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Abstract 

Background Redlining has been associated with worse health outcomes and various environmental disparities, 
separately, but little is known of the interaction between these two factors, if any. We aimed to estimate whether liv-
ing in a historically-redlined area modifies the effects of exposures to ambient  PM2.5 and extreme heat on mortality 
by non-external causes.

Methods We merged 8,884,733 adult mortality records from thirteen state departments of public health 
with scanned and georeferenced Home Owners Loan Corporation (HOLC) maps from the University of Richmond, 
daily average  PM2.5 from a sophisticated prediction model on a 1-km grid, and daily temperature and vapor pressure 
from the Daymet V4 1-km grid. A case-crossover approach was used to assess modification of the effects of ambient 
 PM2.5 and extreme heat exposures by redlining and control for all fixed and slow-varying factors by design. Multiple 
moving averages of  PM2.5 and duration-aware analyses of extreme heat were used to assess the most vulnerable time 
windows.

Results We found significant statistical interactions between living in a redlined area and exposures to both ambient 
 PM2.5 and extreme heat. Individuals who lived in redlined areas had an interaction odds ratio for mortality of 1.0093 
(95% confidence interval [CI]: 1.0084, 1.0101) for each 10 µg  m−3 increase in same-day ambient  PM2.5 compared 
to individuals who did not live in redlined areas. For extreme heat, the interaction odds ratio was 1.0218 (95% CI 
1.0031, 1.0408).

Conclusions Living in areas that were historically-redlined in the 1930’s increases the effects of exposures 
to both  PM2.5 and extreme heat on mortality by non-external causes, suggesting that interventions to reduce environ-
mental health disparities can be more effective by also considering the social context of an area and how to reduce 
disparities there. Further study is required to ascertain the specific pathways through which this effect modification 
operates and to develop interventions that can contribute to health equity for individuals living in these areas.

Keywords Air pollution, Extreme heat, Temperature, Environmental justice, Redlining, Effect modification

Introduction
Redlining is a discriminatory practice that arose out of 
the Great Depression with the formation of the Home 
Owners Loan Corporation (HOLC) in 1933. In the fol-
lowing years, the HOLC would produce its infamous 

*Correspondence:
Edgar Castro
edgar_castro@g.harvard.edu
1 Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12940-024-01055-5&domain=pdf


Page 2 of 16Castro et al. Environmental Health           (2024) 23:16 

security maps to guide decisions concerning who among 
those facing foreclosure could receive HOLC “rescue” 
mortgages to avoid default. Guided by racist housing 
practices and public opinion at the time, contractors 
responsible for creating these maps attributed excessive 
risk to neighborhoods that housed people of color [39]. 
The security maps they produced classified neighbor-
hoods as being in one of four different risk categories: 
grade A, labeled “Best”; grade B, labeled “Still Desirable”; 
grade C; labeled “Still Declining”; and grade D, labeled 
“Hazardous”. Areas categorized as grade D were colored 
red on the maps, giving rise to the term “redlining”. In 
recent years, these maps have been digitized and georef-
erenced by researchers at the University of Richmond, 
providing researchers with the ability to investigate these 
inequities using GIS [36].

Though the HOLC’s security maps have long since 
been abolished, their effects continue to persist today, 
especially in neighborhoods that have been redlined. 
Researchers have hypothesized various mechanisms 
through which the HOLC’s security maps continue 
to influence the present-day makeup of cities, such as 
through the persistence of differential patterns of housing 
stock between neighborhoods that were attributed differ-
ent levels of risk [2]. Studies have found that neighbor-
hoods that were attributed higher risk, such as those that 
were redlined, were less likely targets for the construction 
of new homes on account of their residents’ decreased 
ability to receive credit; today, these same areas are 
more likely to have older housing stock, fewer hous-
ing units, higher proportions of multifamily homes with 
rented units, and lower housing values [1, 2, 26]. Further 
downstream of these effects, the physical environment 
of the neighborhood as a whole can then be negatively 
impacted by the decreased material, social, and political 
capital of their residents.

Accordingly, studies have outlined how individu-
als living in previously-redlined areas experience lower 
exposure to green space [34]; higher temperatures [20, 
46],worse air pollution [27], and worse health outcomes 
such as lower life expectancy, higher risk of preterm 
birth, and worse cardiovascular health, among others [21, 
25, 31–33] nearly a century after the establishment of the 
HOLC in 1933 and many decades after its abolishment. 
There has also been recent research detailing the persis-
tence of the effects of past persecution and discrimina-
tion on present-day neighborhoods in other contexts, 
with even longer time periods, giving additional credence 
to such findings [14].

