposure on intellectual 
abilities. Of the studies that did evaluate the sex-specific 
impact of PCB exposure on intellectual abilities, the 
methods were too heterogenous (i.e., different congeners 
of PCBs or outcomes), thus limiting our ability to include 
PCB-related effects in the meta-analysis. However, con-
sistent with our meta-analytic findings, four out of the 
five studies of prenatal PCB exposure found stronger 
negative associations in males or more positive associa-
tions in females [51, 75, 78, 94].

Limitations and future directions
This study had some limitations. First, only 22 studies 
were included in this meta-analysis. Given the limited 
number of estimates available, we included studies from 
the same cohort with the same methodology if they had 
data on different neurotoxicants; doing so artificially 
reduced the standard error of our estimates. Further, 
there were very few studies that evaluated the sex specific 
effects of individual phthalate, PCB, PBDE, or OPP com-
pounds and there are additional challenges with grouping 
individual compounds given differences based on rela-
tive toxicities and half-lives. Future systematic reviews 

on this topic would require a sizeable literature base to 
disentangle the sex-specific effects of specific individual 
compounds.

Second, the impact of environmental chemicals on 
intellectual abilities is a global issue [146]. However, Pro-
ject TENDR emphasizes developmental neurotoxicants 
that are particularly relevant in the United States context. 
It is important to acknowledge that these are not the only 
chemicals that warrant scrutiny and investigation; for 
example, chemicals like fluoride, which may be regarded 
as significantly neurotoxic in diverse global contexts 
[147], cannot be overlooked. Further, most of the stud-
ies on the sex-specific effects of pre- and post-natal expo-
sure to developmental neurotoxicants were conducted 
in post-industrial countries. The effect of lead on IQ has 
been found to be stronger in developing countries [148]; 
however, sex differences on this effect have not been 
investigated in developing countries. Future research 
evaluating the impact of neurotoxicants on IQ in devel-
oping countries should examine sex-specific effects.

Third, this review focused on pre- and early post-natal 
exposure. Exposure during early adolescence may repre-
sent another critical window where sex-specific effects 
occur. Adolescence is characterized by substantial struc-
tural and functional brain changes, particularly in regions 
associated with higher-level cognitive processing [149]. 
Further, there is evidence for sexually dimorphic trajec-
tories of these brain changes [150]. Different behaviours 
and body weight between genders may also result in dif-
ferences in exposure levels [27]. Future research should 
explore early adolescence as a critical window of expo-
sure and take special consideration of sex- and poten-
tially gender-specific effects during this time.

Fourth, while intellectual abilities are the most com-
mon neurodevelopmental outcome studied, neurode-
velopment can also encompass other outcomes such as 
attention, motor skills, social skills, reading ability, and 
memory. Given the higher prevalence of ADHD and ASD 
in males, future research should explore the potential 
sex-specific effects related to neurotoxicant exposure on 
outcomes related to these disorders. Further, although 
females may demonstrate adaptive flexibility in response 
to gestational exposures and development of their gen-
eral intellectual and nonverbal abilities, this adaptabil-
ity does not preclude the possibility that developmental 
neurotoxicants influence the development of females. 
Research should explore the sex-specific effects related to 
neurotoxicant exposure on other outcomes such as social 
and psychological outcomes, given the greater prevalence 
of internalizing disorders in females [151].

Lastly, this review focused on the effects of exposure 
to a single developmental neurotoxicant on children’s 
neurodevelopment. Yet, developmental toxicants often 
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co-occur – particularly among at-risk populations [152]- 
which can produce additive or synergistic effects that 
may initiate a developmental cascade, as shown with the 
example of lead and prenatal stress [152]. Thus, the effect 
in males is likely an underestimate of the true nature of 
the problem. Additional studies are needed to examine 
the sex-specific effects of cumulative exposure to envi-
ronmental stressors, especially in human epidemiological 
cohorts.