Separately, there is also extensive literature on the 
synergistic effects of air pollution and chronic psycho-
social stress, such as that arising from exposure to vio-
lence [8, 10]. One hypothesized physiologic mechanism 

is the modulation of immune and inflammatory pathways 
through allostatic load caused by chronic stress, which 
increases susceptibility to air pollution [7, 9]. However, 
no previous studies have investigated the effect modifica-
tion, if any, of the effect of exposures to  PM2.5 or extreme 
heat on health outcomes by redlining. One recent study 
in Texas showed that historically-redlined neighbor-
hoods have both higher land surface temperatures and 
higher risks of heat-related illnesses, but it’s unclear how 
much of this disparity is due to the increased tempera-
ture and how much is due to increased vulnerability [28].

In this study, we leverage extensive, geocoded, case-
level mortality records from thirteen states; digitized 
and georeferenced HOLC maps; and sophisticated, high-
resolution ambient  PM2.5 and meteorological models 
to investigate modification of the  PM2.5- and extreme 
heat-mortality relationships by living in a redlined area. 
Figure  1 encodes our assumptions of the causal rela-
tions pertinent to the present study. Based on literature, 
we hypothesize that the way in which redlining affects 
the  PM2.5-mortality and extreme heat-mortality rela-
tionships is through chronic psychosocial stress driven 
both directly and indirectly by the layout of the built 
environment, involving for example reduced accessed 
to services, social and material deprivation, exposure to 
violence, and other hazards. Notably, patterns of land use 
resulting from redlining open backdoor paths through 
which the  PM2.5- and extreme heat-all cause mortality 
relationships, respectively, as well as their interactions, 
become confounded. Historical racism additionally con-
founds the redlining-mortality relationship. All of these 
confounders apart from humidity are time-invariant or 
very slow-varying and can easily be adjusted for with 
time series methods. However, although these relatively 
fixed factors cannot be confounders in a time series anal-
ysis, they can be effect modifiers and increase suscepti-
bility. Other downstream impacts of redlining that could 
potentially impact effect modification by redlining, such 
as lower present-day SES, occurred post-1937 and so 
cannot be confounders but are instead mediators.

The results from this study can be used to help justify 
future studies and inform future interventions aimed 
at reducing the health disparities caused by  PM2.5 and 
extreme heat exposure in disadvantaged neighborhoods 
and additionally help to elucidate the degree to which 
historical discrimination influences present-day physi-
ological responses to both exposures.

Methods
Data sources
Individual-level statewide mortality data and additional 
characteristics including age, race, geocodes, and sex 
were obtained from the California, Florida, Georgia, 
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Illinois, Indiana, Kansas, Massachusetts, Michigan, Mis-
souri, New Hampshire, New Jersey, Ohio, and Texas 
departments of public health. Records had listed either 
the individual’s home address (California, Florida, Illi-
nois, Indiana, Kansas, Massachusetts, Missouri, New 
Hampshire, Ohio, and Texas only) or the encompassing 
Census block, block group, tract, or county geographic 
identifier (GEOID). Prior to joining other variables, 
all home locations were standardized to Census block 
groups. Home locations that were reported as addresses 
were geocoded to coordinates using ArcGIS Pro and then 
spatially joined via point-in-polygon to the encompass-
ing Census block group using the sf package to obtain 
the Census block group GEOID [16, 37]. In other words, 
each death was assigned the GEOID of the block group 
that it was contained within. Records where the home 
address was reported as a block group GEOID were 
left as-is. Records with block-level GEOIDs had their 
GEOIDs, which are 15 characters long, truncated at the 
12th character to obtain the block group GEOIDs [44]. 
Records from coarser geographies (i.e. tract- and county-
level) were dropped. Once all geographic information 
had been standardized to block groups, these GEOIDs 
served as the basis for joining the other data.

Daily  PM2.5 predictions from January 1st, 2001 to 
December 31st, 2016 were generated nationwide on 
a 1-km grid using data from air quality monitors, 
remotely-sensed satellite data, outputs from two chem-
ical transport models, meteorological data, and land-
use data using machine learning models described 
elsewhere [12]. Briefly, air pollution measurements and 
predictors from various sources were used to train a 

geographically-weighted ensemble of machine learn-
ers which then were used to predict daily air pollu-
tion within 1-km grid cells covering the contiguous 
USA. The overall hybrid model has yielded strong per-
formance, with ten-fold cross-validation  R2 values of 
0.77–0.92 depending on the region and an  R2 value of 
0.86 overall. For each Census block, daily  PM2.5 values 
were assigned by taking the average of predictions from 
encompassed grid cell centroids. For Census blocks 
that did not encompass any grid cell centroids, data was 
assigned by linking those blocks’ centroids to the near-
est grid cell centroid by Cartesian distance [15]. Block 
group-level  PM2.5 predictions were then calculated as 
the population-weighted average of these block-level 
assignments.

Daily minimum and maximum temperature and 
vapor pressure were obtained from the Daymet V4 
meteorological model on a 1-km grid [43]. Minimum 
and maximum temperatures and vapor pressure in each 
Census block group were then assessed as the areal-
weighted average of values from encompassed grid cells 
using the exactextract program [4], and the daily mean 
temperature was assessed by averaging these two val-
ues. To derive measures of extreme heat, we first cal-
culated various percentiles of minimum temperature in 
each block group in each year. For our main analysis, 
we considered the 95th percentile. These percentiles 
were then used as lower bound cutoffs in our determi-
nation of what constitutes extreme heat and indicator 
variables were created for days where the minimum 
temperatures were higher than these cutoffs. In other 
words, if the minimum temperature on a certain day 

Fig. 1 Proposed DAG illustrating the modification of the  PM2.5- and temperature-all cause mortality relationships by redlining. The exposures 
of interest are presented in boldface and underlined, and the relationships of interest are indicated with thicker lines
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met or exceeded the 95th percentile of minimum tem-
perature in that block group in that year, then that day 
was marked as an extreme heat day.

This approach to identifying days of extreme heat 
affords two advantages. Firstly, we account for regional 
and temporal adaptation to rising temperatures by using 
spatiotemporally local definitions of “extreme”. Addition-
ally, by focusing on the minimum temperature, we guar-
antee that the temperature on a given extreme heat day 
was at least as hot as the cutoff for that day. After creating 
extreme heat indicators, we categorized all contiguous 
sequences of two or more days of extreme heat as heat 
waves and, among these days, calculated the heat wave 
day as the number of days from the start of the heat wave.

Digitized and georeferenced Home Owners Loan Cor-
poration (HOLC) maps were obtained from the Mapping 
Inequality project at the University of Richmond [36]. 
Because HOLC geographies do not perfectly align with 
Census block groups, we assigned block groups to HOLC 
grades based on the proportion of encompassed popu-
lation at the block level, which is the finest resolution 
for which national population data is available from the 
Census. First, the population of each Census block was 
binned into the grade of the encompassing HOLC area, if 
any, via point-in-polygon spatial join on block centroids. 
Block groups were then assigned a grade by selecting the 
bin that contained greater than some percentage thresh-
old of the block group’s total population, if any (Fig.  2). 
Unlike other methods that assign HOLC grades based 

on the proportion of intersecting area, this method does 
not make an assumption of uniform population density 
across block groups and can more accurately capture 
what historically-assigned HOLC grade encompasses 
the most people in present day. In our main analysis, we 
used a 90% population threshold. Lower thresholds make 
the apportionment of HOLC grades to present-day block 
groups more ambiguous, but higher thresholds exclude 
more block groups due to no HOLC grade bin sizes 
meeting the population threshold.

Use of mortality records was permitted by the Cali-
fornia, Florida, Georgia, Illinois, Indiana, Kansas, Mas-
sachusetts, Michigan, Missouri, New Hampshire, New 
Jersey, Ohio, and Texas departments of public health and 
approved by the IRBs of each. This study was reviewed by 
the IRB of the Harvard School of Public Health and clas-
sified as not human research.