Conclusions
This is the first study to quantitatively synthesize the sex-
specific effects of pre- and post-natal exposure to devel-
opmental neurotoxicants on intelligence. Overall, this 
meta-analysis demonstrated that males’ general and non-
verbal intelligence are more impacted by prenatal exposure 
to developmental neurotoxicants than females, especially 
from lead exposure. This study highlights the necessity 
to include sex as a fundamental variable when examin-
ing the effects of developmental neurotoxicants on intel-
lectual abilities.  Even mild IQ deficits can have major 
academic, occupational, and psychological consequences 
[38]. In addition to the individual impacts, the economic 
impact is enormous. In fact, from 2001 to 2016, exposure 
to lead, mercury, PBDEs, and OPPs cost over $6 trillion in 
the US alone due to IQ point loss [153]. The results of this 
meta-analysis provide much needed insight into one of the 
influential factors in the sex bias of intellectual disabilities 
and highlight the possibility for early identification and 
prevention.
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cx-MiNP  Mono-4-methyl-7-carboxyheptyl phthalate
DACE  Development at Adolescence and Chemical Exposure
DAP  Dialkyl Phosphates
DEDTP  Diethyl Dithiophosphate
DEHP  Bis(2-ethylhexyl) Phthalate
DEP  Diethyl phosphate
DETP  Diethyl Thiophosphate
DiNP  Diisononyl Phthalate
DMDTP  Dimethyl Dithiophosphate
DMP  Dimethyl Phosphate
DMTP  Dimethyl Thiophosphate
DNA  Deoxyribonucleic Acid
DPHP  Di(2-propylheptyl) Phthalate

ELEMENT  Early Life Exposures in Mexico to ENvironmental Toxicants
FSIQ  Full-Scale IQ
GCI  General Cognitive Index
HOME  Health Outcomes and Measures of the Environment
ID  Intellectual Disability
INMA  INfancia y Medio Ambiente (Environment and Childhood) 

Project
IOM  Institutes of Medicine
ip-PPP  2-((Isopropyl) phenyl) Phenyl Hydrogen Phosphate
IQ  Intelligence Quotient
K-ABC  Kaufman Assessment Battery for Children
MABC  The Ma’anshan Birth Cohort
MBP  Monobutyl Phthalate
MBzP  Monobenzyl Phthalate
MECPP  Mono(2-ethyl-5-carboxypentyl) Phthalate
MEHHP  Mono(2-ethyl-5-hydroxyhexyl) Phthalate
MEHP  Mono(2-ethylhexyl) Phthalate
MEOHP  Mono-(2-ethyl-5-oxohexyl) Phthalate
MEP  Mono-ethyl Phthalate
MiBP  Mono-isobutyl Phthalate
MIREC  Maternal-Infant Research on Environmental Chemicals
MMP  Mono-methyl Phthalate
MMCHP  Mono-2-methylcarboxyhexyl phthalate
MnBP  Mono-n-butyl Phthalate
MoBA  The Norwegian Mother & Child Cohort Study (den norske Mor 

& barn-undersøkelsen)
MPS  Mental Processing Scale
MSCA  McCarthy Scales of Children’s Abilities
NDD  Neurodevelopmental Disorder
OH-MiNP  Mono-4-methyl-7-hydroxyoctyl phthalate
OH-PCB  Hydroxylated Polychlorinated Biphenyls
OPP  Organophosphate Pesticides
oxo-MiNP  Mono-4-methyl-7oxooctyl phthalate
PBDE  Polybrominated Diphenyl Ethers
PCB  Polychlorinated Biphenyls
PIQ  Performance Intelligence
PON1  Paraoxonase 1
POP  Persistent Organic Pollutants
PPS  Perceptual Performance Scale
PPVT  Peabody Picture Vocabulary Test
PRI  Perceptual Reasoning Index
PRISMA  Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses
SB5  Standford Binet 5
SCDS  Seychelles Child Development Study
SGOMSEC  Scientific Group on Methodologies for the Safety Evaluation of 

Chemicals
SMBCS  Sheyang Mini Birth Cohort Study
SON-R  Snijders-Oomen Nonverbal Intelligence Test
TENDR  Targeting Environmental Neuro-Development Risks
TMICS  Taiwan Maternal and Infant Cohort Study
TSCD  Tohoku Study of Child Development
UK  United Kingdom
USA  United States of America
VAS  Vibroacoustic Stimulation
VCI  Verbal Comprehension Index
VIQ  Verbal Intelligence
VS  Verbal Scale
VSI  Visual Spatial Index
WISC-III  Wechsler Intelligence Scale for Children, Third Edition
WISC-IV  Wechsler Intelligence Scale for Children, Fourth Edition
WISC-III-NL  Wechsler Intelligence Scale for Children, Third Edition, Nether-

lands Version
WISC-R  Wechsler Intelligence Scale for Children, Revised
WM  Working Memory
WPPSI-III  Wechsler Preschool & Primary Scale of Intelligence, Third 

Edition
WPPSI-R  Wechsler Preschool & Primary Scale of Intelligence, Revised
WRAT-III  Wide Range Achievement Test, Third Edition
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