Statistical analysis
Prior to statistical analyses, deaths were restricted to only 
those from internal causes (ICD codes A00-R99) involv-
ing individuals 18 years of age or older. A case-crossover 
analysis was used to control for confounding by all fixed 
or slow-varying factors by design, such as sex, race and 
ethnicity, smoking history, etc. Specifically, for each 
case, we sampled control days bidirectionally from the 
days within the same month of the case that were on the 
same day of the week as the case to control for all fac-
tors that are either fixed on the scale of a month or vary 

Fig. 2 Figure demonstrating (A) the size comparison and spatial misalignment between HOLC-graded areas (outlined in black) and Census block 
groups (2010, outlined in gray), and (B-D) block groups being graded according to population cutoffs of 50%, 90%, and 99%, respectively. Blue 
areas are grade A, green areas are grade B, yellow areas are grade C, red areas are grade D (“redlined”), dark grey areas are marked as ambiguous (i.e. 
no grade bin exceeded the threshold), and light grey areas are marked as unclassified (i.e. the unclassified bin exceeded the threshold). White areas 
are either bodies of water or block groups that did not intersect with HOLC-graded areas
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on a cyclic weekly basis. This includes slowly varying 
individual or neighborhood predictors. Time-varying 
exposures were then reassessed for each case on each of 
these control days. Since each individual is compared to 
themselves at a different point in time, all fixed and cyclic 
weekly confounding factors are controlled for by design. 
Additionally, since we sample controls from days occur-
ring both before and after the case, we are able to control 
for bias arising from time trends in the exposures [35]. In 
exchange for controlling for these time trends by design 
by sampling bidirectionally, a small bias is induced by 
sampling from controls post-death, but the size of this 
bias is very small due to the low daily risk of death at 
baseline [29].

In our primary analysis, we fit two sets of conditional 
logistic regressions within strata of each individual. For 
the redlining-PM2.5 interaction, we fit the following:

where redlined is an indicator variable for HOLC grade 
D,  PM2.5 is either the ambient concentration of  PM2.5 
on the day of the death or a moving average up to 4 days 
before the death (i.e. the 5-day moving average), TMEAN 
and VP are mean temperature and vapor pressure, 
respectively, and β10 is the primary estimand of interest. 
For the redlining-extreme heat interaction, we instead fit 
the following:

where extreme is an indicator variable either for extreme 
heat or for the 1st, 2nd, 3rd, or 4th day of extreme heat 
occurring on the day of the death and β6 is the primary 
estimand of interest.

To investigate the robustness of our findings, we car-
ried out several sensitivity analyses. Firstly, we alterna-
tively considered different block group-level HOLC grade 
apportionments based on cutoffs of 50% and 99% of the 
block group-level population. Secondly, we also alter-
natively considered 85th and 99th percentile cutoffs of 
minimum temperature in our definition of extreme heat. 
Thirdly, we carried out subgroup analyses within Black 
individuals, Black neighborhoods, White individuals, and 
White neighborhoods, where Black and White neighbor-
hoods were defined as block groups where the proportion 
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of residents that identified as Black or White was 50% or 
greater to investigate variation in vulnerability across 
individual- and area-level demographics. Lastly, we car-
ried out subgroup analyses by year and by state to investi-
gate spatial and temporal variation in vulnerability.

Results are presented for each 10  µg   m−3 change in 
 PM2.5 concentration. R version 4.1.0 was used for all anal-
yses [38].

Results
We obtained 11,115,380 mortality records from the 
twelve state departments of public health. From these 
records, we sequentially excluded 466,874 deaths involv-
ing external causes; 139,908 deaths involving individuals 
younger than 18 years old; 196,558 deaths with geocodes 
that were missing or coarser than block group-level; 331 
deaths involving individuals whose home locations were 
outside of the state that reported their death; 1,392,423 

deaths before January 5th, 2001 or after December 31st, 
2016 and 537 deaths whose home block groups had a 
population of zero according to the preceding Decennial 
Census (for which 4-day moving averages of population-
weighted  PM2.5 could not be calculated); and 34,016 
deaths with lag days from 0 to 4 that included Decem-
ber 31st on leap years (for which Daymet predictions are 
not available; Fig.  3). This resulted in a final data set of 
8,884,733 records.

Baseline characteristics are shown in Table  1. In the 
full data set, cases mostly involved individuals who 
were white (85.72%), had high school education alone 
(41.15%), and lived in areas not classified by the HOLC 
(84.35%, generally established post-1935). Of those 
that lived in areas that were classified, grade C was the 
most frequent, followed by grades D and B; deaths in 
areas graded as A represented less than 1% of records. 
Of those that lived in areas that were not classified, the 
vast majority lived in block groups that did not touch 
the areas assessed by the HOLC (99.24); the remainder 
were assigned as unclassified using the apportionment 
algorithm. There were also 53 deaths that occurred in 
areas classified as E which were left as-is since there is no 
indication as to what this classification could signify. The 
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Fig. 3 Subject restriction flowchart
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mean age of cases was 75.96 years with a standard devia-
tion of 14.68 years.

Cases involving individuals who lived in historically-
redlined areas (HOLC class D, “Hazardous”) comprised 
2.13% of all observed cases. This subpopulation had a 
higher proportion of people of color (45.95%, compared 
to 13.91% in the full population) and individuals who 
had an education level of high school or less (73.74%, 

compared to 63.27%). The average age of individuals at 
the time of death was also lower (72.55 years old, com-
pared to 75.96). Higher proportions of cases in this sub-
population came from the states of California, Illinois, 
Indiana, Kansas, Massachusetts, Michigan, and New 
Jersey.

Assigned environmental exposures at the time that 
each case was reported are shown in Table 2. In the full 

Table 1 Baseline characteristics of mortality cases, showing mean ± SD or N (%). Deaths that occurred in block groups

Variable All included individuals (n = 8,884,733) Individuals from 
historically-redlined areas 
(n = 189,687)

Age (years) 75.96 (14.68) 72.55 (15.69%)

Sex

 Male 4,322,095 (48.65%) 93,776 (49.44%)

 Female 4,562,367 (51.35%) 95,906 (50.56%)

 Unknown 271 (0.00%) 5 (0.00%)

Race

 White 7,615,811 (85.72%) 101,892 (53.72%)

 Black 917,202 (10.32%) 73,568 (38.78%)

 Other 319,191 (3.59%) 13,604 (7.17%)

 Unknown 32,529 (0.37%) 623 (0.33%)

Education level

 Less than high school 1,964,879 (22.12%) 63,522 (33.49%)

 High school 3,656,272 (41.15%) 76,351 (40.25%)

 More than high school 2,888,161 (32.51%) 39,646 (20.90%)

 Unknown 375,421 (4.23%) 10,168 (5.36%)

Reporting state

 California (2009–2016) 1,771,689 (19.94%) 48,406 (25.52%)

 Florida (2007–2016) 1,583,311 (17.82%) 11,576 (6.10%)

 Georgia (2007–2009) 179,105 (2.02%) 1,688 (0.89%)

 Illinois (2008–2016) 848,851 (9.55%) 39,819 (20.99%)

 Indiana (2007–2008) 97,459 (1.10%) 3,715 (1.96%)

 Kansas (2007–2009) 62,279 (0.70%) 1,439 (0.76%)

 Massachusetts (2000–2015) 778,304 (8.76%) 23,398 (12.34%)

 Michigan (2007–2013) 546,603 (6.15%) 15,707 (8.28%)

 Missouri (2010–2016) 354,958 (4.00%) 6,378 (3.36%)

 New Hampshire (2007–2016) 85,521 (0.96%) 283 (0.15%)

 New Jersey (2004–2009) 349,596 (3.93%) 14,175 (7.47%)

 Ohio (2007–2013) 679,135 (7.64%) 9,701 (5.11%)

 Texas (2007–2016) 1,547,922 (17.42%) 13,402 (7.07%)

HOLC grade (> 90% block group pop.)

 A (“Best”) 29,605 (0.33%) N/A

 B (“Still Desirable”) 117,492 (1.32%) N/A

 C (“Definitely Declining”) 378,468 (4.26%) N/A

 D (“Hazardous”, i.e. redlined) 189,687 (2.13%) 189,687 (100%)

 E (Unknown) 53 (0.00%) N/A

 Ambiguous 675,266 (7.60%) N/A

 Unclassified 7,437,289 (84.35%) N/A

  BG outside of HOLC areas 7,380,316 (99.23%) N/A
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data set, the mean ambient concentration of  PM2.5 was 
9.61 µg  m−3 (SD 5.72 µg  m−3) on the day of the case and 
9.59  µg   m−3 (SD 4.51  µg   m−3) for the moving average 
comprising the day of the case and the 4 preceding days. 
9.57% of cases occurred on extreme heat days, of which 
32.63% occurred on the first day of extreme heat. Ambi-
ent  PM2.5 both on the day of the case and in the 5-day 
moving average were higher for individuals who lived in 
historically-redlined areas (10.95 µg  m−3; SD 6.38 µg  m−3 
and 10.91  µg   m−3; SD 4.67  µg   m−3, respectively). Addi-
tionally, a slightly larger proportion of deaths from his-
torically-redlined areas occurred on days of extreme heat 
(9.71%). Both ambient temperature and vapor pressure 
were higher among all included individuals vs. cases 
among individuals from historically-redlined areas.

The estimated effects of exposure to extreme heat on 
mortality within and outside of historically-redlined 
neighborhoods are shown in Fig.  4  and Supplement A. 
In general, results suggested that living in a historically-
redlined neighborhood increases susceptibility to death 
by exposure to extreme heat. We found a significant 
interaction with exposure to any extreme heat (interac-
tion odds ratio 1.0218; 95% CI 1.0031, 1.0408) while we 
did not observe significant interactions for singleton heat 
events or when looking at length-specific exposures. In 
absolute terms, this amounts to a 2.157% (95% CI 0.307%, 
4.036%) increase in the daily risk of death death from 
non-external causes by exposure to any extreme heat in 
historically-redlined neighborhoods compared to other 
neighborhoods. The highest overall effects were observed 

Table 2 Assessed exposures, showing mean ± SD or N (%)

Variable All included individuals (n = 8,884,733) Individuals from 
historically-redlined areas 
(n = 189,687)

Temperature (°C)

 On the day of the death 15.63 (9.89) 13.74 (9.88)

 5-day moving average (lags 0–4) 15,59 (9.63) 13.69 (9.59)

Vapor pressure (kPa)

 On the day of the death 1.30 (0.81) 1.15 (0.71)

 5-day moving average (lags 0–4) 1.30 (0.77) 1.15 (0.69)

Ambient  PM2.5 (µg  m−3)

 On the day of the death 9.61 (5.72) 10.95 (6.38)

 5-day moving average (lags 0–6) 9.59 (4.51) 10.91 (4.67)

Extreme heat (> 90th percentile of TMIN) 850,275 (9.57%) 18,426 (9.71%)

 1st day in heat wave 277,404 (32.63%) 5,978 (32.44%)

 2nd day in heat wave 181,331 (21.33%) 3,898 (21.15%)

 3rd day in heat wave 117,652 (13.84%) 2,554 (13.86%)

 4th day in heat wave 77,771 (9.15%) 1,657 (8.99%)

Fig. 4 Estimated odds ratios of mortality from non-external causes due to exposure to any extreme heat or the  nth consecutive day of extreme 
heat, within and outside of historically-redlined areas
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for exposure to any extreme heat, followed by 3, 1, and 2 
consecutive days of extreme heat, respectively.

The estimated effects of exposure to ambient  PM2.5 
on mortality within and outside of historically-redlined 
neighborhoods are shown in Fig.  5 and Supplement B. 
As with extreme heat, we found that living in a histori-
cally-redlined neighborhood increases susceptibility to 
death by exposure to ambient  PM2.5. We found a signifi-
cant interaction with same-day ambient  PM2.5 (interac-
tion odds ratio for each 10 µg/m−3 increase: 1.0093; 95% 
CI 1.0084, 1.0101) while we did not observe interactions 
for different moving averages of ambient  PM2.5. In abso-
lute terms, this amounts to a 0.930% (95% CI 0.831%, 
1.000%) increase in the daily risk of death from non-
external causes for each 10  µg/m−3 increase in ambient 
 PM2.5 in historically-redlined neighborhoods compared 
to other neighborhoods. However, the point estimates for 

interactions with 2- to 5-day moving averages of ambi-
ent  PM2.5 were similar. The highest overall effect was 
observed for same-day exposure and the lowest overall 
effect was observed for the 5-day moving average.

Results from our sensitivity analyses considering differ-
ent cutoffs of population for the apportionment between 
HOLC geographies and Census block groups are shown 
in Figs. 6 and 7 and Supplements A and B. Among each 
combination of exposure and exposure window, we did 
not observe significant differences between the different 
cutoffs. However, for  PM2.5, we did observe that the inter-
action with same-day ambient  PM2.5 was not significant 
for population cutoffs of 50% and 99%. We also observed 
that, for  PM2.5, estimates using a population cutoff of 50% 
were smaller.

Results from our sensitivity analyses consider-
ing different cutoffs of minimum temperature for the 

Fig. 5 Estimated odds ratios of mortality from non-external causes for each 10 µg/m−3 increase in ambient  PM2.5, or the average ambient  PM2.5 
across multiple days, within and outside of historically-redlined areas

Fig. 6 Estimated interaction odds ratios of mortality from non-external causes due to exposure to any extreme heat or the  nth consecutive day 
of extreme heat, using different cutoffs of population for HOLC grade apportionment
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determination of what constitutes extreme heat are 
shown in Fig. 8 and Supplement C. We observed that, for 
the most part, interactions were similar across the dif-
ferent cutoffs. We also observed that the 85th and 95th 
percentile cutoffs of minimum temperature had higher 
interactions than the 90th percentile cutoff, with the 
85th percentile being the highest for any exposure and 
the 99th percentile being the highest for the 1st day of 
extreme heat.

Results from our sensitivity analyses by individual- and 
area-level demographics are shown in Figs. 9 and 10 and 
Supplements D and E. For extreme heat, we found that 
Black individuals and individuals from Black neighbor-
hoods tended to be less susceptible while White indi-
viduals and individuals from White neighborhoods 
were more susceptible. In particular, we found signifi-
cant interactions between exposure to extreme heat and 
both self-identification as White and living in a White 

neighborhood while the corresponding interactions for 
self-identification as Black and living in a Black neigh-
borhood were close to null. For  PM2.5, interactions were 
more similar among the different subgroups.

Results from our sensitivity analyses by state are shown 
in Figs. 11 and 12 and Supplements F and G. In general, 
we did not observe significant heterogeneity in the inter-
actions between living in a historically-redlined neigh-
borhood and exposure either extreme heat or ambient 
 PM2.5, though the interactions between historical redlin-
ing and ambient  PM2.5 tended to be stronger in Indiana.

Results from our sensitivity analyses by year are shown 
in Figs. 13 and 14 and Supplements H and I. As with our 
sensitivity analyses by state, there was no clear heteroge-
neity in the interactions between living in a historically-
redlined neighborhood and exposure to either extreme 
heat or ambient  PM2.5 by year. There also did not appear 
to be any consistent time trend in those interactions, 

Fig. 7 Estimated interaction odds ratios of mortality from non-external causes for each 10 µg/m−3 increase in ambient  PM2.5, or the average 
ambient  PM2.5 across multiple days, using different cutoffs of population for HOLC grade apportionment

Fig. 8 Estimated interaction odds ratios of mortality from non-external causes due to exposure to any extreme heat or the  nth consecutive day 
of extreme heat, using different cutoffs of minimum temperature
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Fig. 9 Estimated interaction odds ratios of mortality from non-external causes due to exposure to any extreme heat or the  nth consecutive day 
of extreme heat, restricted to different subsets of the population by individual- and area-level demographics

Fig. 10 Estimated interaction odds ratios for mortality from non-external causes for each 10 µg/m−3 increase in ambient  PM2.5, or the average 
ambient  PM2.5 across multiple days, restricted to different subsets of the population by individual- and area-level demographics

Fig. 11 Estimated interaction odds ratios of mortality from non-external causes due to exposure to any extreme heat or the  nth consecutive day 
of extreme heat by state
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though both exposures exhibited suggestive cyclic pat-
terns with multi-year periods.

Discussion
In this study, we found that some disparities in mortal-
ity risks due to exposures to ambient air pollution and 
extreme heat experienced by individuals living in pre-
viously-redlined areas persist nearly a century after the 

initial creation of the HOLC security maps, and that the 
injustices fostered by these maps go beyond the quantity 
of exposure itself and include differential susceptibility. 
Using a case-crossover design, we were able to control for 
all time-invariant and individual-level confounders and 
demonstrated that living in a previously-redlined area 
has synergistic effects with both ambient  PM2.5 and expo-
sure to extreme heat on mortality by non-external causes. 

Fig. 12 Estimated interaction odds ratios of mortality from non-external causes for each 10 µg/m−3 increase in ambient  PM2.5, or the average 
ambient  PM2.5 across multiple days by state

Fig. 13 Estimated interaction odds ratios of mortality from non-external causes due to exposure to any extreme heat or the  nth consecutive day 
of extreme heat by year
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These findings have implications for policy going for-
ward, as these results suggest that redlined communities 
will experience air pollution- and extreme heat-related 
health disparities even after local air pollution levels 
are brought to levels comparable to not-redlined com-
munities or interventions to reduce heat through green 
space and reflective sidewalk installations have been 
implemented.

Notably, 53.72% of the deaths in historically-redlined 
communities involved White individuals, so these find-
ings are not simply an effect of larger effect sizes in 
minority population. This was further confirmed by our 
sensitivity analyses – we did not find any significant dif-
ferences between the response of Black or White indi-
viduals, individuals from present-day majority Black or 
White neighborhoods, and the population as a whole. 
Additionally, we found that our results were consistent 
for different definitions of what Census block groups 
count as having been redlined and for different defini-
tions of extreme heat.

Interestingly, we observed that the interaction between 
living in a historically-redlined neighborhood and expo-
sure to extreme heat was stronger in White individuals. 
It’s unclear what could explain this finding and more 
work is needed to investigate its robustness and deter-
mine potential mechanisms. Previous studies have 
shown that Black and White individuals spend similar 
amounts of time outdoors and that Black neighborhoods 

may have more outdoor amenities, though these ameni-
ties tend to be of worse quality, so this may not be an 
effect of behavioral differences between these subpopu-
lations [5, 11, 18, 23].

Previous studies also identified acute effects of extreme 
heat on mortality ([3, 22, 30], p. 50). Simultaneously, 
previous studies have also identified acute effects of 
 PM2.5 [17, 19, 24, 42], including studies looking at lags 
up to 30 or 40 days [47, 48]. The present study comple-
ments these prior analyses by contributing evidence that 
historical redlining modifies those effects, which is an 
important finding for environmental justice concerns. 
Moreover, previous literature has found that the effects of 
both extreme heat and  PM2.5 exposures are more severe 
in Black individuals [6, 13, 30, 40, 41, 45], though find-
ings are conflicted. In our sensitivity analysis, we find that 
the effect modification persists in individual- and neigh-
borhood-level demographic subsets, suggesting that the 
effect is not simply one of neighborhood composition but 
rather represents lasting, structural impacts of historic 
redlining.

The present study has a few major strengths, the most 
significant being the use of a case-crossover analysis to 
control for confounding, and the focus on block-groups 
instead of the more common city level models. By using 
a case-crossover analysis rather than more traditional 
epidemiologic methods of confounding control, we 
were able to significantly limit the number of potential 

Fig. 14 Estimated interaction odds ratios of mortality from non-external causes due for each 10 µg/m−3 increase in ambient  PM2.5, or the average 
ambient  PM2.5 across multiple days by year
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uncontrolled confounders by design. Previous case-
crossover studies conducted at a city level used citywide 
means of PM2.5 or extreme heat, introducing substantial 
exposure error. Using block-group level exposure reduces 
this error, better captures urban heat islands, and local 
adaptation to prevailing temperature. This study also 
benefits from the generalizability of the data source used 
– rather than looking at a subset of the population, the 
death records used encompass the entire population of 
people who have died in each state during the years col-
lected. Another strength of our study is that our findings 
remained robust across extensive sensitivity analyses.

This study also has a few limitations. Chiefly, air pol-
lution and meteorology were assessed at the home block 
group of each individual, which may not have captured 
their true exposures if they regularly commuted to a 
work far from home. However, because we looked at 
acute effects, and the mean age of our population was 
76 years old, this misclassification issue is less of a con-
cern. It is also possible that additional factors that influ-
ence both air pollution and redlining or both extreme 
heat and redlining that were not adjusted for may have 
confounded these findings and biased these results. 
Additionally, though our data includes deaths from sev-
eral states across the country with different physical and 
sociopolitical environments, they are not all-encompass-
ing and it is possible that estimates could be different in 
areas that we missed, such as in the Pacific Northwest 
and Great Plains regions. Lastly, these findings also do 
not identify any single causative agent, as redlining can 
influence mortality and chronic psychosocial stress in 
a variety of different ways. This is an important area of 
future research, as identifying these causative agents will 
be crucial to designing effective interventions to reduce 
disparities.

Conclusions
We have observed that the actions of the HOLC nearly 
a century ago that upheld structural discrimination 
through the creation and distribution of its racist secu-
rity maps are still felt today, and individuals living in 
affected areas will continue to experience extreme heat- 
and air pollution-related health disparities even after 
these adverse environmental agents are mitigated. This 
study highlights the urgent need for future investiga-
tion into the specific causal agents driving this health 
disparity in order to design specific, targeted interven-
tions that can address both extreme heat and air pol-
lution as well as socioeconomic inequalities present 
in disadvantaged neighborhoods. In the meantime, 
interventions to reverse the impact of redlining in gen-
eral, such as efforts to reduce local  PM2.5 by increasing 

access to alternative forms of transportation or plant 
trees to reduce the effect of urban heat, are a good 
start. In general, our findings suggest that interventions 
that focus on the environment alone may not be able 
to fully achieve environmental health equity and a more 
holistic approach may be more well-suited to achieving 
these goals.
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